JPS6136133Y2 - - Google Patents

Info

Publication number
JPS6136133Y2
JPS6136133Y2 JP8333580U JP8333580U JPS6136133Y2 JP S6136133 Y2 JPS6136133 Y2 JP S6136133Y2 JP 8333580 U JP8333580 U JP 8333580U JP 8333580 U JP8333580 U JP 8333580U JP S6136133 Y2 JPS6136133 Y2 JP S6136133Y2
Authority
JP
Japan
Prior art keywords
compressor
way valve
capacity
gas
refrigerant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP8333580U
Other languages
Japanese (ja)
Other versions
JPS576956U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP8333580U priority Critical patent/JPS6136133Y2/ja
Publication of JPS576956U publication Critical patent/JPS576956U/ja
Application granted granted Critical
Publication of JPS6136133Y2 publication Critical patent/JPS6136133Y2/ja
Expired legal-status Critical Current

Links

Landscapes

  • Applications Or Details Of Rotary Compressors (AREA)

Description

【考案の詳細な説明】 本考案は、能力調節を行なう空気調和機におけ
る冷凍サイクルの改良に関するもので、特に安定
運転時における成績係数の向上による省エネルギ
ー化をはかることを目的の一つとするものであ
る。
[Detailed description of the invention] This invention relates to improving the refrigeration cycle of an air conditioner that adjusts its capacity, and one of its objectives is to save energy by improving the coefficient of performance, especially during stable operation. be.

従来、この種の空気調和機における冷媒回路
は、第2図に示す如く構成され、標準冷房回路時
には冷媒は圧縮機a、凝縮器b、第1キヤピラリ
チユーブcおよび第2キヤピラリチユーブd、蒸
発器e、圧縮機aと流れる。この時、第1二方弁
fは開で第2二方弁gは閉であり、能力調節弁h
は高圧液冷媒で閉鎖されている。また、能力調節
冷房回路時は、冷媒が圧縮機a、凝縮器b、第2
キヤピラリチユーブd、蒸発器e、圧縮機aとい
う基本回路と、圧縮機a、能力調節弁h、第2二
方弁g、圧縮機aというバイパス回路へそれぞれ
流れる。この時、第1二方弁fは閉、第2二方弁
gは開となる。
Conventionally, the refrigerant circuit in this type of air conditioner is configured as shown in FIG. It flows through evaporator e and compressor a. At this time, the first two-way valve f is open, the second two-way valve g is closed, and the capacity adjustment valve h
is closed with high pressure liquid refrigerant. In addition, during the capacity adjustment cooling circuit, the refrigerant is in the compressor a, condenser b,
It flows into a basic circuit consisting of a capillary tube d, an evaporator e, and a compressor a, and a bypass circuit consisting of a compressor a, a capacity control valve h, a second two-way valve g, and a compressor a. At this time, the first two-way valve f is closed and the second two-way valve g is opened.

したがつて、能力調節冷房回路の場合には、第
2キヤピラリチユーブdにて減圧された冷媒の一
部が第1キヤピラリチユーブcから第2二方弁g
を介して圧縮機aに流れ込んでしまうため、蒸発
器eの能力が最大限に発揮されず、大きな損失と
もなつていた。このため、成績係数の低下にもつ
ながつていた。また、完全蒸発しない湿り気味の
冷媒が常に圧縮機aへ吸入されるため、圧縮機自
体の寿命の点からも問題があるという不具合点を
有していた。
Therefore, in the case of the capacity adjustment cooling circuit, a part of the refrigerant whose pressure has been reduced in the second capillary tube d is transferred from the first capillary tube c to the second two-way valve g.
Since the evaporator e flows into the compressor a through the evaporator e, the capacity of the evaporator e cannot be maximized, resulting in a large loss. This led to a decline in the coefficient of performance. Furthermore, since a slightly moist refrigerant that does not completely evaporate is always sucked into the compressor a, there is also a problem in terms of the lifespan of the compressor itself.

本考案は、上記従来の能力調節を具備した空気
調和機の冷凍サイクルにみられる不具合点を解消
するもので、減圧された冷媒の有効分と無効分の
うち、有効分のみを冷房能力に発揮させ、無効分
はさらに減圧して乾きぎみとし圧縮機へ戻してや
り、成績係数の向上に役立てようとするものであ
る。
This invention solves the problems found in the refrigeration cycle of air conditioners equipped with the conventional capacity adjustment described above. Out of the effective and inactive parts of the depressurized refrigerant, only the effective part is used to increase the cooling capacity. The idea is to further reduce the pressure and return the ineffective components to the compressor, which will help improve the coefficient of performance.

以下、本考案をその一実施例を示す添付図面の
第1図を参考に説明する。
Hereinafter, the present invention will be explained with reference to FIG. 1 of the accompanying drawings showing one embodiment thereof.

同図において、1は圧縮機、2は凝縮器、3a
は第1キヤピラリチユーブ、4は気液分離器、5
は蒸発器で、これらを環状に連結することにより
基本となる冷媒回路が構成される。6は第1二方
弁で、前記凝縮器2と第1キヤピラリチユーブ3
aの間に設けられている。ここで、前記圧縮機1
は、シリンダ1a、偏心軸を有するピストン1
b、シリンダ内部を高圧と低圧とに仕切るベーン
1c、シリンダ内部に冷媒を導く吸入孔1d、シ
リンダ内部から冷媒を吐出する吐出孔1e、圧縮
機構の吐出孔1eと吸入孔1dの中間にあるバイ
パス孔1f、前記バイパス孔1fを高圧時(xか
らyに冷媒が流れた時)に閉、低圧時(yからz
に冷媒が流れた時)に開とする能力制御弁1gお
よび前記能力調節弁1gより圧縮機の外方へ延出
した能力制御弁1hから構成されている。なお、
この圧縮機の外方へ延出した能力制御管1hは高
圧管8を介して前記第1二方弁6の下流側端とも
接続されている。3bは第2キヤピラリチユーブ
で、前記第1二方弁6と第1キヤピラリチユーブ
3aからなる直列回路と並列に接続され、この第
1、第2両キヤピラリチユーブ3a,3bの出口
側は気液分離器4のガス側に接続されている。な
お、この気液分離器4の液側には蒸発器5の入口
側が接続されている。7は前記能力制御管1hと
圧縮機1の吸入側とをバイパスさせる第2二方弁
である。
In the same figure, 1 is a compressor, 2 is a condenser, and 3a
is the first capillary tube, 4 is the gas-liquid separator, and 5 is the first capillary tube.
is an evaporator, and the basic refrigerant circuit is constructed by connecting these in a ring. 6 is a first two-way valve that connects the condenser 2 and the first capillary tube 3;
It is provided between a. Here, the compressor 1
is a cylinder 1a and a piston 1 having an eccentric shaft.
b, a vane 1c that partitions the inside of the cylinder into high pressure and low pressure, a suction hole 1d that guides the refrigerant into the cylinder, a discharge hole 1e that discharges the refrigerant from inside the cylinder, and a bypass located between the discharge hole 1e and the suction hole 1d of the compression mechanism. The hole 1f and the bypass hole 1f are closed when the pressure is high (when the refrigerant flows from x to y), and when the pressure is low (from y to z).
The compressor consists of a capacity control valve 1g that opens when refrigerant flows) and a capacity control valve 1h that extends outward from the capacity control valve 1g. In addition,
A capacity control pipe 1h extending outward from the compressor is also connected to the downstream end of the first two-way valve 6 via a high-pressure pipe 8. 3b is a second capillary tube, which is connected in parallel with the series circuit consisting of the first two-way valve 6 and the first capillary tube 3a, and the outlet sides of both the first and second capillary tubes 3a and 3b are It is connected to the gas side of the gas-liquid separator 4. Note that the inlet side of the evaporator 5 is connected to the liquid side of the gas-liquid separator 4. Reference numeral 7 designates a second two-way valve that bypasses the capacity control pipe 1h and the suction side of the compressor 1.

上記構成において、標準冷房回路時の冷媒回路
は、圧縮機1、凝縮器2、第1キヤピラリチユー
ブ3aおよび第2キヤピラリチユーブ3b、気液
分離器4、蒸発器5、圧縮機1となる。この時、
第1二方弁6は開で第2二方弁7は閉となり、能
力調節弁1gは高圧液冷媒で閉鎖される。なお、
第1キヤピラリチユーブ3aと第2キヤピラリチ
ユーブ3bは並列回路を形成しているので、両キ
ヤピラリチユーブ3a,3bの総合減圧量は最大
能力となるような値に設定してある。
In the above configuration, the refrigerant circuit during the standard cooling circuit includes the compressor 1, the condenser 2, the first capillary tube 3a and the second capillary tube 3b, the gas-liquid separator 4, the evaporator 5, and the compressor 1. . At this time,
The first two-way valve 6 is open, the second two-way valve 7 is closed, and the capacity control valve 1g is closed by high-pressure liquid refrigerant. In addition,
Since the first capillary tube 3a and the second capillary tube 3b form a parallel circuit, the total depressurization amount of both capillary tubes 3a, 3b is set to a value that provides the maximum capacity.

また、能力調節冷房回路時の冷媒回路は、圧縮
機1、凝縮器2、第2キヤピラリチユーブ3b、
気液分離器4、蒸発器5、圧縮機1という基本回
路と、圧縮機1、能力調節弁1g、第2二方弁
7、圧縮機というバイパス回路で構成される。こ
の時、第1二方弁6は閉、第2二方弁は開とな
る。なお、第2キヤピラリチユーブ3bの減圧量
は能力調節冷房回路時の成績係数が最大点になる
ように選択してある。その結果、圧縮機1にて吸
入されたガスの一部が能力調節弁1gより第2二
方弁7を介して逃げてゆくため、圧縮されるガス
の量が減少し、圧縮機1の仕事率がおさえられ、
能力、入力が低下する。
In addition, the refrigerant circuit during the capacity adjustment cooling circuit includes a compressor 1, a condenser 2, a second capillary tube 3b,
It consists of a basic circuit including a gas-liquid separator 4, an evaporator 5, and a compressor 1, and a bypass circuit including a compressor 1, a capacity control valve 1g, a second two-way valve 7, and a compressor. At this time, the first two-way valve 6 is closed and the second two-way valve is opened. The amount of pressure reduction in the second capillary tube 3b is selected so that the coefficient of performance during the capacity adjustment cooling circuit is maximized. As a result, a part of the gas sucked by the compressor 1 escapes from the capacity control valve 1g via the second two-way valve 7, so the amount of gas to be compressed decreases and the work of the compressor 1 is reduced. rate is suppressed,
Capacity, input decreases.

したがつて、上記冷媒回路の構成によれば、能
力調節冷房回路時に第2キヤピラリチユーブ3b
により減圧された冷媒は、一旦気液分離器4でガ
スと液に分けられて、液は蒸発器5へ行き、ガス
は第1キヤピラリチユーブ3aで減圧されて第2
二方弁7を介して圧縮機1へ吸入される。その結
果、減圧冷媒の有効分(液)は気液分離器4によ
つて蒸発器5へ導かれるため、完全に蒸発され、
蒸発器5を有効に利用することが可能となる。そ
して、無効分(ガス)については第1キヤピラリ
チユーブ3aによつてさらに減圧され、圧縮機1
へ乾いたガスで返されるため、圧縮機1の寿命に
も悪影響をおよぼすことなく成績係数の向上につ
ながり、非常に有効な省エネルギー運転が可能と
なる。また、第1キヤピラリチユーブ3aへ導か
れる冷媒はガス分のみであるため、液分に比較し
て減圧効果も大で第1キヤピラリチユーブ3aを
通つて圧縮機1へ戻る冷媒量は従来例に比較して
少なくなる。
Therefore, according to the configuration of the refrigerant circuit, the second capillary tube 3b is
The refrigerant is once separated into gas and liquid by the gas-liquid separator 4, the liquid goes to the evaporator 5, and the gas is depressurized by the first capillary tube 3a and then sent to the second capillary tube 3a.
It is sucked into the compressor 1 via the two-way valve 7. As a result, the effective portion (liquid) of the reduced pressure refrigerant is guided to the evaporator 5 by the gas-liquid separator 4, so that it is completely evaporated.
It becomes possible to use the evaporator 5 effectively. The reactive component (gas) is further reduced in pressure by the first capillary tube 3a, and the compressor 1
Since dry gas is returned to the compressor 1, the coefficient of performance is improved without adversely affecting the life of the compressor 1, and extremely effective energy-saving operation becomes possible. In addition, since the refrigerant guided to the first capillary tube 3a is only a gas component, the depressurization effect is greater than that of a liquid component, and the amount of refrigerant returned to the compressor 1 through the first capillary tube 3a is smaller than that of the conventional example. It will be less compared to.

なお、本実施例においては、減圧装置としてキ
ヤピラリチユーブ3a,3bを使用したが、膨張
弁を使用しても同様の作用効果が期待できる。
In this embodiment, the capillary tubes 3a and 3b are used as pressure reducing devices, but similar effects can be expected even if an expansion valve is used.

また、本実施例においては、冷媒回路切換装置
として通電時に開となる二方弁6,7を用いた
が、通電時逆に閉となる冷媒切換回路も同様の作
用効果が期待できる。
Further, in this embodiment, the two-way valves 6 and 7 which are opened when energized are used as the refrigerant circuit switching device, but similar effects can be expected with a refrigerant switching circuit which is closed when energized.

上記実施例より明らかなように、本考案におけ
る空気調和機の冷凍サイクルは、能力調節弁を有
する冷媒回路において、標準冷房回路時は複数の
減圧装置と能力制御弁へ高圧冷媒が流れ、また能
力調節冷房回路時は前記減圧装置のうちいずれか
一つに高圧液冷媒を流す回路で、特に、能力調節
冷房回路時に前記減圧装置にて減圧された冷媒を
気液分離器にて有効分(液)と無効分(ガス)に
分け、液を蒸発器に、ガスをもう一方の減圧装置
に流して、圧縮機に戻すことによつて、蒸発器の
有効利用と冷媒の有効利用をはかり、成績係数の
向上すなわち省エネルギー運転が可能となり、ま
た、冷媒の一部が従来のように湿りもしくは液で
圧縮機に戻ることがないため、圧縮機の寿命にと
つても有益である等の効果が得られる。
As is clear from the above embodiment, in the refrigeration cycle of the air conditioner according to the present invention, in a refrigerant circuit having a capacity control valve, high-pressure refrigerant flows to a plurality of pressure reducing devices and a capacity control valve during the standard cooling circuit; During the regulating cooling circuit, high-pressure liquid refrigerant is passed through one of the pressure reducing devices. In particular, during the capacity regulating cooling circuit, the refrigerant reduced in pressure by the pressure reducing device is separated into an effective portion (liquid) by a gas-liquid separator. ) and the reactive component (gas), the liquid is sent to the evaporator, the gas is sent to the other pressure reducing device, and then returned to the compressor, thereby making effective use of the evaporator and refrigerant. This improves the coefficient, which makes it possible to operate in an energy-saving manner, and because some of the refrigerant does not return to the compressor as wet or liquid as in the past, it is beneficial to the life of the compressor. It will be done.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本考案の一実施例における空気調和機
の冷媒回路図、第2図は従来の空気調和機の冷媒
回路図である。 1……圧縮機、1d……吸入孔、1e……吐出
孔、1f……バイパス孔、1g……能力制御弁、
1h……能力制御管、2……圧縮機、3……第1
キヤピラリチユーブ(減圧器)、3b……第2キ
ヤピラリチユーブ(減圧器)、4……気液分離
器、5……蒸発器、6……第1二方弁、7……第
2二方弁、8……高圧管。
FIG. 1 is a refrigerant circuit diagram of an air conditioner according to an embodiment of the present invention, and FIG. 2 is a refrigerant circuit diagram of a conventional air conditioner. 1...Compressor, 1d...Suction hole, 1e...Discharge hole, 1f...Bypass hole, 1g...Capacity control valve,
1h...Capacity control pipe, 2...Compressor, 3...First
Capillary tube (pressure reducer), 3b... Second capillary tube (pressure reducer), 4... Gas-liquid separator, 5... Evaporator, 6... First two-way valve, 7... Second second Directional valve, 8...High pressure pipe.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 圧縮機1、凝縮器2、第1二方弁6、第1減圧
器3a、気液分離器4および蒸発器5をそれぞれ
環状に連結した冷凍サイクルにおいて、前記圧縮
機1を、吐出孔1eと吸入孔1dの間に設けられ
たバイパス孔1fおよびこのバイパス孔1fを開
閉する能力制御弁1gを有し、このバイパス孔1
fから圧縮機外方に延出して前記蒸発器5と圧縮
機1の吸入孔1dとの間に連結された能力制御管
1hを有する能力調節機能付圧縮機とし、前記能
力制御管1hに第2二方弁7を設け、さらにこの
第2二方弁7と能力制御弁1gの間に、一端が前
記第1二方弁6と第1減圧器3aの間に連結され
た高圧管8の他端を連結し、さらに一端が前記凝
縮器2と第1二方弁6の間に連結された第2減圧
器3bの他端を前記気液分離器4の気体側に開口
し、前記第1二方弁6を開、第2二方弁7を閉と
したときに高能力、第1二方弁6を閉、第2二方
弁7を開としたときに低能力となるようにした空
気調和機の冷凍サイクル。
In a refrigeration cycle in which a compressor 1, a condenser 2, a first two-way valve 6, a first pressure reducer 3a, a gas-liquid separator 4, and an evaporator 5 are connected in a ring, the compressor 1 is connected to a discharge hole 1e. It has a bypass hole 1f provided between the suction holes 1d and a capacity control valve 1g that opens and closes the bypass hole 1f.
A compressor with a capacity adjustment function has a capacity control pipe 1h extending outward from the compressor f and connected between the evaporator 5 and the suction hole 1d of the compressor 1, and the capacity control pipe 1h has a capacity control pipe 1h. A high-pressure pipe 8 is provided between the second two-way valve 7 and the capacity control valve 1g, and one end of which is connected between the first two-way valve 6 and the first pressure reducer 3a. The other end of the second pressure reducer 3b, which has one end connected between the condenser 2 and the first two-way valve 6, is opened to the gas side of the gas-liquid separator 4. When the first two-way valve 6 is opened and the second two-way valve 7 is closed, the capacity is high, and when the first two-way valve 6 is closed and the second two-way valve 7 is opened, the capacity is low. The refrigeration cycle of an air conditioner.
JP8333580U 1980-06-13 1980-06-13 Expired JPS6136133Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8333580U JPS6136133Y2 (en) 1980-06-13 1980-06-13

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8333580U JPS6136133Y2 (en) 1980-06-13 1980-06-13

Publications (2)

Publication Number Publication Date
JPS576956U JPS576956U (en) 1982-01-13
JPS6136133Y2 true JPS6136133Y2 (en) 1986-10-20

Family

ID=29445659

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8333580U Expired JPS6136133Y2 (en) 1980-06-13 1980-06-13

Country Status (1)

Country Link
JP (1) JPS6136133Y2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0619947Y2 (en) * 1990-08-24 1994-05-25 三島谷興産株式会社 Combustion furnace block

Also Published As

Publication number Publication date
JPS576956U (en) 1982-01-13

Similar Documents

Publication Publication Date Title
US3568466A (en) Refrigeration system with multi-stage throttling
US4262492A (en) Airconditioner
JPS6136133Y2 (en)
CN216788710U (en) Multistage compressor and air conditioning unit
US6892548B2 (en) Rotary compressor and refrigerant cycle system having the same
CN107228070A (en) Compressor and the refrigeration system with it
CN111486609B (en) Air conditioning system and control method
JPS5877183U (en) air conditioner
CN114165446A (en) Multistage compressor and air conditioning unit
CN208817635U (en) Heat pump system and air conditioner with it
JPH09145167A (en) Air conditioner
CN1189705C (en) Dehumidify air conditioner and its dehumidifying method
JP2646894B2 (en) Refrigeration cycle device
JPS5842838Y2 (en) refrigerator
CN107218740B (en) Refrigerant circulation system and air conditioner with same
JPS6038847Y2 (en) air conditioner
JPS6230698Y2 (en)
CN208817775U (en) Air-conditioning system
JPS6038846Y2 (en) air conditioner
JPS5912517Y2 (en) air conditioner
JPS6039716Y2 (en) refrigeration cycle
KR830000396B1 (en) Air conditioning system
JPS6136134Y2 (en)
JPS5912259A (en) Controller for capacity of air conditioner
JPS5818138Y2 (en) refrigeration cycle