JPS6136404B2 - - Google Patents
Info
- Publication number
- JPS6136404B2 JPS6136404B2 JP9990379A JP9990379A JPS6136404B2 JP S6136404 B2 JPS6136404 B2 JP S6136404B2 JP 9990379 A JP9990379 A JP 9990379A JP 9990379 A JP9990379 A JP 9990379A JP S6136404 B2 JPS6136404 B2 JP S6136404B2
- Authority
- JP
- Japan
- Prior art keywords
- antenna
- slot
- waveguide
- radio wave
- frequency
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 239000002184 metal Substances 0.000 claims description 12
- 230000005684 electric field Effects 0.000 claims description 6
- 230000001902 propagating effect Effects 0.000 claims description 3
- 230000010287 polarization Effects 0.000 claims 1
- 230000005855 radiation Effects 0.000 description 3
- 238000010586 diagram Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000003111 delayed effect Effects 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q13/00—Waveguide horns or mouths; Slot antennas; Leaky-waveguide antennas; Equivalent structures causing radiation along the transmission path of a guided wave
- H01Q13/02—Waveguide horns
- H01Q13/0233—Horns fed by a slotted waveguide array
Landscapes
- Variable-Direction Aerials And Aerial Arrays (AREA)
- Waveguide Aerials (AREA)
Description
【発明の詳細な説明】
本発明はスロツトアンテナに関するものであ
る。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a slot antenna.
従来のスロツトアンテナの1例を第1図に示
す。この例では、導波路1のH面にスロツト2が
切られており、各スロツトの間隔は設計中心周波
数で1管内波長となつている。従つて、給電口3
から給電され、導波路1内を伝搬しながら各スロ
ツトから放射される電波は、アンテナ正面方向4
で同相となり、この方向に強く放射される。しか
し、設計中心周波数以外の周波数ではスロツト間
隔と管内波長が一致しないため、位相は揃わず、
アンテナビームがアンテナ正面方向4からずれる
といつた欠点がある。第2図はこの様子を示すも
ので、5は設計中心周波数における指向特性、6
は設計中心周波数よりも高い周波数における指向
特性、7は設計中心周波数よりも低い周波数にお
ける指向特性を示す。この結果、アンテナ正面方
向で利得の高い帯域幅が狭いという欠点があり、
通信用にはほとんど用いることができなかつた。
この欠点は、導波路として導波管を用いたスロツ
トアンテナに限らず、誘電体線路又は同軸線路等
他の導波路を用いたアンテナでも同様に生ずるも
のである。 An example of a conventional slot antenna is shown in FIG. In this example, slots 2 are cut in the H-plane of the waveguide 1, and the interval between each slot is one guide wavelength at the design center frequency. Therefore, the power supply port 3
The radio waves radiated from each slot while propagating within the waveguide 1 are directed toward the antenna in the front direction 4.
They are in phase and radiate strongly in this direction. However, at frequencies other than the design center frequency, the slot spacing and the channel wavelength do not match, so the phases are not aligned.
There is a drawback that the antenna beam deviates from the antenna front direction 4. Figure 2 shows this situation, where 5 is the directivity characteristic at the design center frequency, and 6 is the directivity characteristic at the design center frequency.
7 shows the directional characteristic at a frequency higher than the design center frequency, and 7 shows the directional characteristic at a frequency lower than the design center frequency. As a result, there is a disadvantage that the bandwidth with high gain is narrow in the front direction of the antenna.
It could hardly be used for communications.
This drawback occurs not only in slot antennas using waveguides as waveguides, but also in antennas using other waveguides such as dielectric lines or coaxial lines.
本発明は、それらの欠点を除去するため、各ス
ロツトでの位相の周波数特性を打ち消すような補
償装置を付加することにより広帯域周波数特性を
有せしめたスロツトアンテナを提供するものであ
る。 In order to eliminate these drawbacks, the present invention provides a slot antenna that has wideband frequency characteristics by adding a compensation device that cancels out the frequency characteristics of the phase in each slot.
以下図面により本発明を詳細に説明する。 The present invention will be explained in detail below with reference to the drawings.
第3図は、本発明の1実施例であつて、aは斜
視図、bは断面図であり、8は金属板、9は電界
の向き、10はアンテナ開口部、11は電波の進
路を示す。各スロツトから放射される電波は、中
心周波数で開口部10において位相が揃うように
スロツト間隔を選ぶ。いま、中心周波数よりも高
い周波数を考えると、管内波長が短かくなるた
め、各スロツト2までの位相は給電口3から遠ざ
かるに従つて遅れる。一方、金属板8の間隔をカ
ツトオフ周波数の近傍に選べば、金属板8中を伝
搬する電波の速度に大きな分散特性を与えること
ができる。そのため、導波管1中に比べて周波数
が高くなつたことによる位相の遅れを大きくする
ことができる。従つて、第3図bに示すように、
給電口3に近いスロツト2からアンテナ開口部1
0まで金属板8の長さを長くすれば、この部分で
位相遅れを大きくすることができ、導波管1中の
位相遅れを補償することができる。この結果、周
波数変化に伴うビームシフト量を小さくすること
ができる。 FIG. 3 shows one embodiment of the present invention, in which a is a perspective view and b is a sectional view, 8 is a metal plate, 9 is the direction of the electric field, 10 is the antenna opening, and 11 is the path of the radio wave. show. The slot spacing is selected so that the radio waves radiated from each slot are in phase at the aperture 10 at the center frequency. Now, considering a frequency higher than the center frequency, the channel wavelength becomes shorter, so the phase up to each slot 2 is delayed as the distance from the feed port 3 increases. On the other hand, if the spacing between the metal plates 8 is selected near the cutoff frequency, a large dispersion characteristic can be imparted to the speed of radio waves propagating through the metal plates 8. Therefore, the phase delay due to the higher frequency compared to that in the waveguide 1 can be increased. Therefore, as shown in Figure 3b,
From slot 2 near power feed port 3 to antenna opening 1
By increasing the length of the metal plate 8 to 0, the phase lag can be increased in this portion, and the phase lag in the waveguide 1 can be compensated for. As a result, the amount of beam shift due to frequency change can be reduced.
以上の効果を数式を用いて計算すると次のよう
になる。中心周波数においてはアンテナ開口部1
0で位相が揃うという条件から、スロツト間隔Δ
lは次式で規定される。 Calculating the above effect using a mathematical formula is as follows. At the center frequency, the antenna aperture 1
From the condition that the phases are aligned at 0, the slot interval Δ
l is defined by the following formula.
ここで、λ0は中心周波数における自由空間波
長、a1は導波管1のE面壁の間隔、a2は金属板8
の間隔、θはアンテナ開口部10と導波管1のな
す角である。アンテナ開口部10での位相分布Pi
は、アンテナ給電部3に近いスロツト2から順に
i=0、1、2………nと番号をつけると、第i
番のスロツトに対して次式で求まる。 Here, λ 0 is the free space wavelength at the center frequency, a 1 is the distance between the E-plane walls of the waveguide 1, and a 2 is the distance between the E-plane walls of the waveguide 1.
, and θ is the angle formed between the antenna aperture 10 and the waveguide 1. Phase distribution Pi at antenna aperture 10
is numbered i=0, 1, 2...n in order from slot 2 closest to the antenna feeder 3.
It can be found using the following formula for the number slot.
ここで、λは各周波数に対する自由空間波長を
示す。従つてビームシフトを小さくするために
は、周波数の変化に対し、(2)式で求まる位相分布
が一様に近くなるようにa1、a2、θを選べばよ
い。ここで、a2は式(1)、(2)から明らかなように
2/λ以上でなければならず、またa1>a2からa2
<λである。 Here, λ indicates the free space wavelength for each frequency. Therefore, in order to reduce the beam shift, a 1 , a 2 , and θ should be selected so that the phase distribution obtained by equation (2) becomes nearly uniform with respect to changes in frequency. Here, a 2 must be greater than or equal to 2/λ, as is clear from equations (1) and (2), and since a 1 > a 2 , a 2
<λ.
第4図に計算結果の1例を示す。横軸は規格化
周波数、縦軸はビームシフト量を示す。ここで
は、a1=0.8636波長、a2=0.55波長、θ=30゜に
選んでいる。鎖線で特性を示す従来のアンテナで
は、10%の帯域で6度程度のビームシフトが生ず
るが、実線で示す本アンテナでは0.5度程度に収
まつていることがわかる。 Figure 4 shows an example of the calculation results. The horizontal axis shows the normalized frequency, and the vertical axis shows the beam shift amount. Here, a 1 =0.8636 wavelength, a 2 =0.55 wavelength, and θ=30° are selected. It can be seen that in the conventional antenna, whose characteristics are shown by the chain line, a beam shift of about 6 degrees occurs in a 10% band, but in the present antenna, shown by the solid line, the beam shift is within about 0.5 degrees.
第5図は、本発明の他の実施例の正面図であ
る。前述の第3図に示す実施例では金属板8の間
隔を一定としていたが、ここでは金属板8の間隔
を変えることにより、長さを変えることと同等の
効果を得ている。なお、この実施例において、第
3図の実施例のように金属板8の長さを変えるも
のと併用することもできる。 FIG. 5 is a front view of another embodiment of the invention. In the embodiment shown in FIG. 3, the spacing between the metal plates 8 was kept constant, but here, by changing the spacing between the metal plates 8, the same effect as changing the length can be obtained. Note that this embodiment can also be used in conjunction with the embodiment in which the length of the metal plate 8 is changed as in the embodiment shown in FIG.
第6図は本発明の他の実施例の断面図であつ
て、アンテナ中央部に設けた給電口3から給電す
ることにより奥行きを短かくしている。 FIG. 6 is a sectional view of another embodiment of the present invention, in which the depth is shortened by feeding power from a power feeding port 3 provided at the center of the antenna.
第7図は、導波管1とアンテナ正面方向を直角
に配置した本発明の他の実施例であり、断面図を
示す。 FIG. 7 shows another embodiment of the present invention in which the waveguide 1 and the front direction of the antenna are arranged at right angles, and is a sectional view.
第8図は、今までの説明に用いたスロツトとは
異なる切り方をした場合における本発明の1実施
例であつて、正面図を示す。電界の向き9が導波
管1と直角であるため、各スロツト2対して1対
の金属板8を設けている。 FIG. 8 shows a front view of an embodiment of the present invention in which the slot is cut in a manner different from that used in the explanation up to now. Since the direction 9 of the electric field is perpendicular to the waveguide 1, a pair of metal plates 8 is provided for each slot 2.
以上、導波路として導波管を用いた場合につい
て説明したが、誘電体線路、同軸線路、ストリツ
プライン、平行平板線路等の他の導波路を用いた
場合についても本発明も実施することができる。
その場合、誘電体線路ではスロツトの代りに、不
連続部分を設けることにより、電波放射素子とす
ることができる。 Although the case where a waveguide is used as the waveguide has been described above, the present invention can also be practiced when using other waveguides such as a dielectric line, a coaxial line, a stripline, a parallel plate line, etc. can.
In that case, the dielectric line can be used as a radio wave radiating element by providing a discontinuous portion instead of a slot.
以上説明したように、本発明によれば電界の向
きと平行に設けた金属板からなる位相補償装置を
付加することにより、スロツトアンテナの帯域を
大幅に広くすることができる。この広帯域化によ
りスロツトアンテナを通信用に用いることができ
れば、スロツトアンテナが簡単な構成であること
から通信装置の経済化が図れるといつた利点があ
る。 As explained above, according to the present invention, the band of the slot antenna can be significantly widened by adding a phase compensation device made of a metal plate provided parallel to the direction of the electric field. If slot antennas can be used for communications due to this wide band, there is an advantage that communication devices can be made more economical because the slot antennas have a simple structure.
第1図は従来のスロツトアンテナの斜視図、第
2図は従来のスロツトアンテナの放射特性図、第
3図a,bは本発明の1実施例の斜視図および断
面図、第4図は本発明のアンテナの特性図、第5
図は本発明の1実施例の正面図、第6図および第
7図は本発明の1実施例の断面図、第8図は本発
明の1実施例の正面図である。
1……導波管、2……スロツト、3……給電
口、4……アンテナ正面方向、5……中心周波数
における放射特性、6,7……中心周波数からず
れた時の放射特性、8……金属板、9……電界の
向き、10……アンテナ開口部、11……電波の
進路、12……従来のスロツトアンテナのビーム
シフト特性、13……本発明におけるビームシフ
ト特性。
Figure 1 is a perspective view of a conventional slot antenna, Figure 2 is a radiation characteristic diagram of a conventional slot antenna, Figures 3a and b are a perspective view and a sectional view of an embodiment of the present invention, and Figure 4. is a characteristic diagram of the antenna of the present invention, No. 5
The figure is a front view of one embodiment of the invention, FIGS. 6 and 7 are cross-sectional views of one embodiment of the invention, and FIG. 8 is a front view of one embodiment of the invention. 1... Waveguide, 2... Slot, 3... Feeding port, 4... Antenna front direction, 5... Radiation characteristics at center frequency, 6, 7... Radiation characteristics when shifted from center frequency, 8 . . . Metal plate, 9 . . . Direction of electric field, 10 . . . Antenna aperture, 11 . . . Path of radio waves, 12 .
Claims (1)
波放射素子を複数個設けた構造のアンテナにおい
て、前記電波放射素子のそれぞれから放射される
電界の向き又はアンテナの主偏波成分として用い
る電界の向きとほぼ平行に前記電波放射素子の両
側に半波長以上1波長以下の間隔で前記導波路の
壁面からアンテナ正面方向に向けて金属板を備
え、該金属板の長さおよび間隔は、前記導波路の
給電口から前記導波路を経て前記電波放射素子の
それぞれから放射されて前記金属板中を伝わりア
ンテナ開口部に至る電波の該アンテナ開口部にお
ける位相がどの放射素子を経た電波についても相
互に周波数によつてほとんど変わらないように定
められていることを特徴とするスロツトアンテ
ナ。1. In an antenna having a structure in which a plurality of slots or radio wave radiating elements are provided in place of slots in the middle of a waveguide, the direction of the electric field radiated from each of the radio wave radiating elements or the direction of the electric field used as the main polarization component of the antenna. A metal plate is provided approximately parallel to both sides of the radio wave radiating element at an interval of not less than half a wavelength and not more than one wavelength from the wall surface of the waveguide toward the front of the antenna. The phase at the antenna opening of the radio waves radiated from each of the radio wave radiating elements from the feed port through the waveguide, propagating through the metal plate, and reaching the antenna opening is the same as the frequency of the radio waves that have passed through any radiating element. A slot antenna characterized in that the antenna is designed so that it remains almost the same over time.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9990379A JPS5624803A (en) | 1979-08-07 | 1979-08-07 | Slot antenna |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9990379A JPS5624803A (en) | 1979-08-07 | 1979-08-07 | Slot antenna |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5624803A JPS5624803A (en) | 1981-03-10 |
JPS6136404B2 true JPS6136404B2 (en) | 1986-08-18 |
Family
ID=14259726
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP9990379A Granted JPS5624803A (en) | 1979-08-07 | 1979-08-07 | Slot antenna |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5624803A (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0724164Y2 (en) * | 1988-04-08 | 1995-06-05 | 豊和工業株式会社 | Fluid distributor |
JP2533395B2 (en) * | 1990-03-27 | 1996-09-11 | オ−クマ株式会社 | Hydraulic circuit with rotary joint |
JP2007295396A (en) * | 2006-04-26 | 2007-11-08 | Japan Radio Co Ltd | Slot array antenna |
US7667660B2 (en) * | 2008-03-26 | 2010-02-23 | Sierra Nevada Corporation | Scanning antenna with beam-forming waveguide structure |
JP5787450B2 (en) * | 2013-05-07 | 2015-09-30 | ソフトバンク株式会社 | Antenna device |
-
1979
- 1979-08-07 JP JP9990379A patent/JPS5624803A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS5624803A (en) | 1981-03-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20200194902A1 (en) | Waveguide slot array antenna | |
US5173714A (en) | Slot array antenna | |
US10530060B2 (en) | Single-layered end-fire circularly polarized substrate integrated waveguide horn antenna | |
EP1158605B1 (en) | V-Slot antenna for circular polarization | |
EP1479130B1 (en) | Traveling-wave combining array antenna apparatus | |
GB592120A (en) | Devices for the transmission or reception of ultra-high frequency electromagnetic waves | |
US9972900B2 (en) | Distributor and planar antenna | |
EP0142555A1 (en) | Dual band phased array using wideband elements with diplexer. | |
EP2337153B1 (en) | Slot array antenna and radar apparatus | |
EP3567677A1 (en) | Antenna array and communication device | |
Phalak et al. | Aperture coupled microstrip patch antenna array for high gain at millimeter waves | |
JP2010050700A (en) | Antenna device, and array antenna device with the same | |
US11450973B1 (en) | All metal wideband tapered slot phased array antenna | |
US2718592A (en) | Antenna | |
US10622714B2 (en) | Linear slot array antenna for broadly scanning frequency | |
JPS6136404B2 (en) | ||
CN106229656B (en) | Wide beam MIMO antenna | |
US3631502A (en) | Corrugated horn antenna | |
US10727591B2 (en) | Apparatuses and methods for a planar waveguide antenna | |
US5903241A (en) | Waveguide horn with restricted-length septums | |
Yamac et al. | Waveguide slot-fed horn antenna array with suppressed sidelobes | |
JPS63296402A (en) | Planar antenna | |
Amjadi et al. | A compact, broadband, two-port slot antenna system for full-duplex applications | |
JP3405233B2 (en) | Waveguide branch circuit and antenna device | |
JP3857220B2 (en) | Dielectric Leaky Wave Antenna |