JPS6136344B2 - - Google Patents

Info

Publication number
JPS6136344B2
JPS6136344B2 JP54132324A JP13232479A JPS6136344B2 JP S6136344 B2 JPS6136344 B2 JP S6136344B2 JP 54132324 A JP54132324 A JP 54132324A JP 13232479 A JP13232479 A JP 13232479A JP S6136344 B2 JPS6136344 B2 JP S6136344B2
Authority
JP
Japan
Prior art keywords
sealant
battery
terminal
serves
insulating sealing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54132324A
Other languages
Japanese (ja)
Other versions
JPS5657254A (en
Inventor
Toshiaki Kizawa
Yoji Kajikawa
Shosuke Kawauchi
Hirofumi Ooishi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP13232479A priority Critical patent/JPS5657254A/en
Publication of JPS5657254A publication Critical patent/JPS5657254A/en
Publication of JPS6136344B2 publication Critical patent/JPS6136344B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings, jackets or wrappings of a single cell or a single battery
    • H01M50/183Sealing members
    • H01M50/19Sealing members characterised by the material
    • H01M50/193Organic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings, jackets or wrappings of a single cell or a single battery
    • H01M50/183Sealing members
    • H01M50/184Sealing members characterised by their shape or structure
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、リチウム、マグネシウム、カリウム
等の活性軽金属を負極活物質とし、フツ化黒鉛、
二酸化マンガン、酸化銅等からなる正極活物質、
非水電解液を用いた非水電解液電池に関し、耐漏
液性及び保存性能を大幅に向上させることを目的
とするものである。 従来、この系の電池は、製造後保存日数が経過
するに従い、漏液発生率が増大したり、自己放電
が進行し、保存後の容量がかなり低下する欠点が
あつた。これらの欠点は封口構造の不完全による
ものが圧倒的に多く、扁平型、円筒型、細型いず
れの形状の電池においても、完全密封すればこれ
らの欠点は殆んど解消される。 従来から電池を完全密封する目的で、種々の試
みがなされたが、上記欠点を完全解消するには至
らなかつた。その一例として扁平型非水電解液電
池につき述べる。従来の電池は、第1図、第2図
に示すような構造であり、完全密封することを目
的として、ケース2を封口金型で第2図のように
曲げることにより、合成樹脂製の絶縁封口リング
3のa部、b部を20〜50%変形圧縮し、封口板1
とケース2とで封口リングを鋏みこむ構造をとつ
ていた。更に封口を完全にする目的で封口リング
と陽極ケースの相対する部分7及び封口リングと
陰極封口板との相対する部分7′にポリブデン或
いはポリイソブチレン等の高分子シール材9を塗
布或いは充填していた。しかしながらこの系の電
池においては、プロピレンカーボネート、ジメト
キシエタン、γ―ブチロラクトン等を単体或いは
混合溶液とし、これにホウフツ化リチウムや過塩
素酸リチウムを溶解したものを電解液8として一
般に使用しており、これらはいずれも揮発性の有
機溶媒であるため、電池製造後の保存中に上記シ
ール材が少しづつではあるが、溶媒に溶解した
り、膨潤軟化する欠点があり、その結果長期保存
後において、電解液がシール部である7及び7′
の部分を経由して漏出し、耐漏液性能が著しく劣
つていた。又、上記シール材の溶解・膨潤軟化現
象は、高温に保存される程、その傾向が顕著にな
り、45℃保存、60℃保存、高温―低温サイクル試
験等の扁平型電池における一般的漏液試験方法に
おいて、上記シール材が電池外へ押し出された
り、耐漏液性能が著しく悪化するという欠点があ
つた。 本発明は、上記欠点を改良するものであり、以
下本発明の一実施例を図面と共に説明する。 第1図およびそのA部の拡大図を示す第2図に
おいて、1は負極リチウム5を圧着した封口板で
あり、その封口板内にポリプロピレンからなるセ
パレータ6と、フツ化黒鉛、二酸化マンガン、酸
化銅等を正極活物質とした成型正極合剤4を載置
し、プロピレンカーボネート及びジメトキシエタ
ンを主成分とする非水電解液8を封入し、封口リ
ング3と正極ケース2とが相対する部分7と封口
リング3と封口板1とが相対する部分7′に、例
えばピツチと不乾性鉱物油との混合物からなる柔
軟性、密着性のある封止剤9aを隙間なく介在せ
しめ、負極封口板1と正極ケース2とで、封口リ
ング3を鋏みこんで完全に密封したものである。 本発明によるピツチと不乾性鉱物油又は不乾性
植物油との混合物は適切な配合比とすることによ
り、封止剤として具備すべき次の諸条件をすべて
満足させることができる。 電池の保存中に有機電解液に溶けたり、膨
潤・軟化しないこと。合成樹脂製絶縁封口リン
グ3が溶融又は軟化・変形しないような温度で、
封口リング3と正極ケース2とが相対する部分7
及び封口リング3と負極封口板1とが相対する部
分7′に隙間なく塗布或いは充填できること。
封口リング3、正極ケース2、負極封口板1のい
ずれにも、強固に液密的に密着することである。 ピツチに混合する不乾性鉱物油又は不乾性植物
油は、ピツチに柔軟性と強い密着性を与えるため
のものであり、従つてその作用効果から見て、長
期の保存後も、揮発、減量するものであつてはな
らない。 本発明による不乾性鉱物油又は不乾性植物油を
封止剤総重量の6〜18重量%混合したピツチ主体
の封止剤は、従来封止剤として使用されていたポ
リブデンやポリイソブチレン等の高分子化合物に
比べ、非水電解液電池等に用いられる有機電解液
に接しても極めて溶解しにくく、かつ膨潤しない
特長がある。 又、45℃乃至60℃という高温においても、ポリ
ブデンやポリイソブチレン等に比較して、流動性
が少なく、かつ金属及び樹脂等への密着力に優れ
ているので、電池外に流出せず、非常に優れた耐
漏液性能を示す。 第3図に、不乾性鉱物油(ゴム用或いは印刷イ
ンキ用の可塑剤、軟化剤として使用されるプロセ
スオイル)、及び不乾性植物油(大豆油)を種々
の割合に混合したピツチ(ブロンアスフアルト)
主体の封止剤を封口部に充填してなる扁平形電池
についての漏液試験結果を示す。なお、いずれの
電池も外径23.0mm、電池総高2.0mmで、それぞれ
のサンプルは200個とし、 (a)は不乾性鉱物油を混合したピツチ主体の封止
剤を備えた電池の常温で100日保存後の漏液率、 (b)は(a)と同じ封止剤を備えた電池の45℃で100
日保存後の漏液率、 (c)は(a)と同じ封止剤を備えた電池の高温(60
℃)と低温(−10℃)での保存をくり返すサイク
ル試験(MIL.STD 202D―106C)を10日実施
後、常温で90日間放置した後の漏液率、 (d)は(a)と同じ封止剤を備えた電池を60℃で100
日保存後の漏液率、 (a)′は不乾性植物油を混合したピツチ主体の封
止剤を備えた電池の常温で100日保存後の漏液
率、 (b)′は(a)′と同じ封止剤を備えた電池の45℃で
100日保存後の漏液率、 (c)′は(a)′と同じ封止剤を備えた電池の高温(60
℃)と低温(−10℃)でのサイクル試験における
漏液率を示す。 (d)′は(a)′と同じ封止剤を備えた電池の60℃で
100日保存後の漏液率を示す。 各種漏液試験(R.T,45℃,60℃,ヒートサイ
クル)においていずれの結果も不乾性鉱物油、不
乾性植物油の混合量が封止剤総量の6〜18重量%
の場合は、他の混合量に比較してもつとも漏液率
の低い値を示しているところから6〜18重量%の
範囲を良としたものであり、これは第3図からも
明らかである。 これは、ピツチ単体、もしくは不乾性鉱物油又
は不乾性植物油の混合率が6重量%よりも少ない
配合比率の領域では、封止剤としての柔軟性に乏
しく、又封口リング、電池ケース、封口板のそれ
ぞれに対する密着力が弱く、剥離しやすいため、
封口板と封口リングとの間、及び電池ケースと封
口リングとの間から電解液が容易に漏出し、漏液
率が高くなつているものと考えられる。 一方、不乾性鉱物油又は不乾性植物油の混合比
率を18重量%よりも多くすると、封止剤の柔軟
性、金属等への密着性は良好となるが、反面高温
での流動性が出てくるため、45℃或いは60℃とい
つた高温に保存すると、容易にこの封止剤が軟
化、流動して電池外に流出し、封止剤としての役
目を果さなくなるため、電池の漏液率が非常に高
くなるものと考えられる。 又、混合物として不乾性鉱物油を用いた場合
と、不乾性植物油を用いた場合の封止剤としての
効果は、配合比率が6〜18重量%の範囲では、い
ずれの配合比率においても不乾性鉱物油を用いた
方が、良好な結果となつている。 これは、不乾性鉱物油の方が、化学的に安定で
変質し難いこと、及び同一配合比率の場合におい
ては不乾性植物油に比べ、常温での密着力、柔軟
性は同等であるが、60℃といつた高温での流動性
が少なく、電池外に流出しにくいためであると考
えられる。 上記の性質を備えた混合物として以下2,3の
例を挙げて説明する。 (イ) ピツチとしてブロンアスフアルト10―20(温
度25℃における針入度10〜20m/m、試験法は
JIS―K―2207による)90重量部に対し、石油
の分留残渣である鉱物油(ゴム用或いは印刷イ
ンキ用の可塑剤、軟化剤として使用されている
プロセスオイル。商品名モービルゾール22、モ
ービル石油(株)製)10重量部を均一に溶解・混合
したものを封止剤に用いた。この封止剤を実際
に所定の部分に塗布或は充填する場合は、合成
樹脂製封口リング3が軟化しない温度である60
℃以下で塗布或いは充填する必要があり、封止
剤の流動性をあげる目的で、上記混合物1重量
部を有機溶剤、例えばトルエン或いはトルエン
と石油ベンジンとの混合物2重量部に均一に溶
解・混合したものを使用し、塗布或いは充填
後、有機溶剤のみを蒸発・乾燥させた。 (ロ) ピツチとしてブロンアスフアルト20―30(温
度25℃における針入度20〜30m/m)90重量部
に対し大豆油10重量部を均一に溶解・混合す
る。この混合物1重量部を、前記有機溶剤2重
量部に均一に溶解・混合したものを所定部分に
塗布或いは充填した後、有機溶剤のみを蒸発・
乾燥させた。 上記のような充填物を、合成樹脂製封口リング
3と電池ケースとが相対する部分7、及び封口リ
ング3と封口板1とが相対する部分7′に隙間な
く充填すれば、この充填物は封口リング3、電池
ケース2、及び封口板1のいずれに対しても密着
が極めて良好であり、かつ電解液に溶解しないた
め、封口部の気密性は十分に保持される。従つ
て、電池の耐漏液性能は大巾に向上し、更に保存
中の電解液の逸散がないので、保存性能も大巾に
向上する。 次に前記(イ)に示した本発明の封止剤を使用した
封口構造をもつ扁平型非水電解液電池Aと、従来
のポリイソブチレンを封止剤として使用した同型
電池Bの保存後の放電性能比較、及び耐漏液性能
比較を第1表、第2表に示す。なおA,Bいずれ
の電池も外径23.0m/m、電池総高2.0m/mの
ものとした。 但し、放電性能は20℃の温度下で、30KΩの負
荷を接続して連続放電を行ない、2.4Vに電圧低
下するまでの累積平均放電持続時間で示した。又
耐漏液性能については45℃で100日間放置後の
漏液電池個数、60℃で100日間放置後の漏液電
池個数、高温(60℃)と低温(−10℃)とのサ
イクル試験(MIL.STD 202D―106C)を10日実
施後、常温で90日間放置後の漏液電池個数をそれ
ぞれ示した。
The present invention uses active light metals such as lithium, magnesium, and potassium as negative electrode active materials, and uses graphite fluoride,
A positive electrode active material consisting of manganese dioxide, copper oxide, etc.
The purpose of this invention is to significantly improve the leakage resistance and storage performance of non-aqueous electrolyte batteries using non-aqueous electrolytes. Conventionally, batteries of this type have had the disadvantage that the rate of leakage increases as the number of days after storage passes, self-discharge progresses, and the capacity after storage decreases considerably. These defects are overwhelmingly due to imperfections in the sealing structure, and these defects can be almost eliminated if the battery is completely sealed, regardless of whether the battery is flat, cylindrical, or thin. Various attempts have been made to completely seal batteries, but the above-mentioned drawbacks have not been completely eliminated. As an example, a flat non-aqueous electrolyte battery will be described. Conventional batteries have a structure as shown in Figures 1 and 2, and for the purpose of complete sealing, the case 2 is bent using a sealing mold as shown in Figure 2, and a synthetic resin insulator is inserted into the battery. Parts a and b of the sealing ring 3 are deformed and compressed by 20 to 50%, and the sealing plate 1 is
It had a structure in which a sealing ring was inserted between the case 2 and case 2. Furthermore, for the purpose of complete sealing, a polymeric sealant 9 such as polybdenum or polyisobutylene is coated or filled on the opposing portion 7 of the sealing ring and the anode case and the opposing portion 7' of the sealing ring and the cathode sealing plate. Ta. However, in this type of battery, a solution of propylene carbonate, dimethoxyethane, γ-butyrolactone, etc. alone or as a mixture, and lithium borofluoride or lithium perchlorate dissolved therein is generally used as the electrolyte 8. Since these are all volatile organic solvents, the above-mentioned sealing materials have the disadvantage of gradually dissolving in the solvent, swelling and softening during storage after battery manufacture, and as a result, after long-term storage, the electrolyte solution 7 and 7' which are the seal parts
The leakage resistance was extremely poor. Furthermore, the dissolution/swelling/softening phenomenon of the sealing material becomes more pronounced as it is stored at higher temperatures, resulting in general leakage in flat batteries during storage at 45°C, storage at 60°C, and high/low temperature cycle tests. In the test method, there were drawbacks in that the sealing material was pushed out of the battery and the leakage resistance was significantly deteriorated. The present invention aims to improve the above-mentioned drawbacks, and one embodiment of the present invention will be described below with reference to the drawings. In FIG. 1 and FIG. 2 showing an enlarged view of part A thereof, reference numeral 1 denotes a sealing plate to which a negative electrode lithium 5 is crimped; inside the sealing plate, a separator 6 made of polypropylene, graphite fluoride, manganese dioxide, A molded positive electrode mixture 4 containing copper or the like as a positive electrode active material is placed, a nonaqueous electrolyte 8 containing propylene carbonate and dimethoxyethane as main components is sealed, and a portion 7 where the sealing ring 3 and the positive electrode case 2 face each other is formed. A flexible and adhesive sealant 9a made of, for example, a mixture of pitch and non-drying mineral oil is interposed tightly between the portion 7' where the sealing ring 3 and the sealing plate 1 face each other, and the negative electrode sealing plate 1 A sealing ring 3 is inserted between the positive electrode case 2 and the positive electrode case 2 to make a complete seal. The mixture of pitch and non-drying mineral oil or non-drying vegetable oil according to the present invention can satisfy all of the following conditions for a sealant by adjusting the blending ratio appropriately. Do not dissolve, swell, or soften in organic electrolyte during battery storage. At a temperature that prevents the synthetic resin insulating sealing ring 3 from melting, softening, or deforming,
Portion 7 where the sealing ring 3 and the positive electrode case 2 face each other
Also, the portion 7' where the sealing ring 3 and the negative electrode sealing plate 1 face each other can be coated or filled without any gaps.
The purpose is to firmly and liquid-tightly adhere to all of the sealing ring 3, positive electrode case 2, and negative electrode sealing plate 1. The non-drying mineral oil or non-drying vegetable oil that is mixed into the pitch is intended to give flexibility and strong adhesion to the pitch, and therefore, considering its effects, it should volatilize and lose weight even after long-term storage. It must not be. The pitch-based sealant in which non-drying mineral oil or non-drying vegetable oil is mixed in an amount of 6 to 18% by weight of the total weight of the sealant according to the present invention is based on polymers such as polybutene and polyisobutylene that have been conventionally used as sealants. Compared to compounds, it is extremely difficult to dissolve and does not swell even when it comes into contact with organic electrolytes used in non-aqueous electrolyte batteries. In addition, even at high temperatures of 45°C to 60°C, it has less fluidity than polybutene or polyisobutylene, and has excellent adhesion to metals and resins, so it does not leak out of the battery and is extremely durable. Shows excellent leakage resistance. Figure 3 shows pitch (brown asphalt) made by mixing non-drying mineral oil (process oil used as a plasticizer or softener for rubber or printing ink) and non-drying vegetable oil (soybean oil) in various proportions.
The results of a leakage test are shown for a flat battery whose sealant is filled with a main sealant. Each battery has an outer diameter of 23.0 mm and a total height of 2.0 mm, and there are 200 samples for each battery. Leakage rate after 100 days of storage, (b) is 100 at 45°C for a battery with the same encapsulant as in (a).
Leakage rate after 1 day storage, (c) at high temperature (60
After conducting a cycle test (MIL.STD 202D-106C) that repeats storage at low temperature (-10°C) and low temperature (-10°C) for 10 days, the leakage rate after being left at room temperature for 90 days, (d) is (a) 100 at 60°C with the same encapsulant as
(a)′ is the leakage rate after 100 days of storage at room temperature for a battery equipped with a pitch-based sealant mixed with non-drying vegetable oil, (b)′ is (a)′ at 45 °C for cells with the same encapsulant as
Leakage rate after 100 days of storage, (c)′ is the high temperature (60
℃) and low temperature (-10℃) cycle test. (d)′ at 60°C for a battery with the same encapsulant as (a)′.
The leakage rate after 100 days of storage is shown. In various leakage tests (RT, 45℃, 60℃, heat cycle), all results show that the amount of non-drying mineral oil and non-drying vegetable oil mixed is 6 to 18% by weight of the total amount of sealant.
In the case of , the range of 6 to 18% by weight is considered good because the leakage rate is low compared to other mixing amounts, and this is clear from Figure 3. . This is due to the lack of flexibility as a sealant in the area where the blending ratio of pitch alone or non-drying mineral oil or non-drying vegetable oil is less than 6% by weight, and it also has poor flexibility as a sealing agent for sealing rings, battery cases, and sealing plates. Because the adhesion to each of these is weak and easy to peel off,
It is thought that the electrolyte easily leaked from between the sealing plate and the sealing ring and between the battery case and the sealing ring, resulting in a high leakage rate. On the other hand, if the mixing ratio of non-drying mineral oil or non-drying vegetable oil is greater than 18% by weight, the sealant will have good flexibility and adhesion to metals, etc., but on the other hand, it will become fluid at high temperatures. Therefore, if stored at high temperatures such as 45°C or 60°C, this sealant will easily soften, flow, and flow out of the battery, and will no longer function as a sealant, resulting in battery leakage. It is thought that the rate will be very high. In addition, the effect as a sealant when non-drying mineral oil and non-drying vegetable oil are used as a mixture is that, in the range of 6 to 18% by weight, non-drying is achieved in both blending ratios. Better results were obtained using mineral oil. This is because non-drying mineral oil is chemically more stable and less susceptible to deterioration, and in the case of the same blending ratio, it has the same adhesion and flexibility at room temperature as non-drying vegetable oil. This is thought to be because it has little fluidity at high temperatures such as °C and is difficult to leak out of the battery. A few examples of mixtures having the above properties will be described below. (a) Bronze Asphalt 10-20 (penetration 10-20m/m at temperature 25℃, test method is
According to JIS-K-2207), 90 parts by weight of mineral oil, which is a fractionated residue of petroleum (process oil used as a plasticizer or softener for rubber or printing ink), is added to A mixture of 10 parts by weight (manufactured by Sekiyu Co., Ltd.) uniformly dissolved and mixed was used as a sealant. When actually applying or filling this sealant to a predetermined area, the temperature is 60°C at which the synthetic resin sealing ring 3 does not soften.
It is necessary to apply or fill the sealant at a temperature below ℃, and in order to increase the fluidity of the sealant, 1 part by weight of the above mixture is uniformly dissolved and mixed in 2 parts by weight of an organic solvent, such as toluene or a mixture of toluene and petroleum benzine. After coating or filling, only the organic solvent was evaporated and dried. (b) As a pitch, 10 parts by weight of soybean oil is uniformly dissolved and mixed with 90 parts by weight of Bron Asphalt 20-30 (penetration 20-30 m/m at a temperature of 25°C). After uniformly dissolving and mixing 1 part by weight of this mixture with 2 parts by weight of the organic solvent, the mixture is applied or filled onto a predetermined area, and then only the organic solvent is evaporated.
Dry. If the above-mentioned filling is filled without any gaps in the portion 7 where the synthetic resin sealing ring 3 and the battery case face each other, and the portion 7' where the sealing ring 3 and the sealing plate 1 face each other, this filling will be Since the sealing ring 3, the battery case 2, and the sealing plate 1 have extremely good adhesion and are not dissolved in the electrolyte, the airtightness of the sealing portion is sufficiently maintained. Therefore, the leakage resistance of the battery is greatly improved, and since the electrolyte does not dissipate during storage, the storage performance is also greatly improved. Next, after storage of the flat non-aqueous electrolyte battery A with a sealed structure using the sealant of the present invention shown in (a) above, and the same type battery B using the conventional polyisobutylene as the sealant, Tables 1 and 2 show a comparison of discharge performance and leakage resistance performance. Both batteries A and B had an outer diameter of 23.0 m/m and a total height of 2.0 m/m. However, the discharge performance is shown as the cumulative average discharge duration until the voltage drops to 2.4V when continuous discharge is performed at a temperature of 20°C with a load of 30KΩ connected. Regarding leakage resistance, the number of leaking batteries after being left at 45℃ for 100 days, the number of leaking batteries after being left at 60℃ for 100 days, and the high temperature (60℃) and low temperature (-10℃) cycle test (MIL) .STD 202D-106C) for 10 days and after being left at room temperature for 90 days, the number of leaking batteries is shown.

【表】【table】

【表】 上記の実施例より明らかなように、本発明は扁
平型非水電解液電池において、合成樹脂製封口リ
ングと電池ケースとが相対する部分、及び封口リ
ングと封口板とが相対する部分に、ピツチを主体
とし、これに封止剤総量の6〜18重量%の不乾性
鉱物油又は不乾性植物油を混合した封止剤を介在
したものである。従つて電池の気密性は良好に保
たれるとともに電解液の漏出を防止して、保存性
能並びに耐漏液性能を大巾に向上させることがで
きた。 なお、このような封止剤の使用は扁平型電池だ
けでなく、第4図に示す円筒型非水電解液電池及
び第5図に示す細型非水電解液電池の封口部に同
様に適用することができる。 第4図の円筒型電池では、負極端子を兼ねた電
池ケース1aと円盤状の樹脂製封口板3aとの間
及びこの封口板にかしめ固定された正極の内部端
子であるアルミニウム製かしめ鋲2aとの間に封
止剤9aをそれぞれ介在させ、かしめ鋲2a上に
正極端子2bを固定したものである。 又、第5図の細型電池では正極端子を兼ねた細
長い筒状の電池ケース2と合成ゴム製のスリーブ
状絶縁封口体3bとの間、及びこの封口体と負極
端子をなす負極集電棒1′との間にそれぞれ封止
剤9aを介在したものである。 円筒型、細型非水電解液電池についての本発明
の封止剤を使用した場合の耐漏液性能比較を第3
表に示す。第3表において、前記扁平型電池の実
施例に使用した本発明の封止剤イを封口部に充填
した円筒型、細型非水電解液電池Aと、従来のポ
リイソブチレンを封止剤として使用した同型電池
Bについて45℃で100日間放置、及び60℃で100日
間放置後の漏波電池個数をそれぞれ示した。なお
円筒型非水電解液電池はA,Bのいずれも電池外
径17.0mm、電池総高33.5mm、細型非水電解液電池
はA,Bいずれも電池外径3.5mm、電池総高40.0
mmとし、それぞれのサンプルは200個とした。
[Table] As is clear from the above examples, the present invention provides a flat nonaqueous electrolyte battery in which a synthetic resin sealing ring and a battery case face each other, and a sealing ring and a sealing plate face each other in a part where a synthetic resin sealing ring and a battery case face each other. The sealant is mainly composed of pitch and contains a sealant mixed with non-drying mineral oil or non-drying vegetable oil in an amount of 6 to 18% by weight of the total amount of the sealant. Therefore, the airtightness of the battery was maintained well, and leakage of the electrolyte solution was prevented, and the storage performance and leakage resistance performance were greatly improved. Note that the use of such a sealant is applicable not only to flat batteries, but also to the sealing parts of cylindrical non-aqueous electrolyte batteries shown in Figure 4 and narrow non-aqueous electrolyte batteries shown in Figure 5. be able to. In the cylindrical battery shown in FIG. 4, there is a space between the battery case 1a, which also serves as a negative electrode terminal, and a disc-shaped resin sealing plate 3a, and an aluminum rivet 2a, which is the internal terminal of the positive electrode, which is caulked to this sealing plate. A sealing agent 9a is interposed between the two, and a positive electrode terminal 2b is fixed onto the caulking stud 2a. In addition, in the narrow battery shown in FIG. 5, there is a negative electrode current collector rod 1' between the elongated cylindrical battery case 2 which also serves as a positive electrode terminal and a sleeve-shaped insulating sealing body 3b made of synthetic rubber, and which forms a negative electrode terminal with this sealing body. A sealant 9a is interposed between the two. The third comparison of leakage resistance performance when using the sealant of the present invention for cylindrical and narrow non-aqueous electrolyte batteries
Shown in the table. Table 3 shows a cylindrical, narrow non-aqueous electrolyte battery A whose sealing part was filled with the sealant A of the present invention used in the flat battery example, and a conventional polyisobutylene used as a sealant. The number of leakage batteries after being left at 45°C for 100 days and at 60°C for 100 days is shown for the same type of battery B. The cylindrical non-aqueous electrolyte batteries A and B both have an outer diameter of 17.0 mm and a total battery height of 33.5 mm.The narrow non-aqueous electrolyte batteries have an outer diameter of 3.5 mm and a total height of 40.0 mm for both A and B.
mm, and each sample was 200 pieces.

【表】 これらの構造であつても、前述した扁平型電池
と同様、優れた耐漏液性と保存性能が得られる。
[Table] Even with these structures, excellent leakage resistance and storage performance can be obtained, similar to the flat battery described above.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例における扁平型非水
電解液電池の断面図、第2図は第1図A部の拡大
断面図、第3図は封止剤のピツチに対する鉱物油
又は植物油の配合比と、電池の漏液率との関係を
示す図、第4図は本発明の他の実施例である円筒
型非水電解液電池の半截側面図、第5図は同じく
細型非水電解液電池の半截側面図である。 1……負極端子を兼ねた封口板、1a……負極
端子を兼ねた電池ケース、1′……負極端子兼集
電棒、2……正極端子を兼ねた電池ケース、2a
……かしめ鋲、2b……正極端子、3……絶縁封
口リング、3a……封口板、3b……スリーブ状
封口体、4……正極合剤、5……負極、6……セ
パレータ、8……非水電解液、9a……封止剤。
FIG. 1 is a sectional view of a flat non-aqueous electrolyte battery according to an embodiment of the present invention, FIG. 2 is an enlarged sectional view of part A in FIG. 1, and FIG. 3 is a mineral oil or vegetable oil for sealant pitch. FIG. 4 is a half-cut side view of a cylindrical non-aqueous electrolyte battery according to another embodiment of the present invention, and FIG. 5 is a diagram showing the relationship between the compounding ratio of It is a half-cut side view of an electrolyte battery. 1...Sealing plate that also serves as a negative electrode terminal, 1a...Battery case that also serves as a negative electrode terminal, 1'......Battery case that also serves as a negative electrode terminal, 2...Battery case that also serves as a positive electrode terminal, 2a
... Caulking stud, 2b ... Positive electrode terminal, 3 ... Insulating sealing ring, 3a ... Sealing plate, 3b ... Sleeve-shaped sealing body, 4 ... Positive electrode mixture, 5 ... Negative electrode, 6 ... Separator, 8 ...Nonaqueous electrolyte, 9a...Sealant.

Claims (1)

【特許請求の範囲】 1 正、負極の金属端子と、合成樹脂又は合成ゴ
ムからなる絶縁性封口体との間に、ピツチを主成
分としこれに封止剤総重量の6〜18重量%の不乾
性鉱物油又は不乾性植物油を混合した封止剤を介
在したことを特徴とする非水電解液電池。 2 前記封止剤が正、負いずれか一方極の端子を
兼ねた電池ケースと絶縁封口リングとの間、及び
他方極の端子を兼ねた封口板と前記絶縁封口リン
グとの間にそれぞれ介在している特許請求の範囲
第1項記載の非水電解電池。 3 前記封止剤が正、負いずれか一方極の端子を
兼ねた電池ケースと絶縁封口板との間、及び絶縁
封口板とこれにかしめつけた他方極端子であるか
しめ鋲との間にそれぞれ介在している特許請求の
範囲第1項記載の非水電解液電池。 4 前記封止剤が、正、負いずれか一方極の端子
を兼ねた電池ケースとスリーブ状絶縁封口体との
間、及び他方極端子を兼ねた集電棒と前記スリー
ブ状絶縁体との間にそれぞれ介在されている特許
請求の範囲第1項記載の非水電解液電池。
[Scope of Claims] 1. Between the positive and negative metal terminals and an insulating sealing body made of synthetic resin or synthetic rubber, a sealant containing pitch as a main component and 6 to 18% by weight of the total weight of the sealant is used. A non-aqueous electrolyte battery characterized by interposing a sealant containing a mixture of non-drying mineral oil or non-drying vegetable oil. 2. The sealant is interposed between the battery case and the insulating sealing ring, which also serves as a terminal for one of the positive or negative poles, and between the sealing plate, which also serves as the terminal for the other pole, and the insulating sealing ring. A non-aqueous electrolytic battery according to claim 1. 3. The sealant is applied between the battery case and the insulating sealing plate, which also serves as a terminal for one of the positive and negative poles, and between the insulating sealing plate and the caulking stud, which is the other terminal terminal, which is caulked thereto. A nonaqueous electrolyte battery according to claim 1 of the intervening claims. 4. The sealant is applied between the battery case and the sleeve-shaped insulating sealing body, which also serves as a terminal for one of the positive and negative poles, and between the current collector rod, which also serves as the other terminal, and the sleeve-shaped insulator. The non-aqueous electrolyte battery according to claim 1, wherein each of the non-aqueous electrolyte batteries is interposed.
JP13232479A 1979-10-12 1979-10-12 Nonaqueous-electrolyte battery Granted JPS5657254A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13232479A JPS5657254A (en) 1979-10-12 1979-10-12 Nonaqueous-electrolyte battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13232479A JPS5657254A (en) 1979-10-12 1979-10-12 Nonaqueous-electrolyte battery

Publications (2)

Publication Number Publication Date
JPS5657254A JPS5657254A (en) 1981-05-19
JPS6136344B2 true JPS6136344B2 (en) 1986-08-18

Family

ID=15078647

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13232479A Granted JPS5657254A (en) 1979-10-12 1979-10-12 Nonaqueous-electrolyte battery

Country Status (1)

Country Link
JP (1) JPS5657254A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011187229A (en) * 2010-03-05 2011-09-22 Hitachi Maxell Energy Ltd Flat battery

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1291935B1 (en) 2000-06-09 2012-12-19 Panasonic Corporation Electrochemical device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011187229A (en) * 2010-03-05 2011-09-22 Hitachi Maxell Energy Ltd Flat battery

Also Published As

Publication number Publication date
JPS5657254A (en) 1981-05-19

Similar Documents

Publication Publication Date Title
JP3260349B2 (en) Sealant for electrochemical device and electrochemical device using the same
JP5839802B2 (en) Gasket for electrochemical cell and electrochemical cell
JP2011521426A (en) Lithium primary battery
JP2001508916A (en) Lithium ion battery and method of manufacturing the same
WO2006049027A1 (en) Secondary battery with terminal for surface mounting
US3994747A (en) Lithium-bromine cell
JP3016065B2 (en) Manufacturing method of cylindrical nickel-hydrogen secondary battery
JP5153113B2 (en) Alkaline primary battery
JPS5848361A (en) Alkaline dry cell
JPH09306503A (en) Lithium secondary battery
JPS6136344B2 (en)
JPH11214012A (en) Electrode binder for lithium ion secondary battery and manufacture of its active material slurry
JPS62154555A (en) Battery
JP2830365B2 (en) Non-aqueous electrolyte secondary battery
JPS6380471A (en) Nonaqueous electrolyte cell
JP2946825B2 (en) Lithium battery
JPS5848353A (en) Nonaqueous battery
JPH04115456A (en) Lithium battery
JP2000040525A (en) Organic electrolyte secondary battery
US6290878B1 (en) Solid polymer electrolyte based on polyacrylonitrile
JPH0456422B2 (en)
JP2002134072A (en) Flattened non-aqueous electrolytic secondary battery
JPH04223046A (en) Lithium cell
JPH09115550A (en) Solid electrolyte battery
JPS62126544A (en) Manufacture of battery