JPS6136621B2 - - Google Patents
Info
- Publication number
- JPS6136621B2 JPS6136621B2 JP55145352A JP14535280A JPS6136621B2 JP S6136621 B2 JPS6136621 B2 JP S6136621B2 JP 55145352 A JP55145352 A JP 55145352A JP 14535280 A JP14535280 A JP 14535280A JP S6136621 B2 JPS6136621 B2 JP S6136621B2
- Authority
- JP
- Japan
- Prior art keywords
- chamber
- tube
- eluent
- cation exchange
- anolyte
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 239000003480 eluent Substances 0.000 claims description 41
- 238000005341 cation exchange Methods 0.000 claims description 22
- 238000000926 separation method Methods 0.000 claims description 22
- 239000000203 mixture Substances 0.000 claims description 16
- 150000001768 cations Chemical class 0.000 claims description 15
- 239000012530 fluid Substances 0.000 claims description 14
- 239000007788 liquid Substances 0.000 claims description 14
- 238000004458 analytical method Methods 0.000 claims description 11
- 239000012528 membrane Substances 0.000 claims description 10
- 150000001450 anions Chemical class 0.000 claims description 9
- 239000003957 anion exchange resin Substances 0.000 claims description 5
- 238000000909 electrodialysis Methods 0.000 claims description 4
- 238000000034 method Methods 0.000 claims description 3
- 238000005086 pumping Methods 0.000 claims description 2
- 239000002184 metal Substances 0.000 claims 2
- 238000005349 anion exchange Methods 0.000 claims 1
- 238000007599 discharging Methods 0.000 claims 1
- 238000010828 elution Methods 0.000 claims 1
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 30
- 150000002500 ions Chemical class 0.000 description 15
- 239000000523 sample Substances 0.000 description 12
- 238000006243 chemical reaction Methods 0.000 description 10
- 238000010586 diagram Methods 0.000 description 8
- NWUYHJFMYQTDRP-UHFFFAOYSA-N 1,2-bis(ethenyl)benzene;1-ethenyl-2-ethylbenzene;styrene Chemical group C=CC1=CC=CC=C1.CCC1=CC=CC=C1C=C.C=CC1=CC=CC=C1C=C NWUYHJFMYQTDRP-UHFFFAOYSA-N 0.000 description 5
- FAPWRFPIFSIZLT-UHFFFAOYSA-M sodium chloride Inorganic materials [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 5
- 241000894007 species Species 0.000 description 5
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 4
- 239000002253 acid Substances 0.000 description 3
- 238000001514 detection method Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000004255 ion exchange chromatography Methods 0.000 description 3
- 239000003456 ion exchange resin Substances 0.000 description 3
- 229920003303 ion-exchange polymer Polymers 0.000 description 3
- 230000008929 regeneration Effects 0.000 description 3
- 238000011069 regeneration method Methods 0.000 description 3
- 150000003839 salts Chemical class 0.000 description 3
- 230000035945 sensitivity Effects 0.000 description 3
- 239000011780 sodium chloride Substances 0.000 description 3
- 229910001220 stainless steel Inorganic materials 0.000 description 3
- 239000010935 stainless steel Substances 0.000 description 3
- 230000002378 acidificating effect Effects 0.000 description 2
- 125000000129 anionic group Chemical group 0.000 description 2
- 239000003729 cation exchange resin Substances 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 238000005868 electrolysis reaction Methods 0.000 description 2
- 238000002347 injection Methods 0.000 description 2
- 239000007924 injection Substances 0.000 description 2
- 239000011810 insulating material Substances 0.000 description 2
- XNGIFLGASWRNHJ-UHFFFAOYSA-N phthalic acid Chemical compound OC(=O)C1=CC=CC=C1C(O)=O XNGIFLGASWRNHJ-UHFFFAOYSA-N 0.000 description 2
- RPACBEVZENYWOL-XFULWGLBSA-M sodium;(2r)-2-[6-(4-chlorophenoxy)hexyl]oxirane-2-carboxylate Chemical compound [Na+].C=1C=C(Cl)C=CC=1OCCCCCC[C@]1(C(=O)[O-])CO1 RPACBEVZENYWOL-XFULWGLBSA-M 0.000 description 2
- 125000006850 spacer group Chemical group 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 241000978750 Havardia Species 0.000 description 1
- -1 NaNO 3 Substances 0.000 description 1
- 241001274216 Naso Species 0.000 description 1
- 230000003321 amplification Effects 0.000 description 1
- 239000012472 biological sample Substances 0.000 description 1
- 238000000921 elemental analysis Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000005342 ion exchange Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000011259 mixed solution Substances 0.000 description 1
- 238000003199 nucleic acid amplification method Methods 0.000 description 1
- 238000012856 packing Methods 0.000 description 1
- IWZKICVEHNUQTL-UHFFFAOYSA-M potassium hydrogen phthalate Chemical compound [K+].OC(=O)C1=CC=CC=C1C([O-])=O IWZKICVEHNUQTL-UHFFFAOYSA-M 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000012488 sample solution Substances 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 230000032258 transport Effects 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N30/00—Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
- G01N30/96—Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation using ion-exchange
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N30/00—Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
- G01N30/96—Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation using ion-exchange
- G01N2030/965—Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation using ion-exchange suppressor columns
Landscapes
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
Description
【発明の詳細な説明】
本発明はサンプル液に含まれる陰イオンをイオ
ンクロマトグラフイによつて分析する方法及び装
置に関する。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method and apparatus for analyzing anions contained in a sample liquid by ion chromatography.
イオンクロマトグラフイとは、1975年H.Small
らによつて発表された、主として、無機イオンの
高速液クロマトグラフイの呼称である(Anaul.
Chem.、47、1801(1975))。 What is ion chromatography?H.Small in 1975
(Anaul.
Chem., 47, 1801 (1975)).
イオンクロマトグラフイーは、すでに実用化さ
れており、環境試料・生体試料の分析、各種プロ
セスの管理分析や元素分析などの各種微量分析に
広く利用されつつある。 Ion chromatography has already been put into practical use and is being widely used for various trace analyzes such as analysis of environmental samples and biological samples, control analysis of various processes, and elemental analysis.
第1図は、従来の陰イオン分析用のイオンクロ
マトグラフの流路系の構成説明図である。 FIG. 1 is an explanatory diagram of the configuration of a flow path system of a conventional ion chromatograph for anion analysis.
第1図において、イオンクロマトグラフは、溶
離液となるNaOHを貯溜する溶離液槽1と、槽1
の溶離液を試料注入弁3へ圧送するポンプ2と、
所定量のサンプル液を採取すると共に、採取され
たサンプル液を溶離液で分離カラム4へ搬送する
試料注入弁3と、陽イオン交換樹脂に陰イオン交
換樹脂を静電的に結合させて全体として陰イオン
型となるように調整した樹脂が充填されて成り、
注入された流体に含まれる各イオン種を分離溶出
する分離カラム4と、強酸性陽イオン交換樹脂が
充填されて成り、溶離液のイオンを捕獲するバツ
クグランド除去カラム5(以下、BSCという)
と、BSC5から流出される流体をセル内に導入
し、電導度を測定する電導度計6とを有する。 In Figure 1, the ion chromatograph consists of an eluent tank 1 that stores NaOH as an eluent, and a tank 1.
a pump 2 that pumps the eluent to the sample injection valve 3;
A sample injection valve 3 that collects a predetermined amount of sample liquid and transports the collected sample liquid to a separation column 4 using an eluent, and an anion exchange resin that is electrostatically bonded to a cation exchange resin. It is filled with resin adjusted to be anionic type,
A separation column 4 separates and elutes each ion species contained in the injected fluid, and a background removal column 5 (hereinafter referred to as BSC), which is filled with a strongly acidic cation exchange resin and captures ions in the eluent.
and a conductivity meter 6 for introducing the fluid flowing out from the BSC 5 into the cell and measuring the conductivity.
上記構成をなすイオンクロマトグラフにおける
課題は、BSCにある。 The problem with the ion chromatograph having the above configuration lies in the BSC.
その一つに、通常の分析条件にて、8〜10時間
に、BSCの再生操作を必要とする点にある。BSC
は溶離液のイオンを捕獲し、溶離液のイオンによ
る電導度計のバツクグランドを低くし、測定イオ
ンの検出感度を向上させるために設けたものであ
るが、BSCは時間の経過につれてその機能を低下
する。それは、カラム内で(1)式に基く反応がなさ
れ、イオン交換樹脂がH型からNa型に移行して
ゆくためである。 One of them is that the BSC needs to be regenerated every 8 to 10 hours under normal analysis conditions. BSC
The BSC was designed to capture ions in the eluent, lower the background of the conductivity meter caused by the ions in the eluent, and improve the detection sensitivity of the measured ions, but the BSC loses its functionality over time. descend. This is because a reaction based on formula (1) takes place within the column, and the ion exchange resin shifts from H type to Na type.
NaOH(溶離液)+強Resin−H+(BSC)
→Resin−Na+H2O (1)
全てのイオン交換樹脂がNa型になると、もは
や(1)式に基く反応が進まなくなり、電導度計にお
けるベースラインが上昇すると共に、各種イオン
に対する増巾機能を失なうことになる。このた
め、従来のイオンクロマトグラフは、定められた
時間間隔で、BSCに1N〜3N HClを流してその機
能を再生する操作を行うようになつている。勿
論、濃度の高い溶離液を高流量で流す必要のある
分析条件では、上記再生操作間隔は短く、1〜2
時間毎になることもある。NaOH (eluent) + strong Resin−H + (BSC) →Resin−Na+H 2 O (1) When all the ion exchange resin becomes Na type, the reaction based on equation (1) no longer proceeds, and the As the baseline rises, the amplification function for various ions is lost. For this reason, conventional ion chromatographs are operated by flowing 1N to 3N HCl through the BSC at predetermined time intervals to regenerate its function. Of course, under analysis conditions that require high-concentration eluent to flow at a high flow rate, the above regeneration operation interval is short, 1 to 2
Sometimes it's hourly.
他の一つは、BSCに分離カラムから溶出された
流体を通過させると、ピーク形状が崩れる点にあ
る。これは、BSCが3〜6mm(内径)×25〜50cm
の管路の中にイオン交換樹脂を充填した構成であ
ることに起因している。 Another problem is that when the fluid eluted from the separation column is passed through the BSC, the peak shape collapses. This means that BSC is 3~6mm (inner diameter) x 25~50cm
This is due to the structure in which the pipe line is filled with ion exchange resin.
本発明はかゝる点に鑑みてなされたものであ
り、本発明は、分離カラムから溶出される流体に
含まれる溶離液の陽イオンを除去するにあたり、
再生操作を必要とせず、しかも、分離されたピー
ク形状を崩すことのないように、分離カラムから
溶出された流体を陽イオン交換組成物で形成され
る流路を有する電気透析手段を通過させて、電導
度計の測定セルに導入するようになつている。 The present invention has been made in view of the above points, and the present invention provides the following advantages:
The fluid eluted from the separation column is passed through an electrodialysis means having a channel formed of a cation exchange composition, without requiring a regeneration operation and without disturbing the shape of the separated peaks. , and are now being introduced into the measurement cells of conductivity meters.
以下、図面を参照し、本発明について詳しく説
明する。 Hereinafter, the present invention will be explained in detail with reference to the drawings.
第2図は本発明の一実施例による分析装置の構
成説明図である。 FIG. 2 is an explanatory diagram of the configuration of an analyzer according to an embodiment of the present invention.
第2図の分析装置は、アルカリ性溶離液、例え
ば、0.002N NaOHを貯溜して成る溶離液槽1
と、槽1の溶離液をサンプル導入装置3へ圧送す
るポンプ2と、マイクロシリジン等によつて流路
に所定量注入されるサンプル液を、ポンプ2から
の溶離液によつて分離カラム4に搬送するサンプ
ル導入装置3と、イオン交換容量の低い強塩基性
陰イオン交換樹脂を充填した分離カラムと、後述
する陽イオン交換組成物で形成されるセル7に特
徴を有する電気透析式陽イオン除去装置(以下、
EBSと称する)と、EBSから流出される流体をセ
ル内に導入し、電導度に対応した信号を記録計等
に出力する電導度計6と、分析済みの流体、EBS
の陽極液、陰極液等を貯溜する槽13a,13
b,13cとを有している。そして、EBSは、セ
ル7に具備される陽極及び陰極に電圧を印加する
ための直流電圧発生器8と、陽極液室を満たす陽
極液、例えば、0.002N HClを貯溜して成る貯溜
槽9と、槽9の陽極液を陽極液室へ圧送するポン
プ10と、陰極液室を満たす陰極液、例えば、
0.002N NaOHを貯溜して成る貯溜槽11と、槽
11の陰極液を陰極液室へ圧送するポンプ12と
を有する。 The analyzer shown in FIG.
, a pump 2 that pumps the eluent from the tank 1 to the sample introduction device 3; and a predetermined amount of sample liquid injected into the flow path using microsilidine or the like, and the eluent from the pump 2 to the separation column 4. An electrodialysis type cation system characterized by a sample introduction device 3 for transporting the sample to a cell, a separation column filled with a strongly basic anion exchange resin having a low ion exchange capacity, and a cell 7 formed of a cation exchange composition described below. removal device (hereinafter referred to as
EBS), a conductivity meter 6 that introduces the fluid flowing out from the EBS into the cell and outputs a signal corresponding to the conductivity to a recorder, etc., and the analyzed fluid, the EBS
Tanks 13a, 13 for storing anolyte, catholyte, etc.
b, 13c. The EBS includes a DC voltage generator 8 for applying voltage to the anode and cathode provided in the cell 7, and a storage tank 9 that stores an anolyte, for example, 0.002N HCl, which fills the anolyte chamber. , a pump 10 for pumping the anolyte in the tank 9 to the anolyte chamber, and a catholyte filling the catholyte chamber, e.g.
It has a storage tank 11 that stores 0.002N NaOH, and a pump 12 that pumps the catholyte in the tank 11 to the catholyte chamber.
EBSのセル7は第3図に示す構成をなしてい
る。第3図のイ図は、セル7の軸方向での断面
図、ロ図はイ図のA−A断面図である。 The EBS cell 7 has the configuration shown in FIG. Figure A in FIG. 3 is a cross-sectional view of the cell 7 in the axial direction, and Figure B is a cross-sectional view taken along line AA in Figure A.
セル7は、白金線74の陽極を内在する陽イオ
ン交換組成物から成るチユーブ71、そのチユー
ブ71を内在する陽イオン交換組成物から成るチ
ユーブ72及びそのチユーブ72を内在するステ
ンレス鋼から成るチユーブ73を用い、各チユー
ブ間に適度の間隙を設けて三重管を形成し、その
三重管の両端を絶縁部材から成る蓋75及び76
で閉塞して独立した溶離液室77、陽極液室78
及び陰極液室79を形成すると共に、各室と外部
とを連通する穴77a,77b,78a,78
b,79a及び79bを設けた構成をなしてい
る。そして、溶離液室77には、分離カラム4か
ら溶出される流体が穴77a→室→77bの方向
で流れ、陰極液室78には、ポンプ10で圧送さ
れる陽極液が穴78b→室→78aの方向で流
れ、陰極液室79には、ポンプ12で圧送される
陰極液が穴79b→室→79aの方向で流れる。
この溶離液の流れ方向と陽極液及び陰極液の流れ
方向とは逆になつている。 The cell 7 includes a tube 71 made of a cation exchange composition containing an anode of a platinum wire 74, a tube 72 made of a cation exchange composition containing the tube 71, and a tube 73 made of stainless steel containing the tube 72. A triple tube is formed by providing an appropriate gap between each tube, and both ends of the triple tube are covered with lids 75 and 76 made of insulating material.
An eluent chamber 77 and an anolyte chamber 78 are closed and independent.
and holes 77a, 77b, 78a, 78 that form the catholyte chamber 79 and communicate each chamber with the outside.
b, 79a and 79b. In the eluent chamber 77, the fluid eluted from the separation column 4 flows in the direction of the hole 77a→chamber→77b, and in the catholyte chamber 78, the anolyte fluid pumped by the pump 10 flows from the hole 78b→chamber→77b. In the catholyte chamber 79, the catholyte pumped by the pump 12 flows in the direction of hole 79b→chamber→79a.
The flow direction of this eluent and the flow directions of the anolyte and catholyte are opposite to each other.
一方、チユーブ73と白金線74との間には、
チユーブ73を陰極に、また、白金線74を陽極
にした電圧Eが、直流電圧発生器8によつて与え
られている。 On the other hand, between the tube 73 and the platinum wire 74,
A voltage E is provided by a DC voltage generator 8, with the tube 73 serving as a cathode and the platinum wire 74 serving as an anode.
次に、上記構成をなす分析装置の動作について
説明する。 Next, the operation of the analyzer having the above configuration will be explained.
ポンプ2によつて、0.002N NaOHの溶離液
が、約2.0ml/minの流量でサンプル導入装置3→
分離カラム4→EBSセル7の溶離液室77→電導
度計6のセル→槽13aへ流れる。また、ポンプ
10によつて、0.002N HClの陽極液が、約1ml/
minの流量でEBSセル7の陽極液室78→槽13
bへ流れる。同様に、ポンプ12によつて、
0.002N NaOHの陰極液が、約1ml/minの流量で
EBSセル7の陰極液室79→槽13cへ流れる。 The eluent of 0.002N NaOH is introduced into the sample introduction device 3 at a flow rate of approximately 2.0ml/min by the pump 2.
It flows from the separation column 4 to the eluent chamber 77 of the EBS cell 7 to the cell of the conductivity meter 6 to the tank 13a. Additionally, the pump 10 pumps approximately 1 ml of 0.002N HCl anolyte/
Anolyte chamber 78 of EBS cell 7 → tank 13 at a flow rate of min.
Flows to b. Similarly, by the pump 12,
0.002N NaOH catholyte at a flow rate of approximately 1ml/min.
It flows from the catholyte chamber 79 of the EBS cell 7 to the tank 13c.
いま、サンプル導入装置3にて、Cl-100mg/
(ppm)、NO− 3100mg/(ppm)及びSO2− 4100mg/
(p
pm)の各イオン種を含むサンプル液100μを溶
離液の流れの中に注入し、分離カラム4に搬送す
る。分離カラム4で各イオン種は分離される。分
離カラム4の出口における流体のクロマトグラフ
は、第6図のようになつている。即ち、0.002N
NaOHの電導度約210μS/cmがベースラインとな
り、陽イオン(サンプル液がNa塩で作られてい
ればN+ a、K塩で作られていればK+)、Cl-、
NO− 3、SO2− 4の順に現われる。実際には、各陰イ
オン種は、溶離液中のN+ aと会合し、Cl-は
NaCl、NO− 3はNaNO3、SO2− 4はNa2SO4の各塩とな
り、これらが0.002N NaOH中に含まれた形をな
して溶出されるので、例えば、Cl-のピークで電
導度変化は約25μS/cmである。 Now, in sample introduction device 3, Cl - 100mg/
(ppm), NO - 3 100mg/(ppm) and SO2-4 100mg /
(p
pm) of each ion species is injected into the eluent stream and conveyed to the separation column 4. Each ion species is separated in the separation column 4. The chromatograph of the fluid at the outlet of the separation column 4 is as shown in FIG. That is, 0.002N
The conductivity of NaOH, approximately 210 μS/cm, becomes the baseline, and cations (N + a if the sample solution is made of Na salt, K + if it is made of K salt), Cl - ,
NO - 3 and SO2-4 appear in this order. In reality, each anionic species associates with N + a in the eluent and Cl -
NaCl, NO - 3 becomes NaNO 3 and SO 2 - 4 becomes Na 2 SO 4 salts, and these are eluted in the form contained in 0.002N NaOH, so for example, the peak of Cl - indicates conductivity. The degree change is approximately 25μS/cm.
上記のように溶離溶出された各イオン種は、
EBSセル7の中で以下の動作をなす。 Each ion species eluted as above is
The following operations are performed in the EBS cell 7.
第4図はEBSの動作説明図で、各符号は第3図
と同一意味で用いられている。 FIG. 4 is an explanatory diagram of the operation of EBS, and each symbol is used with the same meaning as in FIG. 3.
陽極74と陰極73との間に印加した電圧Eに
よつて、陽イオンは陰極73に向けて、また、陰
イオンは陽極74に向けて移動する。しかるに、
陽イオン交換膜71及び72が存在するために、
陽イオンはこれらの膜を自由に通過して陰極73
に移動することができるが、陰イオンは膜を通過
することができない。したがつて、溶離液中の
NaOHが、N+ aとOH-となつて溶離液室77を通
過中に、N+ aは陽イオン交換膜72を通過して陰
極73へ移動する。一方、陽極液HClが流れる陽
極液室78から陽イオン交換膜71を通過して
H+が溶離液室77に供給される。溶離液は(2)式
の反応式に示すよう、NaOHがH2Oに変換され、
その電導度は著しく低下する。 Due to the voltage E applied between the anode 74 and the cathode 73, cations move toward the cathode 73 and anions move toward the anode 74. However,
Due to the presence of cation exchange membranes 71 and 72,
Cations freely pass through these membranes to the cathode 73
can move through the membrane, but anions cannot pass through the membrane. Therefore, in the eluent
While NaOH passes through the eluent chamber 77 as N + a and OH - , N + a passes through the cation exchange membrane 72 and moves to the cathode 73 . On the other hand, the anolyte HCl flows from the anolyte chamber 78 through the cation exchange membrane 71.
H + is supplied to the eluent chamber 77 . As shown in the reaction equation (2), the eluent is NaOH converted to H 2 O,
Its conductivity is significantly reduced.
NaOH−N+ a+H+→H2O (2)
また、分離カラム4で分離溶出される各イオン
種は、前述のように、NaCl、NaNO3、Na2SO4の
形となつて溶離液室77に入り、(3)式、(4)式及び
(5)式の反応をする。NaOH−N + a + H + →H 2 O (2) In addition, as mentioned above, each ion species separated and eluted in the separation column 4 becomes NaCl, NaNO 3 , and Na 2 SO 4 and enters the eluent. Enter room 77, formula (3), formula (4) and
Perform the reaction of equation (5).
NaCl−N+ a+H+→HCl (3)
NaNO3−N+ a+H+→HNO3 (4)
NaSO4−2N+ a+2H+→H2SO4 (5)
このように、溶離液中のNaOHが(2)式の反応に
よつてH2Oに変るため、溶離液の電導度は著しく
低下し、ベースラインが非常に低く安定する。し
たがつて、EBSを通過した流体のクロマトグラフ
は第7図のようになる。即ち、陽イオンのピーク
形状は消失し、Cl-のピーク形状(電導度差)は
約20μS/cm→約70μS/cmに、NO− 3は約10μS/cm
→約45μS/cmに、SO2− 4は約7μS/cm→約60μS/
cmになつて、Cl-、NO− 3及びSO2− 4のピーク形状は
増巾されている。これは、Cl-は(3)式の反応によ
つてNaClがHClの形に変化し、NO− 3は(4)式の反応
によつてNaNO3がHNO3の形に変化し、SO2− 4は(5)
式の反応によつてH2SO4の形に変化し、いずれも
Na塩の形から酸の形に変つているからである。
周知のように、溶液の電導度は、一般に、塩型よ
りも酸型の方が高い。NaCl−N + a +H + →HCl (3) NaNO 3 −N + a +H + →HNO 3 (4) NaSO 4 −2N + a +2H + →H 2 SO 4 (5) In this way, the Since NaOH is converted to H 2 O by the reaction of formula (2), the electrical conductivity of the eluent decreases significantly and the baseline becomes very low and stable. Therefore, the chromatograph of the fluid that has passed through EBS is as shown in FIG. That is, the peak shape of cations disappears, the peak shape of Cl - (conductivity difference) changes from about 20 μS/cm to about 70 μS/cm, and the peak shape of NO − 3 decreases to about 10 μS/cm.
→about 45μS/cm, SO 2-4 about 7μS/cm→ about 60μS/
cm, the peak shapes of Cl - , NO - 3 and SO 2-4 are broadened. This means that for Cl - , NaCl changes to HCl form through the reaction in equation (3), and for NO - 3 , NaNO 3 changes to HNO 3 through the reaction in equation (4), resulting in SO 2 - 4 is (5)
It changes to the form of H 2 SO 4 by the reaction of the formula, both of which are
This is because it changes from the Na salt form to the acid form.
As is well known, the conductivity of a solution is generally higher in an acid form than in a salt form.
上記EBSの増巾作用によつて電導度計における
検出感度が著しく向上する。 Due to the amplifying effect of EBS, the detection sensitivity of the conductivity meter is significantly improved.
なお、セル7の陽極74及び陰極73が理想電
極であれば、両電極への印加電圧が1.23V以下で
は、水の電気分解が起らず、(2)式〜(5)式のみが進
行する。そして、印加電圧Eを水の電解電圧より
高くすると、陽極74にCl2が、また、陰極73
にH2が夫々発生するが、(2)式〜(5)式の反応効率
を高めることができる。 Note that if the anode 74 and cathode 73 of the cell 7 are ideal electrodes, water electrolysis will not occur if the voltage applied to both electrodes is 1.23 V or less, and only equations (2) to (5) will proceed. do. Then, when the applied voltage E is made higher than the water electrolysis voltage, Cl 2 is added to the anode 74 and the cathode 73
Although H 2 is generated in each of the steps, the reaction efficiency of equations (2) to (5) can be increased.
また、分離カラムの種類によつて溶離液の種類
が異なつても、例えば、0.003M Na2CO3と
0.0024M NaHCO3混合液、0.004M フタル酸水
素カリウム、0.001M フタル酸などであつて
も、EBSは陰イオンを全て酸型にする反応を行う
ので電導度増巾がなされる。 Also, even if the type of eluent differs depending on the type of separation column, for example, 0.003M Na 2 CO 3 and
Even with 0.0024M NaHCO 3 mixed solution, 0.004M potassium hydrogen phthalate, 0.001M phthalic acid, etc., EBS conducts a reaction that converts all anions into acid forms, resulting in increased conductivity.
第5図は、本発明の他の実施例による分析装置
のEBSの構成説明図で、イ図は、長手方向での断
面図、ロ図は、イ図におけるB−B断面図であ
る。 FIG. 5 is an explanatory diagram of the configuration of an EBS of an analyzer according to another embodiment of the present invention, in which figure A is a sectional view in the longitudinal direction, and figure B is a sectional view taken along line BB in figure A.
第5図において、EBSのセル7′は、ステンレ
ス鋼から成る二枚の平板73′との間に、絶縁部
材から成るスペーサ17,18及び19を介在し
て陽イオン交換膜71′及び72′を二段に設置
し、これらをボルト14、ナツト16及び絶縁部
材から成るスペーサ15を用いて固定して形成さ
れる個々に独立した3個の室、即ち、溶離液室7
7、陽極液室78及び陰極液室79を有する。そ
して、各室は、第3図におけるセル7と同様に、
平板73′及び74′に設けた穴79′a,79′
b,78′a,78′b,77′a及び77′bを流
入口又は流出口として、溶離液、陽極液又は陰極
液の流路を構成する。また、直流電圧発生器8の
出力電圧Eの(+)極を平板74′に、(−)極を
平板73′に夫々接続して、平板74′を陽極、平
板73′を陰極とする構成をなしている。 In FIG. 5, an EBS cell 7' has cation exchange membranes 71' and 72' with spacers 17, 18 and 19 made of insulating material interposed between two flat plates 73' made of stainless steel. are installed in two stages, and these are fixed using bolts 14, nuts 16, and spacers 15 made of insulating members to form three individually independent chambers, that is, eluent chambers 7.
7, has an anolyte chamber 78 and a catholyte chamber 79. Then, each chamber is similar to cell 7 in FIG.
Holes 79'a and 79' provided in flat plates 73' and 74'
b, 78'a, 78'b, 77'a, and 77'b are used as inlets or outlets to constitute flow paths for eluent, anolyte, or catholyte. In addition, the (+) pole of the output voltage E of the DC voltage generator 8 is connected to a flat plate 74', and the (-) pole is connected to a flat plate 73', respectively, so that the flat plate 74' serves as an anode and the flat plate 73' serves as a cathode. is doing.
このようなセル7′を有するEBSは、第3図に
示したセル7を有するEBSと同様な動作をし、セ
ル7′通過前・後のクロマトグラフは、第6図、
第7図のようになる。 The EBS having such a cell 7' operates in the same way as the EBS having the cell 7 shown in FIG. 3, and the chromatographs before and after passing through the cell 7' are as shown in FIG.
It will look like Figure 7.
なお、上記実施例において、強塩基性陰イオン
交換樹脂が充填された分離カラムによる構成が示
されているが、本発明はこれに限定するものでは
なく、弱塩基性陰イオン交換樹脂が充填された分
離カラムを用いた装置であつてもよい。また、溶
離液として酸性のものを用いたものであつてもよ
い。さらに、チユーブ73又は平板73′及び7
4′をプラスチツク部材からなるチユーブ、又
は、平板を用いてセルを構成すると共に、形成さ
れた室内に各電極を設置してもよい。さらに、上
記各実施例における陽極液室に陰極液を、陰極液
室に陽極液を満たすと共に、陽極に(−)電位
を、陰極に(+)電位を与えても、実施例と同様
な作用効果を得ることができる。さらに、上記実
施例におけるポンプ10及び12を省き、槽9及
び11をセル7より高い位置に設置し、その落差
を利用して陽極液及び陰極液を流すようにしても
よい。 In addition, in the above example, a configuration using a separation column packed with a strongly basic anion exchange resin is shown, but the present invention is not limited to this. It may also be an apparatus using a separation column. Furthermore, an acidic eluent may be used. Furthermore, tube 73 or flat plate 73' and 7
The cell may be constructed by using a tube or a flat plate made of plastic material for 4', and each electrode may be installed in the formed chamber. Furthermore, even if the anolyte chamber in each of the above embodiments is filled with catholyte and the catholyte chamber is filled with anolyte, and a (-) potential is applied to the anode and a (+) potential is applied to the cathode, the same effect as in the embodiments can be obtained. effect can be obtained. Furthermore, the pumps 10 and 12 in the above embodiment may be omitted, the tanks 9 and 11 may be installed at a higher position than the cell 7, and the anolyte and catholyte may be made to flow using the head difference therebetween.
以上、詳しく説明したように、本発明の分析装
置によれば、溶離液中のNa+とH+を陽イオン交換
組成物によつて入れ換えているので、陽極液及び
陰極液を流してさえいれば、BSCを用いた装置の
ように分析を中断して再生操作を行う必要はな
い。なお、溶離液中の陽イオンを透析する駆動力
は、電極間の電圧によるので、陽極液及び陰極液
は常時新しいものである必要はなく、循環させな
がら使用することができる。 As explained above in detail, according to the analyzer of the present invention, Na + and H + in the eluent are replaced by the cation exchange composition, so the anolyte and catholyte do not need to be allowed to flow. For example, there is no need to interrupt the analysis and perform a regeneration operation, unlike in devices using BSC. Note that, since the driving force for dialyzing the cations in the eluent is based on the voltage between the electrodes, the anolyte and catholyte do not need to be fresh all the time, and can be used while being circulated.
また、EBSを通過させることによつて、クロマ
トグラフは、ベースラインが低く、かつ、陰イオ
ンピークが高いものとなるので、電導度計におけ
る検出感度が著しく向上する。 Furthermore, by passing through EBS, the chromatograph has a low baseline and a high anion peak, so the detection sensitivity of the conductivity meter is significantly improved.
さらに、EBSの溶離液室は、その室内に充填物
を具備する必要がないので、通過する物体のクロ
マトグラフのピーク形状を崩す虞れはない。 Furthermore, since the eluent chamber of EBS does not need to be equipped with a packing, there is no risk of disturbing the chromatographic peak shape of the object passing through.
第1図は、従来の陰イオン分析用イオンクロマ
トグラフの流路系の構成説明図、第2図は、本発
明の一実施例による分析装置の構成説明図、第3
図は、陽イオン交換組成物を用いた陽イオン除去
装置のセルの構成説明図、第4図は、陽イオン除
去装置の動作説明図、第5図は、本発明の他の実
施例による分析装置の陽イオン除去装置の構成説
明図、第6図は、分離カラムの出口におけるクロ
マトグラム図、第7図は、陽イオン除去装置の出
口におけるクロマトグラムである。
1……溶離液槽、2,10及び12……ポン
プ、3……サンプル導入装置、4……分離カラ
ム、6……電導度計、7……陽イオン除去装置の
セル、71及び72……陽イオン交換組成物から
成るチユーブ、73……ステンレス鋼から成るチ
ユーブ、74……白金線(陽極)、75及び76
……蓋、77……溶離液室、78……陽極液室、
79……陰極液室、8……直流電圧発生器、9…
…陽極液槽、11……陰極液槽。
FIG. 1 is an explanatory diagram of the configuration of a flow path system of a conventional ion chromatograph for anion analysis, FIG. 2 is an explanatory diagram of the configuration of an analyzer according to an embodiment of the present invention, and FIG.
The figure is an explanatory diagram of the cell configuration of a cation removal device using a cation exchange composition, FIG. 4 is an explanatory diagram of the operation of the cation removal device, and FIG. 5 is an analysis according to another embodiment of the present invention. FIG. 6 is a chromatogram at the outlet of the separation column, and FIG. 7 is a chromatogram at the outlet of the cation removal device. 1... Eluent tank, 2, 10 and 12... Pump, 3... Sample introduction device, 4... Separation column, 6... Conductivity meter, 7... Cell of cation removal device, 71 and 72... ...Tube made of cation exchange composition, 73...Tube made of stainless steel, 74...Platinum wire (anode), 75 and 76
... Lid, 77 ... Eluent chamber, 78 ... Anolyte chamber,
79...Catholyte chamber, 8...DC voltage generator, 9...
...Anolyte tank, 11...Catholyte tank.
Claims (1)
イオン交換樹脂が充填された分離カラムに注入
し、該分離カラムの溶出液を電気透析式陰イオン
除去装置の溶離液室に導びき第1陽イオン交換組
成物を介して陰極液に接液させると共に第2陽イ
オン交換組成物を介して陽極液に接液させこれら
組成物を用いた電気透析によつて前記溶出液中の
陽イオンを前記陽極液の陽イオンと置換させ、そ
の後、前記溶離液から溶出する液の電導度を測定
して前記サンプル液に含まれる陰イオンを分析す
る方法。 2 溶離液を貯溜して成る溶離液貯溜部と、該溶
離液をサンプル導入装置へ圧送する手段と、所定
量のサンプル液を採取すると共に、該採取された
サンプル液を前記溶離液によつて分離カラムへ搬
送するサンプル導入装置と、陰イオン交換樹脂が
充填された分離カラムと、厚みの薄い第1及び第
2の陽イオン交換組成物で形成された少なくとも
二つの壁を有する室であつて、前記分離カラムで
分離溶出された流体の流路を形成して成る溶離液
室、前記第1の陽イオン交換組成物の壁を共有し
て成る室であつて、該室に陽極液を満たし、該陽
極液に接液して成る陽極を有する陽極液室、前記
第2の陽イオン交換組成物の壁を共有して成る室
であつて、該室に陰極液を満たし、該陰極液に接
液して成る陰極を有する陰極液室並びに前記各電
極間に印加する電圧を発生する直流電圧発生器か
ら成る電気透析式陽イオン除去装置と、該装置の
溶離液室からの流体をセルに導入し電導度を測定
する電導度計とを具備することを特徴とするサン
プル液に含まれる陰イオン交の分析装置。 3 前記陽イオン除去装置は、第1の電極を内在
する陽イオン交換組成物から成る第1のチユー
ブ、該第1のチユーブを内在する陽イオン交換組
成物から成る第2のチユーブ並びに、該第2のチ
ユーブ及び第2の電極を内在する第3のチユーブ
を用い、各チユーブ間に適度の間隙を設けて三重
管を形成し、該三重管の両端を蓋で閉塞して独立
した3個の室を形成すると共に、該各室に外部か
らの流体を導入する穴及び排出する穴を設けて成
るセルを有することを特徴とする特許請求の範囲
第2項の分析装置。 4 前記第3のチユーブが金属部材から成り、前
記第2の電極を兼ねると共に、前記三重管の両端
の蓋が絶縁部材から成ることを特徴とする特許請
求の範囲第3項の分析装置。 5 前記第1のチユーブを壁とする室が陽極液
室、前記第1及び第2のチユーブを壁とする室が
溶離液室並びに、前記第2及び第3のチユーブを
壁とする室が陰極液室であることを特徴とする特
許請求の範囲第3項の分析装置。 6 前記第1のチユーブを壁とする室が陰極液
室、前記第1及び第2のチユーブを壁とする室が
溶離液室並びに、前記第2及び第3のチユーブを
壁とする室が陽極液室であることを特徴とする特
許請求の範囲第3項の分析装置。 7 前記陽イオン除去装置は、箱型の室内を、第
1及び第2の陽イオン交換膜で仕切り、独立した
3個の室を有する三重箱を形成し、該各室に外部
からの流体を導入する穴及び排出する穴を設ける
と共に、前記第1の陽イオン交換膜と前記箱の壁
で形成する第1の室及び前記第2の陽イオン交換
膜と前記箱の壁で形成する第2の室に夫々第1及
び第2の電極を内在して成るセルを有することを
特徴とする特許請求の範囲第2項の分析装置。 8 前記第1及び第2の室を形成する箱の壁の一
部が金属部材から成り、該壁が夫々第1及び第2
の電極を兼用することを特徴とする特許請求の範
囲第7項の分析装置。[Scope of Claims] 1. A predetermined amount of sample liquid is transported by an eluent and injected into a separation column packed with an anion exchange resin, and the eluate from the separation column is subjected to elution using an electrodialysis type anion removal device. The solution is introduced into a liquid chamber and brought into contact with the catholyte through the first cation exchange composition and the anolyte through the second cation exchange composition, and is subjected to electrodialysis using these compositions. A method of replacing cations in the eluate with cations in the anolyte, and then measuring the conductivity of the liquid eluted from the eluate to analyze anions contained in the sample liquid. 2. An eluent storage section that stores an eluent, a means for pumping the eluent to a sample introduction device, and a means for collecting a predetermined amount of the sample liquid and using the eluent to collect the sample liquid. A chamber having at least two walls formed of a sample introduction device for transporting a sample to a separation column, a separation column filled with an anion exchange resin, and first and second thin cation exchange compositions; , an eluent chamber forming a flow path for the fluid separated and eluted in the separation column, and a chamber sharing a wall with the first cation exchange composition, the chamber being filled with an anolyte. , an anolyte chamber having an anode in contact with the anolyte; a chamber sharing a wall with the second cation exchange composition; the chamber is filled with a catholyte; an electrodialytic cation removal device comprising a catholyte chamber having a cathode in contact with the liquid and a direct current voltage generator for generating a voltage applied between the electrodes; An apparatus for analyzing anion exchange contained in a sample liquid, characterized in that it is equipped with a conductivity meter that is introduced and measures conductivity. 3. The cation removal device includes a first tube made of a cation exchange composition containing a first electrode, a second tube made of a cation exchange composition containing the first tube, and the second tube made of a cation exchange composition containing the first tube. Using the second tube and the third tube containing the second electrode, a triple tube is formed with an appropriate gap between each tube, and both ends of the triple tube are closed with lids to form three independent tubes. 3. The analyzer according to claim 2, further comprising a cell which forms a chamber, and each chamber is provided with a hole for introducing a fluid from the outside and a hole for discharging a fluid from the outside. 4. The analyzer according to claim 3, wherein the third tube is made of a metal member and also serves as the second electrode, and the lids at both ends of the triple tube are made of an insulating member. 5 The chamber whose walls are the first tube is an anolyte chamber, the chamber whose walls are the first and second tubes are the eluent chamber, and the chamber whose walls are the second and third tubes are the cathode chamber. The analysis device according to claim 3, characterized in that it is a liquid chamber. 6 The chamber whose walls are the first tube is the catholyte chamber, the chamber whose walls are the first and second tubes are the eluent chamber, and the chamber whose walls are the second and third tubes are the anode chamber. The analysis device according to claim 3, characterized in that it is a liquid chamber. 7 The cation removal device has a box-shaped chamber partitioned by first and second cation exchange membranes to form a triple box having three independent chambers, and each chamber is injected with fluid from the outside. A first chamber is formed by the first cation exchange membrane and the wall of the box, and a second chamber is formed by the second cation exchange membrane and the wall of the box. 3. The analyzer according to claim 2, further comprising a cell having first and second electrodes in each chamber. 8 A part of the wall of the box forming the first and second chambers is made of a metal member, and the wall is a part of the wall of the box forming the first and second chambers, respectively.
8. The analysis device according to claim 7, which also serves as an electrode.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP14535280A JPS5769251A (en) | 1980-10-17 | 1980-10-17 | Method and apparatus for analyzing anion in sample liquid |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP14535280A JPS5769251A (en) | 1980-10-17 | 1980-10-17 | Method and apparatus for analyzing anion in sample liquid |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5769251A JPS5769251A (en) | 1982-04-27 |
JPS6136621B2 true JPS6136621B2 (en) | 1986-08-19 |
Family
ID=15383199
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP14535280A Granted JPS5769251A (en) | 1980-10-17 | 1980-10-17 | Method and apparatus for analyzing anion in sample liquid |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5769251A (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3126860A1 (en) * | 1981-07-08 | 1983-01-27 | BIOTRONIK Wissenschaftliche Geräte GmbH, 6000 Frankfurt | METHOD AND DEVICE FOR QUANTITATIVELY DETERMINING CATIONS OR ANIONS BY ION CHROMATOGRAPHY |
JPS58123457A (en) * | 1982-01-20 | 1983-07-22 | Hitachi Ltd | Ion exchange chromatograph |
JPS58135455A (en) * | 1982-02-05 | 1983-08-12 | Yokogawa Hokushin Electric Corp | Method and apparatus for analysis of anion |
US4999098A (en) * | 1984-10-04 | 1991-03-12 | Dionex Corporation | Modified membrane suppressor and method for use |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5046193A (en) * | 1973-08-06 | 1975-04-24 | ||
JPS5148080A (en) * | 1974-10-21 | 1976-04-24 | Nippon Denki Sylvania Kk |
-
1980
- 1980-10-17 JP JP14535280A patent/JPS5769251A/en active Granted
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5046193A (en) * | 1973-08-06 | 1975-04-24 | ||
JPS5148080A (en) * | 1974-10-21 | 1976-04-24 | Nippon Denki Sylvania Kk |
Also Published As
Publication number | Publication date |
---|---|
JPS5769251A (en) | 1982-04-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4403039A (en) | Method and apparatus for analysis of ionic species | |
JP3566308B2 (en) | Large capacity acid or base generator and method of use | |
AU724779B2 (en) | Ion chromatographic method and apparatus using a combined suppressor and eluent generator | |
US10208387B2 (en) | Three-electrode buffer generator and method | |
US5045204A (en) | Method and apparatus for generating a high purity chromatography eluent | |
US4459357A (en) | Process and apparatus for the quantitative determination of cations or anions by ion chromatography | |
US8551318B2 (en) | Ion detector and system | |
EP1536879B1 (en) | Electrolytic eluent generator and method of use | |
US5633171A (en) | Intermittent electrolytic packed bed suppressor regeneration for ion chromatography | |
US7892848B2 (en) | Method of ion chromatography wherein a specialized electrodeionization apparatus is used | |
JP4122228B2 (en) | Suppressor chromatography and salt conversion system | |
JP4485368B2 (en) | Chemical suppressor with improved capacity and usage | |
KR20110081148A (en) | Electrochemically driven pump | |
KR101907600B1 (en) | Ion exchange based volatile component removal device for ion chromatography | |
JPS6136621B2 (en) | ||
WO2002014850A9 (en) | A process and device for continuous ionic monitoring of aqueous solutions | |
JPS6137579B2 (en) | ||
CN219449884U (en) | Eluent generation box and electrolytic eluent generator | |
JPH0225146B2 (en) | ||
JPS6236178B2 (en) |