JPS6136377B2 - - Google Patents

Info

Publication number
JPS6136377B2
JPS6136377B2 JP9949377A JP9949377A JPS6136377B2 JP S6136377 B2 JPS6136377 B2 JP S6136377B2 JP 9949377 A JP9949377 A JP 9949377A JP 9949377 A JP9949377 A JP 9949377A JP S6136377 B2 JPS6136377 B2 JP S6136377B2
Authority
JP
Japan
Prior art keywords
hydrazine
etching solution
concentration
platinum electrodes
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP9949377A
Other languages
Japanese (ja)
Other versions
JPS5433673A (en
Inventor
Yoshiaki Okajima
Susumu Koyama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP9949377A priority Critical patent/JPS5433673A/en
Publication of JPS5433673A publication Critical patent/JPS5433673A/en
Publication of JPS6136377B2 publication Critical patent/JPS6136377B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02041Cleaning
    • H01L21/02043Cleaning before device manufacture, i.e. Begin-Of-Line process
    • H01L21/02052Wet cleaning only

Description

【発明の詳細な説明】 本発明は半導体複合体の自動エツチング装置に
好適な、エツチング液中のヒドラジン濃度制御方
法に関するものであり、特にエツチング液中に微
量添加されたヒドラジンを継続分折することによ
り、ヒドラジン添加量を常に最適範囲に保ち、処
理された半導体素子の特性と歩留の向上をはかる
ことのできる半導体複合体の自動エツチング装置
用の、エツチング液中のヒドラジン濃度制御方法
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for controlling the concentration of hydrazine in an etching solution, which is suitable for an automatic etching apparatus for semiconductor composites, and particularly to a method for continuously fractionating hydrazine added in a small amount to the etching solution. This paper relates to a method for controlling the concentration of hydrazine in an etching solution for automatic etching equipment for semiconductor composites, which can constantly maintain the amount of hydrazine added within an optimal range and improve the characteristics and yield of processed semiconductor devices. be.

半導体素子の製造工程においては、半導体ペレ
ツトを金属性の基板にロウ材を介して接着した半
導体複合体を最終的に化学処理し、半導体素子の
特性、信頼性を得ている。この処理は半導体ペレ
ツトの接合面をエツチングして清浄にするもので
あり、このとき、基体金属やロウ材が溶解する
と、溶解した金属がシリコン接合面に付着して半
導体装置としての特性を劣化させる。このため、
エツチング液としては従来から金属の溶解の少な
いアルカリ金属の水酸化物の水溶液が使用されて
いる。
In the manufacturing process of semiconductor devices, a semiconductor composite in which semiconductor pellets are bonded to a metal substrate via a brazing material is finally chemically treated to obtain the characteristics and reliability of the semiconductor device. This process cleans the bonding surface of the semiconductor pellet by etching it. At this time, if the base metal or brazing material melts, the molten metal adheres to the silicon bonding surface and deteriorates the characteristics of the semiconductor device. . For this reason,
As the etching solution, aqueous solutions of alkali metal hydroxides in which metals are less dissolved have been used.

しかし、信頼性の高い半導体素子を高歩留で得
るためには、アルカリ金属の水酸化物の水溶液だ
けの処理では不十分であり、この水溶液に0.05〜
3%のヒドラジンを添加した場合に、信頼性の高
い半導体素子が高歩留で得られることが見出され
た(特願昭52―35313号参照)。
However, in order to obtain highly reliable semiconductor devices at a high yield, treatment with only an aqueous solution of alkali metal hydroxide is insufficient;
It has been found that highly reliable semiconductor devices can be obtained at a high yield when 3% hydrazine is added (see Japanese Patent Application No. 35313/1983).

処理液中のヒドラジンが半導体複合体の処理中
に消費されて濃度が下がり、0.05%以下になると
エツチング処理された半導体素子の信頼性および
歩留が下がる。このため、処理溶液中のヒドラジ
ンの濃度を把握し、管理する必要がある。この場
合、濃度を管理するためには、連続分折が必要
で、しかも規定濃度範囲内にヒドラジン濃度を制
御することが必要になる。
Hydrazine in the processing solution is consumed during the processing of the semiconductor composite and its concentration decreases, and when it becomes less than 0.05%, the reliability and yield of etched semiconductor devices decrease. Therefore, it is necessary to understand and manage the concentration of hydrazine in the processing solution. In this case, continuous analysis is required to control the concentration, and it is also necessary to control the hydrazine concentration within a specified concentration range.

そこで、本発明の目的は高温、高アルカリの溶
液中に含まれるヒドラジンを電気的に分折し、自
動的に濃度を管理、制御することのできる半導体
複合体の自動エツチング装置に好適な、エツチン
グ液中のヒドラジン濃度制御方法を提供するにあ
る。
SUMMARY OF THE INVENTION Therefore, the object of the present invention is to develop an etching system suitable for an automatic etching apparatus for semiconductor composites, which can electrically separate hydrazine contained in a high-temperature, highly alkaline solution and automatically manage and control the concentration. The present invention provides a method for controlling the concentration of hydrazine in a liquid.

本発明者らは、白金を両極に用い、基準電極に
飽和カロメル電極(SCE)を使用し、一方の白
金極とSCEの間の電位を変化させ、白金極間に
流れる電流を測定することにより、ヒドラジンを
含んだ水酸化ナトリウムの水溶液の電流―電位曲
線を調べた。その結果、−0.3Vと+0.1Vに電流の
ピーク値が見られ、このピーク値はヒドラジン濃
度が増すと高くなり、両者の間に比例関係がある
ことが見出された。本発明は、特にこの関係を利
用して高感度かつ応答性良くヒドラジン濃度を連
続分折することにより、エツチング液中のヒドラ
ジン濃度を所定範囲に保持しようとするものであ
る。
The present inventors used platinum as both electrodes and a saturated calomel electrode (SCE) as the reference electrode, changed the potential between one platinum electrode and the SCE, and measured the current flowing between the platinum electrodes. , investigated the current-potential curve of an aqueous solution of sodium hydroxide containing hydrazine. As a result, peak values of current were observed at −0.3 V and +0.1 V, and this peak value increased as the hydrazine concentration increased, and it was found that there was a proportional relationship between the two. The present invention aims to maintain the hydrazine concentration in the etching solution within a predetermined range by utilizing this relationship to carry out continuous analysis of the hydrazine concentration with high sensitivity and responsiveness.

ヒドラジンを分折するための検知部の基本構造
を第1図により説明する。被測定溶液中に対向配
置する電極51,52に白金板を使用し、基板電
極53を一方の白金板電極51の近くにセツトす
る。基準電極には飽和カロメル電極(SCE)を
用い一方の白金板電極51と基準電極53との間
に電圧Vを印加した時に2つの白金板電極51,
52間に流れる電流Iを測定する。しかし、半導
体複合体処理用のエツチング液のような高温(95
℃程度)では飽和カロメル電極は使用できないの
で、実際の測定に際しては、第4図について後述
するように、エツチング液と同じ組成の液および
KClを飽和した甘天ブリツジ(塩橋)でSCEと結
合させた。なお、第1図中54はリード線、55
はガラス管、56は溶器、57は被測定液であ
る。つぎにはヒドラジンを0.1%含む水酸化ナト
リウムの水溶液を95℃に加熱し、上記検知部を液
に浸漬し、基準電極53と一方の白金板51との
間の電位を−2.0〜+2.0Vの範囲で変化させ、そ
の時の電流密度の変化を測定した。その結果は第
2図の曲線Bに示すようになり、−0.2Vと+0.1V
にピークを生じた。水酸化ナトリウムの水溶液だ
けではこのピークは検出されなかつた。そして+
0.1Vの電圧印加時に生ずる電流密度のピーク値
は第3図に示すように、ヒドラジン濃度に比例し
て増加することが確認された。これにより、第1
図の検知部で基準電極53と一方の白金電極51
との間に+0.1Vの電位を印加し、その時白金電
極51,52間に流れる電流Iを測定すればヒド
ラジンの分折が可能であることが分かる。
The basic structure of a detection section for separating hydrazine will be explained with reference to FIG. Platinum plates are used for electrodes 51 and 52 that are placed opposite each other in the solution to be measured, and a substrate electrode 53 is set near one of the platinum plate electrodes 51. A saturated calomel electrode (SCE) is used as the reference electrode, and when a voltage V is applied between one platinum plate electrode 51 and the reference electrode 53, the two platinum plate electrodes 51,
Measure the current I flowing between 52 and 52. However, high temperatures (95%
Since a saturated calomel electrode cannot be used at temperatures (around
The SCE was combined with a KCl-saturated salt bridge. In addition, 54 in FIG. 1 is a lead wire, and 55
56 is a glass tube, 56 is a melter, and 57 is a liquid to be measured. Next, an aqueous solution of sodium hydroxide containing 0.1% hydrazine is heated to 95°C, the detection section is immersed in the solution, and the potential between the reference electrode 53 and one platinum plate 51 is set to -2.0 to +2.0V. The change in current density was measured. The result is shown in curve B in Figure 2, which shows -0.2V and +0.1V.
A peak occurred. This peak was not detected using only an aqueous solution of sodium hydroxide. And +
As shown in FIG. 3, it was confirmed that the peak value of the current density that occurs when a voltage of 0.1 V is applied increases in proportion to the hydrazine concentration. This allows the first
In the detection part shown in the figure, a reference electrode 53 and one platinum electrode 51
It can be seen that hydrazine can be separated by applying a potential of +0.1 V between the electrodes and measuring the current I flowing between the platinum electrodes 51 and 52.

この検知部、すなわち分析用セル5を第4図に
示すように、エツチング槽1内に入れ、常に基準
電極と一方の白金電極との間に+0.1Vを印加し
ておき、その時の電流値を記録計で測定すれば、
自動的に連続分折ができる。
As shown in Fig. 4, this detection part, that is, the analysis cell 5, is placed in the etching bath 1, and +0.1V is always applied between the reference electrode and one of the platinum electrodes, and the current value at that time is If you measure with a recorder,
Continuous analysis is possible automatically.

このことを以下詳細に説明する。エツチング槽
1にアルカリ金属の水酸化物(NaOHなど)の水
溶液を入れ、ヒータ4で95℃以上に加熱したあ
と、ヒドラジンを0.05〜3%の範囲で添加する。
治具2に処理すべき半導体複合体3をセツトし、
液に一定時間浸漬して処理する。処理液中のヒド
ラジン濃度は第1図に示す分折用セル5で分折さ
れる。分折用セルに用いられる基準電極(飽和カ
ロメル電極)は高温の液中では使用できないの
で、処理液と同じ組成の液を入れたブリツジ6と
槽7、ならびにKClを飽和した甘天ブリツジ8お
よび飽和KCl槽9を介して高温の処理液と飽和カ
ロメル電極10とを導通させている。分折用セル
5内の基準電極53と白金電極51との間に印加
する電位は定電位電源11でヒドラジンの分折に
適する電位にセツトし、その値は電圧計12でチ
エツクする。このとき、ヒドラジン濃度に比例し
て白金電極間に流れる電流は電流計13に指示さ
れる。あらかじめ、半導体複合体を処理するのに
最適なヒドラジン濃度の範囲(0.05〜3%)に合
わせて電流の範囲をセツトしておき、エツチング
処理中の電流値が下限より低くなつたとき、ヒド
ラジン槽14に取り付けた電磁弁15を開いてヒ
ドラジンを補給し、上限を越えた場合は電磁弁1
5が閉じるようにしておくことにより、処理液中
のヒドラジン濃度を常に最適の値に制御すること
ができる。
This will be explained in detail below. An aqueous solution of an alkali metal hydroxide (such as NaOH) is placed in an etching bath 1 and heated to 95 DEG C. or higher using a heater 4, after which hydrazine is added in a range of 0.05 to 3%.
Set the semiconductor composite 3 to be processed on the jig 2,
Process by immersing in liquid for a certain period of time. The hydrazine concentration in the treatment liquid is analyzed by a analysis cell 5 shown in FIG. The reference electrode (saturated calomel electrode) used in the analysis cell cannot be used in high-temperature liquids, so bridges 6 and 7 containing liquids with the same composition as the processing liquid, and Kanten bridges 8 and 7 saturated with KCl are used. The high-temperature treatment liquid and the saturated calomel electrode 10 are electrically connected through the saturated KCl tank 9. The potential applied between the reference electrode 53 and the platinum electrode 51 in the analysis cell 5 is set to a potential suitable for the separation of hydrazine using a constant potential power source 11, and its value is checked using a voltmeter 12. At this time, the current flowing between the platinum electrodes is indicated by the ammeter 13 in proportion to the hydrazine concentration. The current range is set in advance according to the optimal hydrazine concentration range (0.05 to 3%) for processing semiconductor complexes, and when the current value during etching becomes lower than the lower limit, the hydrazine tank is turned off. Open the solenoid valve 15 attached to 14 to replenish hydrazine, and if the upper limit is exceeded, open the solenoid valve 1
By keeping 5 closed, the hydrazine concentration in the treatment liquid can always be controlled to an optimal value.

以上のように、本発明によれば高温(例えば95
℃以上)に加熱されたアルカリ金属の水酸化物の
水溶液中に添加されたヒドラジンの濃度を自動的
に連続して管理でき、しかも、測定された電流値
により電磁弁が作動するようにすることにより、
ヒドラジン濃度を0.05〜3%の範囲に制御するこ
とができた。これにより、特性のすぐれた信頼性
の高い半導体素子が再現性良く、高い歩留で得ら
れるようになつた。
As described above, according to the present invention, high temperature (for example, 95%
To be able to automatically and continuously control the concentration of hydrazine added to an aqueous solution of alkali metal hydroxide heated to (above 10°F), and to operate a solenoid valve based on the measured current value. According to
The hydrazine concentration could be controlled within the range of 0.05-3%. As a result, highly reliable semiconductor devices with excellent characteristics can be obtained with good reproducibility and high yield.

なお、以上においては白金を両極とする定電位
電解の電位として、その電位変化に対して電流が
ピーク値を示すような値を採用した例について述
べたが、このことはそれ以外の電位において本発
明が実施できないことを意味するものではなく、
感度と応答性の多少の低下を許容するならば、ア
ルカリ単独では電流が流れず、ヒドラジンを添加
して初めて電流が流れるような電圧値を前記定電
位電解の電位として採用できることは、当業者な
らば容易に了解されるであろう。
In the above, we have described an example in which the potential of constant potential electrolysis with platinum as both electrodes is set to a value such that the current shows a peak value in response to changes in the potential, but this does not apply to other potentials. This does not mean that the invention cannot be practiced;
Those skilled in the art will appreciate that, if a slight decrease in sensitivity and responsiveness is allowed, a voltage value such that no current flows with alkali alone and current flows only with the addition of hydrazine can be adopted as the potential of the constant potential electrolysis. It will be easily understood.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はヒドラジン分折のための検知部の基本
構成を示す図、第2図はヒドラジンを添加したエ
ツチング液の電位―電流特性を示す図、第3図は
ヒドラジンと電流密度の関係を示す図、第4図は
本発明の1実施例の概略図である。 1……エツチング槽、3……半導体複合体、5
……分折用セル(検知部)、6……NaOHブリツ
ジ、7……NaOH槽、8……KCl飽和甘天ブリツ
ジ、9……飽和KCl槽、10……飽和カロメル電
極、14……ヒドラジン槽、15……電磁バル
ブ、51,52……白金板電極、53……基準電
極。
Figure 1 shows the basic configuration of the detection unit for hydrazine analysis, Figure 2 shows the potential-current characteristics of an etching solution containing hydrazine, and Figure 3 shows the relationship between hydrazine and current density. FIG. 4 is a schematic diagram of one embodiment of the present invention. 1... Etching tank, 3... Semiconductor composite, 5
...Separation cell (detection part), 6...NaOH bridge, 7...NaOH tank, 8...KCl saturated sweet bridge, 9...saturated KCl tank, 10...saturated calomel electrode, 14...hydrazine Tank, 15... Solenoid valve, 51, 52... Platinum plate electrode, 53... Reference electrode.

Claims (1)

【特許請求の範囲】 1 対向配置された一対の白金電極および前記白
金電極の一方に近接配置された基準電極を、アル
カリ金属水酸化物の水溶液にヒドラジンを添加し
たエツチング液中に浸漬し、 前記一方の白金電極および基準電極間に予定の
定電圧を印加し、 そのときに一対の白金電極間に流れる電流を測
定し、測定された電流値を設定値と比較し、 前記比較結果に基づいて、前記電流値が設定値
以下のときは、前記エツチング液にヒドラジンを
補給することを特徴とする、エツチング液中のヒ
ドラジン濃度制御方法。 2 前記予定定電圧は、アルカリ金属水酸化物の
水溶液単独では一対の白金電極間に電流が流れ
ず、ヒドラジンを添加して初めて電流が流れるよ
うな値に設定されることを特徴とする前記特許請
求の範囲第1項記載のエツチング液中のヒドラジ
ン濃度制御方法。 3 前記予定定電圧は、電極値の変化に対して、
一対の白金電極間に流れる電流がピーク値を示す
ように設定されることを特徴とする前記特許請求
の範囲第2項記載のエツチング液中のヒドラジン
濃度制御方法。 4 基準電極に飽和カロメル電極であることを特
徴とする前記特許請求の範囲第1項ないし第3項
のいずれかに記載のエツチング液中のヒドラジン
濃度制御方法。 5 飽和カロメル電極は、甘天ブリツジおよびエ
ツチング液と同組成の液を介して、前記白金電極
の一方に近接配置されることを特徴とする前記特
許請求の範囲第4項記載のエツチング液中のヒド
ラジン濃度制御方法。
[Scope of Claims] 1. A pair of platinum electrodes disposed opposite to each other and a reference electrode disposed close to one of the platinum electrodes are immersed in an etching solution prepared by adding hydrazine to an aqueous solution of an alkali metal hydroxide; Apply a predetermined constant voltage between one platinum electrode and a reference electrode, measure the current flowing between the pair of platinum electrodes at that time, compare the measured current value with the set value, and based on the comparison result. . A method for controlling the concentration of hydrazine in an etching solution, characterized in that when the current value is less than a set value, hydrazine is replenished into the etching solution. 2. The above-mentioned patent, characterized in that the predetermined constant voltage is set to a value such that no current flows between the pair of platinum electrodes when the aqueous solution of alkali metal hydroxide is used alone, but current flows only after hydrazine is added. A method for controlling the concentration of hydrazine in an etching solution according to claim 1. 3 The scheduled constant voltage is
3. A method for controlling hydrazine concentration in an etching solution as set forth in claim 2, wherein the current flowing between the pair of platinum electrodes is set so as to show a peak value. 4. A method for controlling hydrazine concentration in an etching solution according to any one of claims 1 to 3, characterized in that the reference electrode is a saturated calomel electrode. 5. A saturated calomel electrode in the etching solution according to claim 4, characterized in that the saturated calomel electrode is placed close to one of the platinum electrodes via a sweet bridge and a solution having the same composition as the etching solution. Hydrazine concentration control method.
JP9949377A 1977-08-22 1977-08-22 Automatic etching unit for semiconductor composite Granted JPS5433673A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9949377A JPS5433673A (en) 1977-08-22 1977-08-22 Automatic etching unit for semiconductor composite

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9949377A JPS5433673A (en) 1977-08-22 1977-08-22 Automatic etching unit for semiconductor composite

Publications (2)

Publication Number Publication Date
JPS5433673A JPS5433673A (en) 1979-03-12
JPS6136377B2 true JPS6136377B2 (en) 1986-08-18

Family

ID=14248814

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9949377A Granted JPS5433673A (en) 1977-08-22 1977-08-22 Automatic etching unit for semiconductor composite

Country Status (1)

Country Link
JP (1) JPS5433673A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10793806B2 (en) 2010-09-24 2020-10-06 Ecolab Usa Inc. Conveyor lubricants including emulsions and methods employing them
US10815448B2 (en) 2005-03-15 2020-10-27 Ecolab Usa Inc. Lubricant for conveying containers
US10844314B2 (en) 2013-03-11 2020-11-24 Ecolab Usa Inc. Lubrication of transfer plates using an oil or oil in water emulsions
US10851325B2 (en) 2005-03-15 2020-12-01 Ecolab Usa Inc. Dry lubricant for conveying containers

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0451474Y2 (en) * 1986-05-15 1992-12-03

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10815448B2 (en) 2005-03-15 2020-10-27 Ecolab Usa Inc. Lubricant for conveying containers
US10851325B2 (en) 2005-03-15 2020-12-01 Ecolab Usa Inc. Dry lubricant for conveying containers
US10793806B2 (en) 2010-09-24 2020-10-06 Ecolab Usa Inc. Conveyor lubricants including emulsions and methods employing them
US10844314B2 (en) 2013-03-11 2020-11-24 Ecolab Usa Inc. Lubrication of transfer plates using an oil or oil in water emulsions
US11312919B2 (en) 2013-03-11 2022-04-26 Ecolab Usa Inc. Lubrication of transfer plates using an oil or oil in water emulsions

Also Published As

Publication number Publication date
JPS5433673A (en) 1979-03-12

Similar Documents

Publication Publication Date Title
JPH0473095B2 (en)
Lingane et al. Fundamental Studies with the Dropping Mercury Electrode. 1 III. Influence of Capillary Characteristics on the Diffusion Current and Residual Current
US3337440A (en) Electrochemical cell for the study of corrosion by polarization methods in non-conducting solutions
JPS6136377B2 (en)
JPS61110799A (en) Controller of metal plating cell
Thurgood et al. Activation energies of anodic gold reactions in aqueous alkaline cyanide
Baron et al. Electrochemical methods to measure gold leaching current in an alkaline thiosulfate solution
US3250689A (en) Simplified method of measuring corrosion using reference electrode
US2382735A (en) Electrical cell apparatus
Andersen et al. A rapid electrochemical method for measuring the concentration of active glue in copper refinery electrolyte which contains thiourea
Maricle et al. Polarography in a Sodium Chloride-Potassium Chloride Melt Using Tungsten-in-Vycor Microelectrodes
US3964982A (en) Method and apparatus for controlling the degree of hydration in sealing of anodized aluminum
Kim Immersion method for the potential of zero charge determination. Electrode pretreatment
Pastukhov Differential surface tension of solid metal-molten alkali halide interfaces
US3069332A (en) Simplification in method of measuring corrision of electronic conductors by non-gaseous ionic conductors
US3346471A (en) Use of composite d. c. power in anodic protection
Bowden The effect of hydrogen ion concentration on overpotential
Jendrašić Immersion-electrode method for the determination of the point of zero charge of solid metals
Mori et al. pH Microelectrodes for Use Near Corroding Metal Surfaces
US3964981A (en) Method for polarographic analysis using an electrode of tantalum/carbon material
CA2004607C (en) Monitoring of pyrometallurgical processes
KAWAKAMI et al. Oxygen Diffusivity in Molten Iron Determined by Oxygen Concentration Cell Technique at 1550℃
Coates 126. Concentration polarisation in acid solutions
JP2835530B2 (en) Scanning tunnel microscope
JPH0449909B2 (en)