JPS6136391B2 - - Google Patents

Info

Publication number
JPS6136391B2
JPS6136391B2 JP7395976A JP7395976A JPS6136391B2 JP S6136391 B2 JPS6136391 B2 JP S6136391B2 JP 7395976 A JP7395976 A JP 7395976A JP 7395976 A JP7395976 A JP 7395976A JP S6136391 B2 JPS6136391 B2 JP S6136391B2
Authority
JP
Japan
Prior art keywords
pressure
receiving plate
light
displacement
receiving element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP7395976A
Other languages
Japanese (ja)
Other versions
JPS52156586A (en
Inventor
Isamu Okuda
Hiroshi Horii
Keijiro Mori
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP7395976A priority Critical patent/JPS52156586A/en
Publication of JPS52156586A publication Critical patent/JPS52156586A/en
Publication of JPS6136391B2 publication Critical patent/JPS6136391B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Pressure Sensors (AREA)
  • Led Device Packages (AREA)
  • Led Devices (AREA)
  • Light Receiving Elements (AREA)
  • Measuring Fluid Pressure (AREA)

Description

【発明の詳細な説明】 本発明は流体圧力を、ダイヤフラム、受圧板、
ばね材を介して変位に変換し、この変位により、
受光素子の感光面の光像を偏位させて電気信号に
変換する圧力電気変換装置に関するもので、その
目的は圧力電気変換器に要求される次のような基
本性能を総合的に保持した技術を提供するにあ
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention utilizes a diaphragm, a pressure receiving plate,
It is converted into displacement through the spring material, and this displacement causes
This technology relates to a pressure-electric transducer that deflects the optical image on the photosensitive surface of a light-receiving element and converts it into an electrical signal.The purpose is to develop a technology that comprehensively maintains the following basic performances required of a pressure-electric converter. is to provide.

(a) 微圧、例えば数mmAgによつても良好な特性
を持ち、検出すべき差圧の符号が、正、負、正
より負、負より圧のいづれであつても連続的に
検出しうるとともに、その差圧に対して電気出
力信号が比例すること。
(a) It has good characteristics even under very small pressures, such as a few mmAg, and can continuously detect whether the sign of the differential pressure to be detected is positive, negative, more negative than positive, or more negative than negative. and the electrical output signal is proportional to the differential pressure.

(b) 周囲温度・経時変化特性が良好であること。(b) Good ambient temperature and aging characteristics.

(c) 複雑な電子回路を要せず、極めて低価格で実
現できること。
(c) It does not require complicated electronic circuits and can be realized at an extremely low cost.

(d) 破損しやすい部分がなく、過大圧力、衝撃に
耐え、製造が容易であること。
(d) be free of fragile parts, withstand excessive pressure and impact, and be easy to manufacture;

などである。etc.

従来、位置又は圧力検出手段として、差動トラ
ンスを用いたもの、インダクタンス変化を利用し
たもの、ピエゾ抵抗素子を利用したものがあつた
が、部品が高価、複雑な増幅器が必要、破損しや
すい、微圧での動作が困難など種々の難点があつ
た。また光導電セル(CdS)1個を用いたもの、
シリコン応力素子(歪により抵抗値が変化する素
子)を用いたものがあつたが、これらはいづれも
周囲温度特性、経時的信頼性で難点があつた。
Conventionally, position or pressure detection means have used differential transformers, inductance changes, and piezoresistive elements, but these methods require expensive components, require complicated amplifiers, and are easily damaged. There were various difficulties such as difficulty in operating under low pressure. Also, one using one photoconductive cell (CdS),
Some used silicon stress elements (elements whose resistance value changes due to strain), but these all had problems with ambient temperature characteristics and reliability over time.

本発明は、前述の目的のごとく、従来の圧力電
気変換装置の欠点を除き、性能、コスト、量産性
などの面で極めて優れた圧力電気変換装置を提供
せんとするものである。
As described above, the present invention aims to eliminate the drawbacks of conventional pressure-electric converters and provide a pressure-electric converter that is extremely superior in terms of performance, cost, mass productivity, etc.

以下本発明の実施例を添付図面に沿つて詳細に
説明する。
Embodiments of the present invention will be described in detail below with reference to the accompanying drawings.

第1図は本発明の実施例の構造断面図である。
第1図において、1は高圧側ケース、2は低圧側
ケース、3は高圧導入口、4は低圧導入口、5は
ダイヤフラム、6および7はそれぞれ受圧板、8
はダイヤフラム5および受圧板6,7を一体にす
るためのリベツト、9はリベツト8に固定して取
り付けられたスリツト板、10,11は圧縮コイ
ルばねである。以上の要素により、圧力を変位に
変換する圧力変位変換部を構成する。
FIG. 1 is a structural sectional view of an embodiment of the present invention.
In Figure 1, 1 is a high pressure side case, 2 is a low pressure side case, 3 is a high pressure inlet, 4 is a low pressure inlet, 5 is a diaphragm, 6 and 7 are pressure receiving plates, 8
9 is a rivet for integrating the diaphragm 5 and the pressure receiving plates 6 and 7, 9 is a slit plate fixedly attached to the rivet 8, and 10 and 11 are compression coil springs. The above elements constitute a pressure displacement converter that converts pressure into displacement.

12は光像の偏位により、光電物質、例えば
CdS、CdSe、シリコンなどで作られた2つの同
形の感光面の特性値の比が差動的に変化する受光
素子、13は光源で、例えば発光ダイオード、ネ
オンランプ、フイラメントランプなどである。1
4は受光素子12および光源13を固定する保持
台であり、低圧側ケース2に取り付けられてい
る。15は受光素子12のリード端子、16は光
源13のリード端子である。上記スリツト板9、
受光素子12、光源13、保持台14、により、
変位電気変換部を構成する。17はスリツト板9
に設けられた長方形のスリツト孔である。
12 is a photoelectric material, e.g., due to the deviation of the optical image.
A light-receiving element in which the ratio of characteristic values of two photosensitive surfaces of the same shape made of CdS, CdSe, silicon, etc. changes differentially; 13 is a light source, such as a light emitting diode, a neon lamp, a filament lamp, etc.; 1
Reference numeral 4 denotes a holding stand for fixing the light receiving element 12 and the light source 13, and is attached to the low pressure side case 2. 15 is a lead terminal of the light receiving element 12, and 16 is a lead terminal of the light source 13. the slit plate 9;
By the light receiving element 12, the light source 13, and the holding table 14,
This constitutes a displacement electrical conversion section. 17 is the slit plate 9
It is a rectangular slit hole provided in the.

上記構成において、低圧導入口4を解放し、そ
の圧力を大気圧Poとし、高圧導入口3に大気圧
Poより高い圧力を示す被検出部の前記圧力Psを
パイプ等で導くと、被検出圧Psと大気圧Poの差
は、Ps−Poなる正の値となり、この差圧Ps−Po
がダイヤフラム5及び受圧板6に加わり、Fなる
受圧力が与えられる。従つてダイヤフラム5、受
圧板6は低圧側に移動する。しかし、この時、受
圧板7を介して圧縮コイルばね11がたわみ、応
力が増大すると共に、受圧板6に応力を与えてい
る圧縮コイルばね10が伸びて応力が減少する。
従つて、ダイヤフラム5の変位は、圧縮コイルば
ね10の応力と受圧力Fとの和と、圧縮コイルば
ね11の応力が平衡する位置となる。
In the above configuration, the low pressure inlet 4 is released, the pressure is set to atmospheric pressure Po, and the high pressure inlet 3 is connected to atmospheric pressure.
When the pressure Ps of the detected part, which is higher than Po, is guided through a pipe etc., the difference between the detected pressure Ps and the atmospheric pressure Po becomes a positive value of Ps - Po, and this differential pressure Ps - Po
is applied to the diaphragm 5 and the pressure receiving plate 6, and a receiving pressure of F is applied. Therefore, the diaphragm 5 and the pressure receiving plate 6 move to the low pressure side. However, at this time, the compression coil spring 11 is deflected via the pressure receiving plate 7, increasing the stress, and the compression coil spring 10, which is applying stress to the pressure receiving plate 6, is elongated and the stress is reduced.
Therefore, the diaphragm 5 is displaced to a position where the sum of the stress of the compression coil spring 10 and the received force F and the stress of the compression coil spring 11 are balanced.

次に、高圧導入口3に大気圧Poより低い圧力
を導入すると、その差圧Ps−Poは負の値とな
り、前述とは逆に、ダイヤフラム5は高圧側に移
動し、その位置は、圧縮コイルばね11の応力と
受圧力との和と、圧縮コイルばね10の応力が平
衡する位置となる。
Next, when a pressure lower than atmospheric pressure Po is introduced into the high pressure inlet 3, the differential pressure Ps-Po becomes a negative value, and contrary to the above, the diaphragm 5 moves to the high pressure side, and its position is This is the position where the sum of the stress of the coil spring 11 and the received force and the stress of the compression coil spring 10 are balanced.

結局ダイヤフラム5、受圧板6,7の差圧Ps
−Poに対する位置は、2つの圧縮コイルばね1
0,11のたわみによるそれぞれの応力の差と、
受圧力Fの大きさ、方向(又は符号)とによつて
決まることになる。そして、スリツト板9はリベ
ツト8に固定されていて、ダイヤフラム5、受圧
板6,7と同一の変位をするから、スリツト板9
に設けられたスリツト孔17も同一の変位を示
す。ここで差圧Ps−Poと、受圧力Fとが比例す
ると共に、圧縮コイルばね10,11のたわみ量
と応力も比例するから、スリツト孔17の変位
は、差圧Ps−Poの大きさに比例した値となる。
In the end, the differential pressure Ps between the diaphragm 5 and the pressure receiving plates 6 and 7
-Position relative to Po is two compression coil springs 1
The difference in stress due to deflection of 0 and 11,
It is determined by the magnitude and direction (or sign) of the received force F. Since the slit plate 9 is fixed to the rivet 8 and has the same displacement as the diaphragm 5 and the pressure receiving plates 6 and 7, the slit plate 9
The slit hole 17 provided in the figure also shows the same displacement. Here, the differential pressure Ps-Po is proportional to the received pressure F, and the deflection and stress of the compression coil springs 10 and 11 are also proportional, so the displacement of the slit hole 17 is proportional to the magnitude of the differential pressure Ps-Po. It will be a proportional value.

次に、受光素子12および光源13は互いに対
向して保持台14に取り付けられており、スリツ
ト板9と受光素子12は極めて接近した位置関係
に置かれていて、光源13より放された光のう
ち、スリツト孔17を通つたもののみ受光素子1
2の感光面を照射し、スリツト孔17以外からは
受光素子12の感光面に光は照射されない。そこ
で、スリツト板9と光源13との距離を適当にと
れば、スリツト板9と受光素子12との距離は極
めて小さいから、受光素子12の感光面における
光像の形状および位置は、スリツト孔17の形状
および位置と等しいものとなる。したがつてスリ
ツト孔17が変位すると、その変位に全く等しく
受光素子12の感光面における光像が偏位する。
受光素子12の感光面の光像が偏位すると、後述
するように、光電物質で作られた2つの同形の感
光面の特性値の比が差動的に変化するため、結局
スリツト孔17の変位に従つて、受光素子12の
出力電気信号が変化することになる。
Next, the light receiving element 12 and the light source 13 are mounted on a holding base 14 facing each other, and the slit plate 9 and the light receiving element 12 are placed in an extremely close positional relationship, so that the light emitted from the light source 13 is Of these, only the light that passes through the slit hole 17 is detected by the light receiving element 1.
The photosensitive surface of the light receiving element 12 is irradiated with light from other than the slit hole 17. Therefore, if the distance between the slit plate 9 and the light source 13 is set appropriately, the distance between the slit plate 9 and the light receiving element 12 is extremely small, and the shape and position of the light image on the photosensitive surface of the light receiving element 12 will be determined by the slit hole 17. The shape and position of Therefore, when the slit hole 17 is displaced, the optical image on the photosensitive surface of the light receiving element 12 is displaced exactly equal to the displacement.
When the optical image on the photosensitive surface of the light-receiving element 12 shifts, as will be described later, the ratio of the characteristic values of two photosensitive surfaces of the same shape made of photoelectric material changes differentially. According to the displacement, the output electrical signal of the light receiving element 12 changes.

すなわち、前述の差圧Ps−Poとスリツト孔1
7の変位が比例すること、スリツト孔17の変位
にしたがつて、受光素子12の電気出力信号が変
化することにより、受光素子12の電気出力信号
は高圧導入口3と低圧導入口4に導入される圧力
の差に対応した値となる。
In other words, the above-mentioned differential pressure Ps-Po and slit hole 1
Since the displacement of the light receiving element 12 is proportional to the displacement of the slit hole 17 and the electric output signal of the light receiving element 12 changes according to the displacement of the slit hole 17, the electric output signal of the light receiving element 12 is introduced into the high voltage inlet 3 and the low voltage inlet 4. The value corresponds to the difference in pressure applied.

つぎに第2図に基づいて、受光素子12の原理
を説明する。図において、18および19は光電
物質、例えばCdS,CdSe、シリコンなどで作ら
れた2つの同形(図ではくし形の三角形)の感光
面であり、これらは同一の基板上に合わせて形成
されている。20,21,22は電極であり、2
1は特に共通電極である。Lは光像であり、Aお
よびBは、感光面18および19に照射している
光像Lの面積である。光像Lの照度が適当である
と、感光面18または19の光像Lが照射してい
る部分と照射していない部分の特性値の比が極め
て大きいため、ほとんど光像Lが照射している部
分だけで決まり、感光面18と19の特性値の比
は面積AとBの比で決まる。したがつて第2図に
記号Xで示す方向に光像Lが移動すると、それに
したがつて面積AとBの比は差動的に変化する。
それ故に、今例えば光電物質を光導電セル(CdS
又はCdSe)とし、第2図の電極20,22間に
直流電圧Vi(10V)を印加し、電極21,22間
の出力電圧Voを得ると、光像Lの移動により、
面積AおよびBの抵抗値が差動的に変化し、第3
図に示すごとく光源Lの移動量Xに対して電圧
Voはほぼ直線の変化を示す。すなわち、受光素
子12は、光像Lの偏位により光電物質で作られ
た2つの同形の感光面18,19の特性値の比が
差動的に変化して、光像Lの偏位に応じた電気出
力信号を出す。
Next, the principle of the light receiving element 12 will be explained based on FIG. In the figure, 18 and 19 are two photosensitive surfaces of the same shape (comb-shaped triangles in the figure) made of photoelectric materials such as CdS, CdSe, silicon, etc., and these are formed on the same substrate. There is. 20, 21, 22 are electrodes, 2
1 is especially a common electrode. L is a light image, and A and B are areas of the light image L irradiating the photosensitive surfaces 18 and 19. When the illuminance of the light image L is appropriate, the ratio of the characteristic values of the part of the photosensitive surface 18 or 19 that is irradiated with the light image L and the part that is not irradiated is extremely large. The ratio of the characteristic values of the photosensitive surfaces 18 and 19 is determined by the ratio of the areas A and B. Therefore, when the optical image L moves in the direction indicated by the symbol X in FIG. 2, the ratio of the areas A and B changes differentially accordingly.
Therefore, we now use e.g. photoelectric materials as photoconductive cells (CdS
or CdSe) and apply a DC voltage Vi (10V) between the electrodes 20 and 22 in FIG. 2 to obtain an output voltage Vo between the electrodes 21 and 22. Due to the movement of the optical image L,
The resistance values of areas A and B change differentially, and the third
As shown in the figure, the voltage is
Vo shows a nearly linear change. That is, in the light receiving element 12, the ratio of the characteristic values of the two photosensitive surfaces 18 and 19 of the same shape made of photoelectric material changes differentially depending on the deviation of the optical image L. Outputs an electrical output signal according to the request.

第4図に、本発明による圧力電気変換装置の一
実施例の圧力−出力電圧特性図を示す。
FIG. 4 shows a pressure-output voltage characteristic diagram of an embodiment of the pressure-electric transducer according to the present invention.

第1図の構成において、ダイヤフラム5の有効
面積S=32cm2、圧縮コイルばね10,11のばね
定数を共にk=16g/mm、光像Lの有効ストロー
クl=4mmとし、ダイヤフラム6の変位に対する
応力はばね定数kに対して極めて小さいので無視
する。そこで差圧P=Ps−Po=1mmAg当りの
ダイヤフラム5の受圧力Fは F=1/10S=3.2g/mmAg となる。
In the configuration shown in FIG. 1, the effective area S of the diaphragm 5 is 32 cm 2 , the spring constants of the compression coil springs 10 and 11 are both k = 16 g/mm, the effective stroke l of the light image L is 4 mm, and the displacement of the diaphragm 6 is Since the stress is extremely small relative to the spring constant k, it is ignored. Therefore, the pressure F received by the diaphragm 5 per differential pressure P=Ps-Po=1mmAg is F=1/10S=3.2g/mmAg.

次に、2つの圧縮コイルばね10,11のそれ
ぞれのばね定数はk=16g/mmであるから、今、
第1図で受圧板6,7が1mm低圧側に変位したと
すると、圧縮コイルバネ10,11のたわみ量は
共に1mmとなり、圧縮コイルばね10の応力は、
16g減少し、圧縮コイルばね11の応力は16g増
加するから、32gの応力の差が生じる。この応力
の差と受圧力Fが平衡するのは、受圧力F=3.2
g/mmAgより差圧P=10mmAgのときである。
従つて、差圧Pに対するダイヤフラム5及び受圧
板6,7の変位は差圧P=1mmAg当り、0.1mm
となる。従つてスリツト板5、スリツト孔17も
同様の変位となり、スリツト孔17の変位に従つ
て光像Lも偏位するから、光像Lは差圧P=1mm
Ag当り、その偏位は0.2mmとなる。そこで差圧
P=0mmAgの時光像の位置を第2図に示すX=
Oとし、かつ光導電物質よりなる受光素子12の
電極20,22間に直流電圧Vi=10Vを印加する
と、第3図に示すごとく出力電圧Vo=5Vとな
り、第4図に示すごとく差圧P=OmmAgで出力
電圧Vo=5Vとなる。つぎに差圧Pが変化する
と、光像の偏位が0.1mm/mmAgの割合であるか
ら、差圧P=−20mmAgおよび20mmAgで偏位X
はそれぞれX=−2mmおよび2mmとなり、出力電
圧Voはそれぞれ2Vおよび8Vとなるので、差圧P
と出力電圧Voの関係は、第4図に示すごとく直
線となり、微圧に対しても極めて良好な特性を示
している。
Next, since the spring constant of each of the two compression coil springs 10 and 11 is k=16 g/mm, now,
Assuming that the pressure receiving plates 6 and 7 are displaced 1 mm toward the low pressure side in FIG. 1, the amount of deflection of the compression coil springs 10 and 11 will both be 1 mm, and the stress of the compression coil spring 10 will be:
The stress of the compression coil spring 11 decreases by 16g, and the stress of the compression coil spring 11 increases by 16g, resulting in a stress difference of 32g. The balance between this stress difference and the received pressure F is the received pressure F = 3.2
This is when the differential pressure P=10 mmAg from g/mmAg.
Therefore, the displacement of the diaphragm 5 and the pressure receiving plates 6, 7 with respect to the differential pressure P is 0.1 mm per 1 mm Ag of the differential pressure P.
becomes. Therefore, the slit plate 5 and the slit hole 17 are also displaced in the same way, and the optical image L is also deviated according to the displacement of the slit hole 17, so the optical image L has a differential pressure of P=1 mm.
The deviation is 0.2 mm per Ag. Therefore, the position of the optical image when the differential pressure P = 0 mmAg is shown in Figure 2.
When a DC voltage Vi=10V is applied between the electrodes 20 and 22 of the light receiving element 12 made of a photoconductive material, the output voltage Vo=5V as shown in FIG. 3, and the differential pressure P as shown in FIG. = OmmAg, the output voltage Vo = 5V. Next, when the differential pressure P changes, the deviation of the optical image is at a rate of 0.1 mm/mmAg, so when the differential pressure P = -20 mmAg and 20 mmAg, the deviation
are respectively X=-2mm and 2mm, and the output voltage Vo is 2V and 8V, respectively, so the differential pressure P
The relationship between the output voltage Vo and the output voltage Vo is a straight line as shown in FIG. 4, and exhibits extremely good characteristics even at low pressures.

つぎに本発明の圧力電気変換装置の効果を説明
する。
Next, the effects of the pressure-electric conversion device of the present invention will be explained.

(1) 微圧に対しても良好な特性を有し、差圧の符
号が正、負いづれであつても、また正より負、
負より正となつても連続的に検出しうると共
に、高圧導入口3と低圧導入口4を入れ替る必
要が全くなく、また電気出力信号が差圧に対し
て比例する。また、被検出圧力の範囲あるい
は、電気出力信号の圧力に対する変化の比率
(比例定数)は、圧縮コイルばね10,11の
一方又は両方のばね定数を変更するだけで、容
易に変えられるため、種々の圧力検出、圧力測
定に、広範囲に使用しうる。
(1) It has good characteristics even against slight pressure, and whether the sign of the differential pressure is positive or negative, and whether it is more negative than positive or
Even if the pressure becomes more positive than negative, it can be continuously detected, there is no need to replace the high pressure inlet 3 and the low pressure inlet 4, and the electrical output signal is proportional to the differential pressure. In addition, the range of the detected pressure or the ratio of change in the electrical output signal to the pressure (proportionality constant) can be easily changed by simply changing the spring constant of one or both of the compression coil springs 10, 11. Can be used for a wide range of pressure detection and measurement.

(2) 受光素子12は同一基板上に、同一の光電物
質で作られた2つの同形の感光面により構成さ
れており、光像Lによる面積AとBの比だけで
決めるため、温湿度特性、経時変化特性が極め
て優れているとともに、光源13による光像L
の照度の変化に対しても、同様に安定した特性
を持つ。ゆえにダイヤフラム5、圧縮コイルば
ね10,11の形状、材質を適切に選ぶことに
より、周囲温度・湿度および寿命特性は極めて
優れている。(特に、受光素子12をハーメテ
イツクシールした光導電セルとし、光源13を
発光ダイオードで構成すると、これらの寿命は
10万時間以上となる。) (3) 受光素子12の電気出力信号は、例えば光導
電セルを用いた場合は、第3図のごとく、印加
電圧Viに対し、十分大きな直流出力電圧Voが
得られており、圧力の検出のために、周波数変
調、位相変調など複雑な回路が全く不必要であ
る。
(2) The light-receiving element 12 is composed of two photosensitive surfaces of the same shape made of the same photoelectric material on the same substrate, and is determined only by the ratio of areas A and B by the light image L, so the temperature and humidity characteristics , the aging characteristics are extremely excellent, and the light image L from the light source 13
It also has stable characteristics against changes in illuminance. Therefore, by appropriately selecting the shape and material of the diaphragm 5 and the compression coil springs 10 and 11, the ambient temperature, humidity, and life characteristics are extremely excellent. (In particular, if the light receiving element 12 is a hermetically sealed photoconductive cell and the light source 13 is a light emitting diode, the lifespan of these elements will be
Over 100,000 hours. ) (3) For example, when a photoconductive cell is used as the electrical output signal of the light receiving element 12, a sufficiently large DC output voltage Vo is obtained with respect to the applied voltage Vi, as shown in Fig. 3, and it is possible to detect pressure. Therefore, complicated circuits such as frequency modulation and phase modulation are completely unnecessary.

出力信号の出力インピーダンスが高い時、例
えば100KΩ以上の時などは、トランジスタを
1個用いたエミツタフロア回路などを用いるだ
けで、高価な電子部品、電子回路を用いること
なく、簡単な構成で高精度の圧力検出または測
定が可能となる。
When the output impedance of the output signal is high, for example, 100KΩ or more, an emitter floor circuit using one transistor can be used to achieve high precision with a simple configuration without using expensive electronic components or circuits. Pressure detection or measurement becomes possible.

また機構部品(ダイヤフラム、圧縮コイルば
ねなど)も高価なものはなく、全体として、極
めて低コストで実現が可能である。
Furthermore, there are no expensive mechanical parts (diaphragms, compression coil springs, etc.), and the system as a whole can be realized at extremely low cost.

(4) 微圧を検出しうる圧力電気変換器は一般に、
繊細な部品を用いているため破損しやすいが、
本発明の圧力電気変換装置は、前述の通り、破
損しやすい部品はなく、過大圧力、衝撃にも耐
える構造であり、また製造における組立も容易
となる。即ち、堅牢のため取扱いが容易で、量
産性も優れている。
(4) Pressure-electric transducers that can detect small pressures are generally
Because it uses delicate parts, it is easily damaged.
As mentioned above, the pressure-electric transducer of the present invention has no parts that are easily damaged, has a structure that can withstand excessive pressure and impact, and is easy to assemble during manufacturing. That is, it is robust, easy to handle, and has excellent mass productivity.

第5図は本発明の他の実施例を示しており、第
1図と同一符号は、同一機能を有した部材を示
し、その説明を略す。23は受圧板6に取り付け
られたリング状の荷重板である。この荷重板23
は第1図における圧縮コイルばね10に変わるも
のであり、第5図においては、常に下側、即ち、
重力の加速度の方向にて一定の応力を圧縮コイル
ばね11に与え、差圧P=OmmAgのとき、圧縮
コイルばね11は荷重板23のない時に対し、荷
重板23の与える重力に応じた量だけたわみを生
じる。従つて、差圧Pが正のある値となると、そ
の差圧Pが受圧板6に与える受圧力Fと等しい応
力になるように低圧側にばね11がたわみを生じ
る。差圧Pが負のある値となると今後は高圧側に
ばね11がたわみを生じて平衡する。
FIG. 5 shows another embodiment of the present invention, in which the same reference numerals as in FIG. 1 indicate members having the same functions, and the description thereof will be omitted. 23 is a ring-shaped load plate attached to the pressure receiving plate 6. This load plate 23
is a replacement for the compression coil spring 10 in FIG. 1, and in FIG. 5 it is always on the lower side, that is,
When a constant stress is applied to the compression coil spring 11 in the direction of the acceleration of gravity, and the differential pressure P=OmmAg, the compression coil spring 11 is applied by an amount corresponding to the gravity applied by the load plate 23 compared to when there is no load plate 23. Causes deflection. Therefore, when the differential pressure P reaches a certain positive value, the spring 11 is deflected toward the low pressure side so that the differential pressure P becomes a stress equal to the receiving force F applied to the pressure receiving plate 6. When the differential pressure P reaches a certain negative value, the spring 11 is now deflected toward the high pressure side and is balanced.

結局、受圧力Fと圧縮コイルばね11のばね定
数kにより変位が決まり、その特性は第3図、第
4図に示すものと同様となる。なお、リング状の
荷重板23を脱着自在として、重さの異なる荷重
板に変更することにより、容易に圧力検出範囲を
変えることができる。
In the end, the displacement is determined by the received force F and the spring constant k of the compression coil spring 11, and its characteristics are similar to those shown in FIGS. 3 and 4. Note that the pressure detection range can be easily changed by making the ring-shaped load plate 23 detachable and changing it to a load plate with a different weight.

第6図も同様に他の実施例を示す。24は略コ
字形に成形された板ばねであり、対向した可動端
はスリツト板9の上部と下部に、それぞれ蝶番に
よつて連結されており、固定端は、低圧側ケース
2にビス25,26によつて固定されている。
FIG. 6 similarly shows another embodiment. Reference numeral 24 denotes a leaf spring formed into a substantially U-shape, and the opposing movable ends are connected to the upper and lower parts of the slit plate 9 by hinges, respectively, and the fixed end is connected to the low-pressure side case 2 with screws 25, 26.

今差圧P=0mmAgのとき、板ばね24はほぼ
水平な状態で、受圧板6,7、スリツト板9を保
持しており、この時、スリツト孔17を通つた光
源13からの光が、受光素子12の感光面上に作
る光像Lは第2図における移動量X=0mmとす
る。従つて、差圧Pが正又は負となつても板ばね
24はそのたわみ量に応じて、応力を生じると共
に、使用範囲内ではたわみ量が十分小さいため、
差圧Pに対して、そのたわみ量が比例した値とな
る。スリツト板9は板ばね24に蝶番によつて連
結されており、スリツト板9はたわみ量が小さい
ため、ほとんど垂直の状態で上下に変位する。従
つてスリツト孔17も差圧Pに応じて変位するか
ら、第1図の実施例と同じ動作となる。
When the differential pressure P=0 mmAg, the leaf spring 24 is holding the pressure receiving plates 6, 7 and the slit plate 9 in a substantially horizontal state, and at this time, the light from the light source 13 passing through the slit hole 17 is It is assumed that the optical image L formed on the photosensitive surface of the light receiving element 12 has a moving amount X=0 mm in FIG. Therefore, even if the differential pressure P becomes positive or negative, the leaf spring 24 generates stress depending on the amount of deflection, and since the amount of deflection is sufficiently small within the range of use,
The amount of deflection is proportional to the differential pressure P. The slit plate 9 is connected to the leaf spring 24 by a hinge, and since the slit plate 9 has a small amount of deflection, it is vertically displaced in an almost vertical state. Therefore, since the slit hole 17 is also displaced in accordance with the differential pressure P, the operation is the same as that of the embodiment shown in FIG.

以上本発明の実施例および他実施例に関して説
明したが、以下に本発明の実施に際し、適宜選択
可能な技術につき述べる。
The embodiments and other embodiments of the present invention have been described above, and techniques that can be selected as appropriate when implementing the present invention will be described below.

(1) 実施例および他実施例において、圧縮コイル
ばねや、板ばねを用いたが、高圧側に引張コイ
ルばねを配置するなど適宜選択しうる。
(1) In the embodiment and other embodiments, compression coil springs and leaf springs were used, but they may be selected as appropriate, such as by arranging a tension coil spring on the high-pressure side.

(2) 受光素子、光源を低圧側に配置したが、高圧
側に配置しても同様である。
(2) Although the light-receiving element and the light source are placed on the low-voltage side, the same applies if they are placed on the high-voltage side.

(3) ダイヤフラムは、特に微圧用い用いる時は、
溝の部分は出来るだけうすい(例えばゴム系で
あれば0.1t〜0.2t)方が温度特性等の特性が向
上し、またその材質は被検出流体に合わせて適
宜選択するとよい。
(3) The diaphragm, especially when used under low pressure,
Characteristics such as temperature characteristics are improved when the groove part is as thin as possible (for example, 0.1 to 0.2 t if it is made of rubber), and the material should be appropriately selected depending on the fluid to be detected.

例えば空気であればシリコンダイヤフラムな
どが最適であろう。また第1図に示すごとくダ
イヤフラムの他、いわゆるベロフラムなども使
用可能である。
For example, if it is air, a silicon diaphragm would be most suitable. In addition to the diaphragm as shown in FIG. 1, a so-called velofram can also be used.

(4) 圧力変位変換装置は、金属ベロフラムなどを
用いてダイヤフラムとばねの作用を併用する方
法でも構成が可能である。
(4) The pressure displacement converter can also be constructed by using a metal verofram or the like and using both the action of a diaphragm and a spring.

(5) スリツト板9はリベツト8にかしめて固定す
る以外に、スリツト板9を、リベツト8に蝶番
もしくは自在球などを用いて取付け、第1図に
おいて、左右もしくは左右前後に自由に回転す
るとともに、上下方向に対しては、クリアラン
スを持たず、動かないようにすることにより、
受圧板が圧力に対し、全く水平ではなく、若干
傾斜して変位しても、スリツト板は垂直方向を
保つて移動して、保持台14または受光素子1
2に接して摺動抵抗が増大するのが防止できる
ので、圧力と電気出力信号の関係はほとんど変
化せず安定である。
(5) In addition to fixing the slit plate 9 by caulking it to the rivet 8, the slit plate 9 is attached to the rivet 8 using a hinge or a flexible ball, so that it can rotate freely left and right or left and right and front and back as shown in Fig. 1. , by not having any clearance in the vertical direction and preventing movement,
Even if the pressure-receiving plate is not completely horizontal but is displaced slightly tilted due to the pressure, the slit plate moves while maintaining its vertical direction, and the holder 14 or the light-receiving element 1
Since it is possible to prevent the sliding resistance from increasing due to contact with 2, the relationship between the pressure and the electrical output signal is stable with almost no change.

(6) 光源13よりスリツト孔17を通過した光だ
けが受光素子12に照射され、それ以外の光が
受光素子12に照射されないようにするために
(S/N比の向上のために)、前述の説明で述べ
たように、スリツト板9と受光素子12の表面
との間隔をできるだけ小さくする以外に、高圧
側ケース1、低圧測ケース2の内部、および特
に、保持台14、スリツト9の表面を、つや消
黒色にするなどして、光を吸収、乱反射するこ
とが効果的である。
(6) In order to ensure that only the light that has passed through the slit hole 17 from the light source 13 is irradiated onto the light receiving element 12 and no other light is irradiated onto the light receiving element 12 (to improve the S/N ratio), As described above, in addition to making the distance between the slit plate 9 and the surface of the light receiving element 12 as small as possible, the inside of the high pressure side case 1, the low pressure measuring case 2, and especially the holding base 14 and the slit 9 are It is effective to make the surface matte black so that it absorbs and reflects light diffusely.

(7) スリツト孔17の変位に対し、常に、受光素
子12に照射される光像が等しい形状で、照度
が均一である程、圧力と電気出力信号の関係が
直線性を増すとともに、受光素子12の検出で
きる光像の偏位の有効ストロークも大きくな
る。そこで (a) スリツト板9と受光素子12の間隔を小さ
くし、スリツト板9と光源13との間隔を大
きくとる。
(7) The more the light image irradiated onto the light receiving element 12 always has the same shape and the illuminance is more uniform with respect to the displacement of the slit hole 17, the more linear the relationship between the pressure and the electrical output signal becomes, and the more the light receiving element 12 The effective stroke of the 12 detectable optical image deflections also increases. Therefore, (a) the distance between the slit plate 9 and the light receiving element 12 is made small, and the distance between the slit plate 9 and the light source 13 is made large.

(b) 光源13は点発光のものの方が良く、寿命
特性などの点からも発光ダイオード特に、透
明ガラス封止または透明樹脂封止の発光ダイ
オードが最適と考えられる。
(b) It is better for the light source 13 to be a point-emitting type, and a light emitting diode, especially a light emitting diode sealed with transparent glass or transparent resin, is considered to be optimal from the point of view of life characteristics.

(8) 受光素子12の光電物質は前述のように、
CdS、CdSeなどの光導電セル、シリコンなど
があり、また光電物質の抵抗値の変化を利用す
る以外に、セレン光電池のごとく超電力の変化
を利用しても同様に可能である。
(8) As mentioned above, the photoelectric material of the light receiving element 12 is
There are photoconductive cells such as CdS and CdSe, and silicon, and in addition to using changes in the resistance of photoelectric materials, it is also possible to use changes in superpower like selenium photocells.

(9) 受光素子12の感光面の形状は単純な2つの
3角形や台形でもよい。
(9) The shape of the photosensitive surface of the light receiving element 12 may be two simple triangles or a trapezoid.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例における圧力電気変換
装置を示す断面図、第2図は受光素子の原理説明
図、第3図は受光素子の特性図、第4図は圧力電
気変換装置の特性図、第5図および第6図は本発
明の他の実施例を示す断面図である。 5……ダイヤフラム、6,7……受圧板、9…
…スリツト板、10,11……圧縮コイルばね、
12……受光素子、13……光源、17……スリ
ツト孔、18,19……感光面、20,21,2
2……電極、L……光像、23……荷重板、24
……板ばね。
Fig. 1 is a sectional view showing a pressure-electric transducer according to an embodiment of the present invention, Fig. 2 is a diagram explaining the principle of the light-receiving element, Fig. 3 is a characteristic diagram of the light-receiving element, and Fig. 4 is a characteristic of the pressure-electric transducer. 5 and 6 are cross-sectional views showing other embodiments of the present invention. 5...Diaphragm, 6,7...Pressure plate, 9...
...Slit plate, 10,11...Compression coil spring,
12... Light receiving element, 13... Light source, 17... Slit hole, 18, 19... Photosensitive surface, 20, 21, 2
2... Electrode, L... Light image, 23... Load plate, 24
...Plate spring.

Claims (1)

【特許請求の範囲】 1 2つの流体圧力の差力によつて作動する受圧
板を有した圧力変位変換部と、光源と、光電物質
で作られた2つの同形の感光面を有しそれらの受
光面積の比が光像の偏位により差動的に変化する
受光素子とを有し、前記2つの流体圧力の差圧の
符号が正、負いずれであつても前記圧力変位変換
部を連続的に作動させ、前記受光素子の感光面に
おける光像の偏位を前記圧力変位変換部の与える
変位に応動させるように構成したことを特徴とす
る圧力電気変換装置。 2 圧力変位変換部が、受圧板と、この受圧板を
相対向する方向に付勢する2個のばねとを有する
特許請求の範囲第1項記載の圧力電気変換装置。 3 圧力変位変換部が、受圧板と、この受圧板の
重力の加速度方向に一定荷重を与えるおもりと、
前記加速度方向とは逆方向に応力を与えるばねと
を有する特許請求の範囲第1項記載の圧力電気変
換装置。 4 圧力変位変換部が、受圧板と、この受圧板が
相対するいずれの方向に変化してもこの受圧板に
応力を与える板ばねとを有する特許請求の範囲第
1項記載の圧力電気変換装置。
[Scope of Claims] 1. A pressure displacement converter having a pressure receiving plate operated by a pressure difference between two fluids, a light source, and two photosensitive surfaces of the same shape made of photoelectric material. and a light-receiving element whose ratio of light-receiving areas differentially changes depending on the deviation of the optical image, and the pressure displacement converting section is continuously operated regardless of whether the sign of the differential pressure between the two fluid pressures is positive or negative. 1. A pressure-electric conversion device, characterized in that the pressure-electric conversion device is configured to be operated in a manner such that the deviation of an optical image on the photosensitive surface of the light-receiving element responds to the displacement given by the pressure-displacement conversion section. 2. The pressure-electric conversion device according to claim 1, wherein the pressure displacement converter includes a pressure receiving plate and two springs that bias the pressure receiving plate in opposing directions. 3. The pressure displacement converter includes a pressure receiving plate and a weight that applies a constant load in the direction of acceleration of gravity of the pressure receiving plate,
2. The pressure-electric transducer according to claim 1, further comprising a spring that applies stress in a direction opposite to the acceleration direction. 4. The pressure-electric conversion device according to claim 1, wherein the pressure displacement converter includes a pressure receiving plate and a leaf spring that applies stress to the pressure receiving plate even if the pressure receiving plate changes in any direction in which the pressure receiving plate faces. .
JP7395976A 1976-06-22 1976-06-22 Pressure-electricity transducer Granted JPS52156586A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7395976A JPS52156586A (en) 1976-06-22 1976-06-22 Pressure-electricity transducer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7395976A JPS52156586A (en) 1976-06-22 1976-06-22 Pressure-electricity transducer

Publications (2)

Publication Number Publication Date
JPS52156586A JPS52156586A (en) 1977-12-27
JPS6136391B2 true JPS6136391B2 (en) 1986-08-18

Family

ID=13533117

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7395976A Granted JPS52156586A (en) 1976-06-22 1976-06-22 Pressure-electricity transducer

Country Status (1)

Country Link
JP (1) JPS52156586A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6486031A (en) * 1987-09-29 1989-03-30 Toshiba Corp Pressure detector
DE10114751C1 (en) * 2001-03-22 2002-11-21 Gerhard Kurz pressure sensor

Also Published As

Publication number Publication date
JPS52156586A (en) 1977-12-27

Similar Documents

Publication Publication Date Title
JP2936286B2 (en) Precision capacitive transducer circuit and method
JP4378617B2 (en) Micro electromechanical sensor
US3479879A (en) Manometer
US4433580A (en) Pressure transducer
JPH07181094A (en) Method and device for feedback control for asymmetrical differential-pressure transducer
US3461416A (en) Pressure transducer utilizing semiconductor beam
US4122337A (en) Pressure-electrical signal conversion means
US3910106A (en) Transducer
JPS6136391B2 (en)
US3308303A (en) Transducer system employing electro-optical means
US2722837A (en) Pressure gauge
EP0312332B1 (en) Barometric meter
US5481919A (en) Force multiplying pressure transmitter diaphragm and method employing flexible force transmitting column
JPS6136392B2 (en)
US4243114A (en) Differential capacitor and circuit
JPS5815136A (en) Pressure sensor
US3279245A (en) Transducer
US5469632A (en) Capacitive angle sensor employing a vertical cantilever beam
US6016705A (en) Pressure sensor with pivoting lever
US4722229A (en) Pressure transducer
US3912988A (en) Capacitive detector for an electronic differential pressure transmitter
US6619134B1 (en) Measuring device for measuring small forces and displacements
JPS60177216A (en) Device transducing mechanical displacement to electrical signal
JP3304648B2 (en) Fluid flow meter
JPH085435A (en) Gas meter