JPS6136807Y2 - - Google Patents

Info

Publication number
JPS6136807Y2
JPS6136807Y2 JP1981108638U JP10863881U JPS6136807Y2 JP S6136807 Y2 JPS6136807 Y2 JP S6136807Y2 JP 1981108638 U JP1981108638 U JP 1981108638U JP 10863881 U JP10863881 U JP 10863881U JP S6136807 Y2 JPS6136807 Y2 JP S6136807Y2
Authority
JP
Japan
Prior art keywords
dynamic pressure
sintered
radial
circumferential surface
bearing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1981108638U
Other languages
Japanese (ja)
Other versions
JPS5814521U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP10863881U priority Critical patent/JPS5814521U/en
Publication of JPS5814521U publication Critical patent/JPS5814521U/en
Application granted granted Critical
Publication of JPS6136807Y2 publication Critical patent/JPS6136807Y2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Sliding-Contact Bearings (AREA)

Description

【考案の詳細な説明】 この考案は、気体動圧ラジアル軸受、とくに回
転部材に焼結部材を備えた気体動圧ラジアル軸受
に関するものである。
[Detailed Description of the Invention] This invention relates to a gas dynamic pressure radial bearing, particularly a gas dynamic pressure radial bearing in which a rotating member is provided with a sintered member.

従来、小形精密機器などの回転部に使用される
軸受として、トルクや負荷容量の小さい気体動圧
ラジアル軸受があり、例えば第1図に示す如きモ
ーター用の軸受が知られている。図において、1
はハウジング、2は回転部材、3は受部材、4は
鋼球、5はステーターコイル、6はローターであ
る。
BACKGROUND ART Conventionally, gas dynamic pressure radial bearings with low torque and load capacity have been used as bearings for rotating parts of small precision instruments and the like, and for example, a bearing for a motor as shown in FIG. 1 is known. In the figure, 1
2 is a housing, 2 is a rotating member, 3 is a receiving member, 4 is a steel ball, 5 is a stator coil, and 6 is a rotor.

ハウジング1は内方に円筒状のラジアル内周面
11,11とステーターコイル5を内蔵した中空
部12を備え、さらに下端部にはスラスト荷重を
支持する鋼球4を備えた受部材3がボルトによつ
て取付けられている。前記ラジアル内周面11,
11に嵌合して回転する回転部材2は、上部の小
径部21および前記ラジアル内周面11,11と
対向して共働するラジアル外周面23を備えた大
径部22よりなつており、その下端部に前記鋼球
4とすべり接触してスラスト軸受を形成する平面
状のスラスト端部25が形成されている。前記大
径部22にはステーターコイル5と対向する位置
にローター6が固着されており、またラジアル外
周面23には動圧発生用のヘリングボーンみぞ2
4が形成されている。
The housing 1 has cylindrical radial inner circumferential surfaces 11, 11 and a hollow part 12 containing the stator coil 5 inside, and furthermore, a receiving member 3 equipped with a steel ball 4 for supporting a thrust load is attached to a bolt at the lower end. installed by. the radial inner circumferential surface 11;
The rotating member 2 that rotates while being fitted into the rotary member 11 is composed of an upper small diameter portion 21 and a large diameter portion 22 having a radial outer circumferential surface 23 that faces and cooperates with the radial inner circumferential surfaces 11, 11, A planar thrust end portion 25 is formed at the lower end portion of the steel ball 4 to form a thrust bearing in sliding contact with the steel ball 4. A rotor 6 is fixed to the large diameter portion 22 at a position facing the stator coil 5, and a herringbone groove 2 for generating dynamic pressure is provided on the radial outer peripheral surface 23.
4 is formed.

このような気体動圧ラジアル軸受においては、
一般に負荷容量が小さいので軸受面積を大きくす
るためにラジアル軸受部の径を所要の軸径である
小径部21よりも大きい大径部22とするが、回
転部材2の起動・停止時にはラジアル軸受面がド
ライな状態で接触するので、これらの軸受面の摩
擦による摩耗を防ぐために、軸受面の表面にセラ
ミツク・コーテイングを施したり、超硬合金を用
いることが多い。
In such a gas dynamic pressure radial bearing,
In general, since the load capacity is small, in order to increase the bearing area, the diameter of the radial bearing part is set to a large diameter part 22 that is larger than the small diameter part 21, which is the required shaft diameter, but when the rotating member 2 is started or stopped, the radial bearing surface Since these bearing surfaces come into contact in a dry state, in order to prevent wear due to friction, the bearing surfaces are often coated with ceramic or made of cemented carbide.

また、回転部材2の小径部21と大径部22と
は、通常数ミクロン以下の同軸度に仕上げるた
め、高精度の機械加工が必要であるうえ、ハウジ
ング1は軽量で防蝕性の高いアルミニウム系や銅
系金属を用い、回転部材2には強度の高い鋼材と
する組合わせが多いので、両部材の熱膨張率の差
を逃げるための軸受すき間をラジアル軸受面間に
余分に設ける必要があつた。
In addition, the small diameter part 21 and the large diameter part 22 of the rotating member 2 require high-precision machining in order to achieve coaxiality of usually several microns or less, and the housing 1 is made of lightweight and highly corrosion-resistant aluminum. Since there are many combinations in which the rotating member 2 is made of high-strength steel, it is necessary to provide an extra bearing gap between the radial bearing surfaces to escape the difference in coefficient of thermal expansion between the two members. Ta.

したがつて、このように高精度の気体動圧ラジ
アル軸受は製作コストが極めて高く、低価格を必
要とされる一般の音響機器や映像機器などの軸受
として使用することは困難であり、また、軸受部
にセラミツクコーテイングや超硬合金を使用する
場合も、材料費のみならず加工が複雑であるた
め、やはり実用化を阻害する大きな要因となつて
いた。
Therefore, the production cost of such high-precision gas dynamic pressure radial bearings is extremely high, and it is difficult to use them as bearings for general audio equipment, video equipment, etc. that require low cost. Even when ceramic coating or cemented carbide is used for the bearing part, not only the material cost but also the processing complexity is a major factor that hinders practical application.

この考案は、これらの従来の欠点を除くために
なされたものであり、耐摩耗性を備え、しかも低
コストで容易に量産できる気体動圧ラジアル軸受
を得ることを目的としたものである。
This invention was made to eliminate these conventional drawbacks, and aims to provide a gas dynamic pressure radial bearing that has wear resistance and can be easily mass-produced at low cost.

つぎに、この考案による気体動圧ラジアル軸受
の一実施例を第2図および第3図によつて説明す
ると、110はハウジング、120は回転部材、
121は軸部材、122は焼結部材、130は受
部材、140は鋼球である。
Next, an embodiment of the gas dynamic pressure radial bearing according to this invention will be described with reference to FIGS. 2 and 3. 110 is a housing, 120 is a rotating member,
121 is a shaft member, 122 is a sintered member, 130 is a receiving member, and 140 is a steel ball.

ハウジング110は内方に円筒状のラジアル内
周面111を備え、また下面にはスラスト荷重を
支持する鋼球140を中央部に備えた受部材13
0が取付けられている。前記ラジアル内周面11
1に嵌合する回転部材120は、前記ラジアル内
面111に対向して共働するラジアル外周面12
4を備えた焼結部材122と、該焼結部材122
を外周部に固着した軸部材121からなり、焼結
部材のラジアル外周面124には動圧発生用のヘ
リングボーンみぞ125が形成されている。そし
て軸部材121の下端部に前記鋼球140とすべ
り接触する平面状のスラスト端面126を備えて
いる。
The housing 110 has a cylindrical radial inner peripheral surface 111 on the inside, and a receiving member 13 on the lower surface that has a steel ball 140 in the center that supports a thrust load.
0 is installed. The radial inner peripheral surface 11
1, the rotating member 120 is fitted with a radial outer peripheral surface 12 that faces and cooperates with the radial inner surface 111.
4, and the sintered member 122
A herringbone groove 125 for generating dynamic pressure is formed in the radial outer peripheral surface 124 of the sintered member. The lower end of the shaft member 121 is provided with a flat thrust end surface 126 that slides into contact with the steel ball 140.

前記焼結部材122はハウジング110と熱膨
張率が近似の材質を選定する。また、前記軸部材
121に焼結部材122を固定する方法として
は、例えば第3図に示す如く、外周部の所定位置
にあらかじめ回動防止のためのローレツト加工な
どにより突起部127を形成した軸部材121を
プレス金型160のダイス161に装着し、つぎ
に焼結部材122となる筒状の中間素材123を
軸部材121に挿入するが、この中間素材123
は図の左側に示す如く前記の突起部127よりも
若干大きい内径とラジアル外周面124よりも若
干小さい外径を備えた焼結部材を用いる。そして
中間素材123はパンチ162を用いたプレス成
形により図の右側に示す如く圧縮成形し、軸部材
121に焼結部材122として固着した後、転造
加工またはエツチング加工などによつて動圧発生
用のヘリングボーンみぞ125を成形するが、さ
らに必要に応じて多孔質材122の表面部に塑性
加工ないし接着剤のコーテイングによる目つぶし
加工を施してラジアル外周面124を仕上げる。
The sintered member 122 is made of a material having a coefficient of thermal expansion similar to that of the housing 110. Further, as a method of fixing the sintered member 122 to the shaft member 121, for example, as shown in FIG. The member 121 is mounted on the die 161 of the press mold 160, and then a cylindrical intermediate material 123, which will become the sintered member 122, is inserted into the shaft member 121.
As shown on the left side of the figure, a sintered member having an inner diameter slightly larger than the projection 127 and an outer diameter slightly smaller than the radial outer circumferential surface 124 is used. Then, the intermediate material 123 is compressed as shown on the right side of the figure by press forming using a punch 162, and after being fixed to the shaft member 121 as a sintered member 122, it is formed into a material for generating dynamic pressure by rolling or etching. Herringbone grooves 125 are formed, and if necessary, the surface of the porous material 122 is closed by plastic processing or adhesive coating to finish the radial outer circumferential surface 124.

また、焼結部材122は必要に応じてMoS2
WS2、グラフアイト、PTFEなどを固体潤滑剤と
して含浸させるが、この場合は、プレス成形前の
中間素材123に粉末状の固体潤滑剤を含浸また
はコーテイング処理したものを用いて加工する。
In addition, the sintered member 122 may be made of MoS 2 or
WS 2 , graphite, PTFE, or the like is impregnated as a solid lubricant, but in this case, the intermediate material 123 before press molding is processed using a powdered solid lubricant impregnated or coated.

さらに焼結部材122は必要に応じてラジアル
外周面124にセラミツクコーテイングなどの処
理を施して耐熱性を備えたラジアル軸受面とす
る。
Furthermore, the radial outer circumferential surface 124 of the sintered member 122 is subjected to a treatment such as ceramic coating, if necessary, to provide a heat-resistant radial bearing surface.

上記の如く形成された、この考案による気体動
圧ラジアル軸受にあつては、回転部材120が軸
部材121と軸部材に固着された焼結部材122
とによつて構成されているため、焼結部材の変形
加工性を利用したプレス加工などの塑性加工によ
つて容易に、しかも精度よく量産加工することが
できるとともに、回転部材は、その全体が焼結金
属によつて形成されているものではなく、ラジア
ル外周面を形成している円筒部のみが焼結金属に
よつて形成されており、その芯部は、焼結金属で
ない公知の熔解法によつて作られた金属によつて
形成され十分に補強されているので、従来の同一
金属による一体形とほぼ同様の強度を有し、しか
も前記両部材は、互の結合面が、ローレツトやき
ざみ目などによつて互の回動が防止されており、
使用中前記両結合面間にゆるみの生じる心配もな
い。
In the gas dynamic pressure radial bearing of this invention formed as described above, the rotating member 120 has a shaft member 121 and a sintered member 122 fixed to the shaft member.
As the rotating member is composed of It is not made of sintered metal, but only the cylindrical part that forms the radial outer circumferential surface is made of sintered metal, and the core part is not made of sintered metal using a known melting method. Since it is made of metal made by the company and is sufficiently reinforced, it has almost the same strength as a conventional integral type made of the same metal. Mutual rotation is prevented by notches, etc.
There is no fear of loosening between the two bonding surfaces during use.

また、焼結部材に固形潤滑剤を容易に含浸また
はコーテイング処理することができるため、軸受
の起動、停止時にも潤滑性がよく、摩擦を少なく
して軸受面の摩耗を防止することができる。
In addition, since the sintered member can be easily impregnated or coated with a solid lubricant, it has good lubricity even when the bearing is started and stopped, reducing friction and preventing wear on the bearing surface.

さらに、焼結部材にセラミツクコーテイングを
施した軸受においては、耐熱性を有する軸受とす
ることができる。
Furthermore, a bearing in which a ceramic coating is applied to a sintered member can have heat resistance.

また、この考案の軸受においては、ハウジング
110と熱膨張率が近似の焼結部材122を容易
に選定することができるため、従来の如く熱膨張
率の差を逃げるための軸受すき間を余分に設ける
必要がなく、軸受の負荷容量を向上させることが
できる。例えばφ20mmの軸受すき間を10μmから
5μmまで小さくすることにより、ラジアル負荷
容量は2倍以上に増大することが知られている。
In addition, in the bearing of this invention, since it is possible to easily select the sintered member 122 whose coefficient of thermal expansion is similar to that of the housing 110, an extra bearing gap is provided to escape the difference in coefficient of thermal expansion as in the conventional case. This is not necessary, and the load capacity of the bearing can be improved. For example, it is known that by reducing the bearing clearance of φ20 mm from 10 μm to 5 μm, the radial load capacity can be more than doubled.

したがつて温度変化のはげしい環境での使用
や、軸受内部の温度変化に対しても安定した負荷
容量を保つことができる。
Therefore, it is possible to maintain a stable load capacity even when used in an environment with severe temperature changes and even when the temperature inside the bearing changes.

なお、実施例においてはスラスト軸受に鋼球1
40を用いたすべり軸受として用いるが、これを
他の形式のスラスト軸受と組合わせて使用するこ
ともできる。
In addition, in the embodiment, steel balls 1 are attached to the thrust bearing.
40 is used as a sliding bearing, but it can also be used in combination with other types of thrust bearings.

また、軸部材121に焼結部材122を固着す
るプレスの金型6の構造も、他の異なる金型の組
合わせによる塑性加工としてもよい。
Furthermore, the structure of the press mold 6 for fixing the sintered member 122 to the shaft member 121 may be plastic working by combining other different molds.

【図面の簡単な説明】[Brief description of the drawings]

第1図は、従来の気体動圧ラジアル軸受を用い
た小形モーターの縦断面図、第2図および第3図
は、この考案による気体動圧ラジアル軸受の一実
施例を示し、第2図は軸受の縦断面図、第3図は
軸部材に焼結部材を固着するプレス成形の説明図
である。実施例の符号中、110はハウジング、
120は回転部材、121は軸部材、122は焼
結部材、130は受部材、140は鋼球である。
FIG. 1 is a vertical sectional view of a small motor using a conventional gas dynamic pressure radial bearing, FIGS. 2 and 3 show an embodiment of the gas dynamic pressure radial bearing according to this invention, and FIG. FIG. 3, a longitudinal cross-sectional view of the bearing, is an explanatory diagram of press forming for fixing the sintered member to the shaft member. In the symbols of the embodiments, 110 is a housing;
120 is a rotating member, 121 is a shaft member, 122 is a sintered member, 130 is a receiving member, and 140 is a steel ball.

Claims (1)

【実用新案登録請求の範囲】 (1) 円筒状のラジアル内周面を有するハウジング
と、前記ラジアル内周面と対向して共働するラ
ジアル外周面を備えた回転部材からなり、か
つ、前記ラジアル内周面およびラジアル外周面
の少くとも一方に動圧発生用のみぞを備えてい
る気体動圧ラジアル軸受において、前記回転部
材は、焼結金属でない金属材料からなる軸部材
と、該軸部材に嵌合された筒状の中間部材の圧
縮成形によつて前記軸部材と一体的に固着され
たラジアル外面を有する焼結部材とからなり、
かつ、前記軸部材と焼結部材との嵌合面に互の
回動を防止する回動防止手段を備えていること
を特徴とした気体動圧ラジアル軸受。 (2) 実用新案登録請求の範囲第1項において、焼
結部材に固体潤滑剤を含浸した気体動圧ラジア
ル軸受。 (3) 実用新案登録請求の範囲第1項において、焼
結部材にセラミツクコーテイングを施した気体
動圧ラジアル軸受。 (4) 実用新案登録請求の範囲第1項、第2項、第
3項のいずれかにおいて、ハウジングと焼結部
材をそれぞれ熱膨張率の近似な材質とした気体
動圧ラジアル軸受。
[Claims for Utility Model Registration] (1) A rotating member comprising a housing having a cylindrical radial inner circumferential surface and a radial outer circumferential surface facing and cooperating with the radial inner circumferential surface, and In a gas dynamic pressure radial bearing having a groove for generating dynamic pressure on at least one of the inner circumferential surface and the radial outer circumferential surface, the rotating member includes a shaft member made of a metal material other than sintered metal, and a shaft member made of a metal material other than sintered metal. a sintered member having a radial outer surface that is integrally fixed to the shaft member by compression molding of a fitted cylindrical intermediate member;
The gas dynamic pressure radial bearing is further characterized in that a fitting surface of the shaft member and the sintered member is provided with rotation prevention means for preventing mutual rotation. (2) A gas dynamic pressure radial bearing in which a sintered member is impregnated with a solid lubricant, as set forth in claim 1 of the utility model registration claim. (3) A gas dynamic pressure radial bearing in which a ceramic coating is applied to a sintered member according to claim 1 of the utility model registration. (4) The gas dynamic pressure radial bearing according to any one of claims 1, 2, and 3 of the claims registered as a utility model, in which the housing and the sintered member are made of materials with similar coefficients of thermal expansion.
JP10863881U 1981-07-23 1981-07-23 gas dynamic pressure radial bearing Granted JPS5814521U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10863881U JPS5814521U (en) 1981-07-23 1981-07-23 gas dynamic pressure radial bearing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10863881U JPS5814521U (en) 1981-07-23 1981-07-23 gas dynamic pressure radial bearing

Publications (2)

Publication Number Publication Date
JPS5814521U JPS5814521U (en) 1983-01-29
JPS6136807Y2 true JPS6136807Y2 (en) 1986-10-25

Family

ID=29903035

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10863881U Granted JPS5814521U (en) 1981-07-23 1981-07-23 gas dynamic pressure radial bearing

Country Status (1)

Country Link
JP (1) JPS5814521U (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4829939A (en) * 1971-08-25 1973-04-20
JPS4835645A (en) * 1971-09-09 1973-05-25
JPS4919299A (en) * 1972-03-20 1974-02-20
JPS5037635A (en) * 1973-08-06 1975-04-08
JPS50143123A (en) * 1974-05-02 1975-11-18
JPS5516531U (en) * 1978-07-13 1980-02-01

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4829939A (en) * 1971-08-25 1973-04-20
JPS4835645A (en) * 1971-09-09 1973-05-25
JPS4919299A (en) * 1972-03-20 1974-02-20
JPS5037635A (en) * 1973-08-06 1975-04-08
JPS50143123A (en) * 1974-05-02 1975-11-18
JPS5516531U (en) * 1978-07-13 1980-02-01

Also Published As

Publication number Publication date
JPS5814521U (en) 1983-01-29

Similar Documents

Publication Publication Date Title
KR960000986B1 (en) Ceramic bearing
EP0381336B1 (en) Ceramic bearing
JP2006046540A (en) Dynamic pressure fluid bearing device
US5094550A (en) Ceramic bearing
JPH07332353A (en) Dynamic pressurizing bearing
JPS6136807Y2 (en)
KR950008332B1 (en) Ceramic bearing
US20040252923A1 (en) Bearing device, and manufacturing method therefor and motor provided with bearing device
JPH03244827A (en) Static pressure gas bearing
JPH0121203B2 (en)
JP3152970B2 (en) Method of manufacturing machine element having oil-impregnated sliding body
JPH09210072A (en) Angular ball bearing with seal
JP2004132403A (en) Fluid bearing device
JP2018040458A (en) Dynamic pressure bearing and manufacturing method thereof
JP6999259B2 (en) Plain bearing
CN111231195A (en) Inlaid self-lubricating air ring bearing and manufacturing method thereof
JP2537872Y2 (en) Spindle motor
JPH0238096Y2 (en)
JP2555374Y2 (en) Composite bearing
JP2019183868A (en) Sintered oil-containing bearing, fluid dynamic pressure bearing device and method for manufacturing sintered oil-containing bearing
JPS6332418Y2 (en)
JPH0227525B2 (en)
JP6890405B2 (en) Dynamic pressure bearings and their manufacturing methods
JPH11190340A (en) Dynamic pressure type bearing device
JP3997115B2 (en) Hydrodynamic bearing device