JPS6136005B2 - - Google Patents

Info

Publication number
JPS6136005B2
JPS6136005B2 JP9913577A JP9913577A JPS6136005B2 JP S6136005 B2 JPS6136005 B2 JP S6136005B2 JP 9913577 A JP9913577 A JP 9913577A JP 9913577 A JP9913577 A JP 9913577A JP S6136005 B2 JPS6136005 B2 JP S6136005B2
Authority
JP
Japan
Prior art keywords
catalyst
polymerization
phosphorus trichloride
sulfur monochloride
gel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP9913577A
Other languages
Japanese (ja)
Other versions
JPS5433588A (en
Inventor
Minoru Ishiguro
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zeon Corp
Original Assignee
Nippon Zeon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Zeon Co Ltd filed Critical Nippon Zeon Co Ltd
Priority to JP9913577A priority Critical patent/JPS5433588A/en
Publication of JPS5433588A publication Critical patent/JPS5433588A/en
Publication of JPS6136005B2 publication Critical patent/JPS6136005B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Polymerization Catalysts (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Polymerisation Methods In General (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は新規な炭化水素樹脂の製造方法に関
し、さらに詳しくは、ゲル状物質の生成を防止し
つつ良好な物性を有する炭化水素樹脂を製造する
方法に関する。 一般に炭化水素樹脂は炭素数4〜10の不飽和炭
化水素、例えばブテン類、ペンテン類などの鎖状
モノオレフイン、シクロペンテン、シクロヘキセ
ンなどの環状モノオレフイン、1,3―ブタジエ
ン、1,3―ペンタジエン、イソプレンなどの共
役鎖状ジオレフイン、シクロペンタジエンなどの
共役環状ジオレフイン、スチレン、アルキルスチ
レン、インデン、アルキルインデン、ジシクロペ
ンタジエンなどを単独または任意に組み合わせて
フリーデル・クラフツ型触媒の存在下に重合さ
せ、中和反応により重合を停止せしめたのち触媒
を分離除去し、未反応油及び必要により用いられ
た溶媒と低重合度の油状生成物を蒸留によつて除
去することにより得られる。 この際、単量体成分中に共役ジオレフイン類、
インデン、ジシクロペンタジエン等が多量に存在
すると、溶媒に不溶性のゲル状物が副生しやす
く、そ結果触媒の分離除去を著しく困難にするば
かりでなくゲル状物が生成した樹脂に混入して
種々の用途に悪影響を及ぼすので、ゲル化防止法
に関する努力がなされている。 例えば、特公昭34−5442では30〜140℃の沸点
範囲の分解油留分からシクロペンタジエンの熱2
量化によつてその含有量を2%以下にした原料が
用いられており、また米国特許第2775575号、第
2775526号等によれば分解油の環状ジオレフイン
類を除去し、さらに好ましくはイソプレンを除去
した留分が原料として用いられている。 一方、単独で重合する場合にはゲル状物の副生
がきわめて生じやすい共役ジオレフイン類を、適
当なモノオレフイン類と共重合させることにより
ゲル状物の副生を防止する方法も開発されてい
る。例えば特公昭45−12306号は1,3―ペンタ
ジエンと2―メチル―2―ブテンとを共重合させ
る方法、また特公昭47−1991号は1,3―ペンタ
ジエン、1,3―ブタジエン、2―メチル―1―
ブテン及び2―メチル―2―ブテンを共重合する
方法を開示している。しかしながら原料油中に多
量のモノオレフイン類を導入することは、油状生
成物の副生量を増大せしめ、樹脂状生成物の収率
を低下させ、また生成樹脂の軟化点を低下させ
る。 本発明者らはかかる公知の方法における欠点を
克服するために鋭意研究を行つた結果、ゲル状物
質を副生しやすい単量体組成の場合であつても原
料の前処理等を行うことなく、また原料油中に比
較的多量のモノオレフイン類を導入することなく
ゲル状物質の生成を抑制する方法を確立した。 本発明に適用される原料は炭素数4〜10のカチ
オン重合可能な不飽和炭化水素であればいずれで
もよいが、通常は軟質または重質ナフサ、灯油ま
たは軽油留分、重質油または原料等を用い、いわ
ゆるスチームクラツキング、気相熱分解、サンド
クラツキング等の熱分解または接触分解等でエチ
レン、プロピレン等を製造する際に得られる副産
物のうち−7〜280℃の沸点範囲を有する不飽和
炭化水素留分またはこれらを適宜精製、分離した
留分を組み合わせたものであり、特に炭素数4〜
5の鎖状共役ジオレフイン、例えば1,3―ブタ
ジエン、1,3―ペンタジエン、イソプレン等を
単量体成分中に少くとも50重量%以上含む留分を
原料に用いると、淡黄色の工業的に非常に有用な
樹脂が高収率かつゲルの副生を伴わずに得られ
る。 本発明においてはかかる単量体をフリーデル・
クラフツ型触媒の存在下に重合するに際し、一塩
化イオウまたは三塩化リンの存在下に重合が実施
される。これらの化合物の使用量は触媒1モル当
り0.01〜1.0モル、さらには0.02〜0.3モルである
ことが好ましく、これら添加物質の添加量が1.0
モルを越えると生成樹脂の収率が低下し、また樹
脂の軟化点が低下する傾向にある。 本発明で使用されるフリーデル・クラフツ型触
媒は、代表的にはアルミニウム、ホウ素、鉄、
錫、チタンなどの弗化物、塩化物、臭化物及びヨ
ウ化物であるが、なかでもアルミニウムまたはホ
ウ素のハロゲン化物、とくに塩化アルミニウムま
たは三弗化ホウ素が好ましい。重合反応を実施す
る際、触媒が固体の場合には通常5〜200メツシ
ユ、好ましくは20〜200メツシユサイズの粒子と
して用いられる。使用される触媒の量は特に限定
されないが、重合反応が充分に行われる範囲で用
いる必要がある。重合は通常触媒を溶媒中に添加
せしめたのちこの系内に単量体を徐々に添加して
行われ、それによつて反応温度の制御が容易にな
る。 また本発明で用いられる一塩化イオウまたは三
塩化リンは、触媒を添加した溶媒中に単量体を導
入する前に溶媒中に添加することが好ましく、重
合開始後にこれらの添加剤を重合系に加える場合
にはゲルの抑制効果が低下する。 重合反応、触媒及び添加剤の調製等には通常希
釈剤が使用されるが、かかる希釈剤は反応に不活
性なものであり、ベンゼン、トルエン、キシレン
等の芳香族炭化水素、ペンタン、ヘキサン、ヘプ
タン等の脂肪族炭化水素及びシクロヘキサン等の
脂環族炭化水素などがその代表例である。しかし
単量体組成中の共役ジオレフイン含有量が大きい
場合には、ゲル状物質の生成を抑制する効果を一
層確実にするために芳香族炭化水素を50重量%以
上含有する溶媒を使用することが好ましい。溶媒
は通常重合可能成分100重量部に対して20〜1000
重量部、好ましくは50〜500重量部の割合で使用
される。 重合は通常−20〜100℃、好ましくは0〜80℃
で行われ、反応系の圧力は大気圧以上もしくはそ
れ以下であつてもよい。反応時間も重要ではな
く、一般に数秒〜数時間にわたつて変化させるこ
とができる。このようにして得られた重合物は常
法に従つて処理し乾燥する。 本発明によつて得られた樹脂は単量体組成中の
主な重合成分によつて異なるが、60〜150℃、場
合によつてはさらに高い軟化点を持ち、一般に脂
肪族、芳香族もしくはハロゲン化炭化水素溶媒に
可溶な工業的に有用な樹脂である。特に本発明に
よつて得られた樹脂の性質の特徴は、通常の重合
法によつて得られた樹脂に比べて低い溶融粘度を
有することであり、種々の用途に利点をもたら
す。またホツトメルト接着剤の主成分として広く
用いられているエチレン―酢酸ビニル共重合体に
対する相溶性にもきわめて優れている。 本発明を以下の実施例によりさらに具体的に説
明するが、本発明はこれによつて限定されるもの
ではない。なお実施例中に用いられる部及び%は
重量部及び重量%を意味する。 実施例 1 ガラス製フラスコにベンゼン100部と塩化アル
ミニウム1部を仕込み、所定量の一塩化イオウを
添加して40℃に保ち10分間かきまぜた。次に第1
表に示す組成を有する合計83部の単量体を含む原
料油を連続的に60分にわたり徐々に添加した。反
応中は温度45℃に保持し、原料油の添加終了後、
さらに30分間かきまぜたのち、メタノールと28%
アンモニア水の等量混合物を添加して塩化アルミ
ニウムを分解した。分解によつて生じた粒子は
過して除去し、液をガラス製フラスコに移し、
窒素を吹き込みつつ加熱して未反応炭化水素と溶
媒を留出除去したのち、230℃まで温度を上昇さ
せた。次に重合反応によつて生じた低重合体及び
残存する溶媒を除去すべく系内に飽和水蒸気を吹
き込み、留出液中にほとんど油層が存在しなくな
つたことを確認したのち、水蒸気の吹き込みを停
止して溶融した残留物をアルミ皿に取り出し、放
冷して淡黄色の樹脂状物質が得られた。なお重合
反応液を中和処理する前に80メツシユのステンレ
ス製の金網に通したのち、金網をトルエン、アセ
トン、温水の順に充分洗浄し、金網上に残存した
ゲル状物質の生成量を測定した。結果を第2表に
示す。
The present invention relates to a novel method for producing a hydrocarbon resin, and more particularly, to a method for producing a hydrocarbon resin having good physical properties while preventing the formation of gel-like substances. Generally, hydrocarbon resins are unsaturated hydrocarbons having 4 to 10 carbon atoms, such as chain monoolefins such as butenes and pentenes, cyclic monoolefins such as cyclopentene and cyclohexene, 1,3-butadiene, 1,3-pentadiene, Polymerizing conjugated chain diolefins such as isoprene, conjugated cyclic diolefins such as cyclopentadiene, styrene, alkylstyrene, indene, alkylindene, dicyclopentadiene, etc. alone or in any combination in the presence of a Friedel-Crafts type catalyst, After the polymerization is stopped by a neutralization reaction, the catalyst is separated and removed, and the unreacted oil, the solvent used if necessary, and the oily product with a low degree of polymerization are removed by distillation. At this time, conjugated diolefins,
When indene, dicyclopentadiene, etc. are present in large amounts, gel-like substances that are insoluble in the solvent are likely to be produced as by-products, which not only makes it extremely difficult to separate and remove the catalyst, but also causes the gel-like substances to be mixed into the resulting resin. Efforts have been made to prevent gelling, as it has a negative impact on various applications. For example, in Japanese Patent Publication No. 34-5442, the heat 2
Raw materials whose content has been reduced to 2% or less through quantification are used, and U.S. Patent No. 2775575, No.
According to No. 2775526 and the like, a fraction of cracked oil from which cyclic diolefins are removed, and more preferably from which isoprene is removed, is used as a raw material. On the other hand, a method has also been developed for copolymerizing conjugated diolefins, which tend to produce gel-like by-products when polymerized alone, with appropriate mono-olefins to prevent gel-like by-products from occurring. . For example, Japanese Patent Publication No. 45-12306 describes a method of copolymerizing 1,3-pentadiene and 2-methyl-2-butene, and Japanese Patent Publication No. 47-1991 describes a method of copolymerizing 1,3-pentadiene, 1,3-butadiene, 2- Methyl-1-
A method for copolymerizing butene and 2-methyl-2-butene is disclosed. However, introducing a large amount of monoolefins into the feedstock oil increases the amount of by-product oily products, lowers the yield of resinous products, and lowers the softening point of the resulting resin. The present inventors have conducted extensive research to overcome the drawbacks of such known methods, and have found that even in the case of monomer compositions that tend to produce gel-like substances as by-products, there is no need to pre-treat the raw materials. In addition, we established a method for suppressing the formation of gel-like substances without introducing relatively large amounts of monoolefins into feedstock oil. The raw material applied to the present invention may be any unsaturated hydrocarbon having 4 to 10 carbon atoms and capable of cationic polymerization, but usually includes soft or heavy naphtha, kerosene or light oil fraction, heavy oil, or raw materials. Among the by-products obtained when producing ethylene, propylene, etc. through thermal cracking such as steam cracking, gas phase pyrolysis, sand cracking, etc. or catalytic cracking, the boiling point range of -7 to 280°C is It is a combination of unsaturated hydrocarbon fractions having 4 to 4 carbon atoms or fractions obtained by appropriately refining and separating them.
When a distillate containing at least 50% by weight of linear conjugated diolefins of No. 5, such as 1,3-butadiene, 1,3-pentadiene, isoprene, etc. in the monomer components, is used as a raw material, a pale yellow industrial grade Very useful resins are obtained in high yields and without gel by-products. In the present invention, such monomers are
When polymerizing in the presence of a Crafts type catalyst, the polymerization is carried out in the presence of sulfur monochloride or phosphorus trichloride. The amount of these compounds used is preferably 0.01 to 1.0 mol, more preferably 0.02 to 0.3 mol, per 1 mol of catalyst, and the amount of these additives added is 1.0 mol.
If the amount exceeds the molar amount, the yield of the resin produced tends to decrease and the softening point of the resin tends to decrease. Friedel-Crafts type catalysts used in the present invention typically include aluminum, boron, iron,
Examples include fluorides, chlorides, bromides and iodides of tin, titanium, etc., and among them, halides of aluminum or boron, particularly aluminum chloride or boron trifluoride are preferred. When carrying out a polymerization reaction, when the catalyst is solid, it is usually used in the form of particles having a size of 5 to 200 meshes, preferably 20 to 200 meshes. The amount of catalyst used is not particularly limited, but it needs to be used within a range that allows the polymerization reaction to be sufficiently carried out. Polymerization is usually carried out by adding the catalyst to the solvent and then gradually adding the monomers into the system, which facilitates control of the reaction temperature. Furthermore, it is preferable to add sulfur monochloride or phosphorus trichloride used in the present invention to the solvent before introducing the monomer into the solvent containing the catalyst, and add these additives to the polymerization system after the start of polymerization. If added, the inhibitory effect of the gel will be reduced. Diluents are usually used in polymerization reactions, preparation of catalysts and additives, etc., but such diluents are inert to the reaction, and include aromatic hydrocarbons such as benzene, toluene, xylene, pentane, hexane, etc. Representative examples include aliphatic hydrocarbons such as heptane and alicyclic hydrocarbons such as cyclohexane. However, when the content of conjugated diolefin in the monomer composition is large, a solvent containing 50% by weight or more of aromatic hydrocarbons may be used to further ensure the effect of suppressing the formation of gel-like substances. preferable. The solvent is usually 20 to 1000 parts by weight per 100 parts by weight of the polymerizable component.
It is used in proportions of 50 to 500 parts by weight, preferably 50 to 500 parts by weight. Polymerization is usually carried out at -20 to 100°C, preferably 0 to 80°C.
The pressure of the reaction system may be above or below atmospheric pressure. The reaction time is also not critical and can generally vary from a few seconds to a few hours. The polymer thus obtained is treated and dried according to conventional methods. The resin obtained by the present invention has a softening point of 60 to 150°C, even higher in some cases, although it varies depending on the main polymerization component in the monomer composition, and is generally aliphatic, aromatic or It is an industrially useful resin that is soluble in halogenated hydrocarbon solvents. In particular, the resins obtained by the present invention are characterized by a lower melt viscosity than resins obtained by conventional polymerization methods, which provides advantages in a variety of applications. It also has excellent compatibility with ethylene-vinyl acetate copolymers, which are widely used as the main component of hot melt adhesives. The present invention will be explained in more detail with reference to the following examples, but the present invention is not limited thereto. Note that parts and % used in the examples mean parts by weight and % by weight. Example 1 100 parts of benzene and 1 part of aluminum chloride were placed in a glass flask, a predetermined amount of sulfur monochloride was added, and the mixture was kept at 40°C and stirred for 10 minutes. Then the first
A feedstock containing a total of 83 parts of monomer having the composition shown in the table was gradually added continuously over 60 minutes. During the reaction, the temperature was maintained at 45℃, and after the addition of the raw material oil,
After stirring for another 30 minutes, methanol and 28%
The aluminum chloride was decomposed by adding an equal mixture of aqueous ammonia. Particles generated by decomposition are removed by filtration, and the liquid is transferred to a glass flask.
After heating while blowing nitrogen to distill and remove unreacted hydrocarbons and solvent, the temperature was raised to 230°C. Next, saturated steam was blown into the system to remove the low polymer produced by the polymerization reaction and the remaining solvent, and after confirming that almost no oil layer existed in the distillate, steam was blown into the system. The molten residue was taken out into an aluminum dish and allowed to cool, yielding a pale yellow resinous substance. Before neutralizing the polymerization reaction solution, it was passed through an 80-mesh stainless steel wire mesh, and the wire mesh was thoroughly washed with toluene, acetone, and hot water in that order, and the amount of gel-like material remaining on the wire mesh was measured. . The results are shown in Table 2.

【表】【table】

【表】 実施例 2 一塩化イオウの代りに所定量の三塩化リンを使
用すること以外は実施例1に準じて反応を行つ
た。結果を第3表に示す。
[Table] Example 2 A reaction was carried out according to Example 1 except that a predetermined amount of phosphorus trichloride was used instead of sulfur monochloride. The results are shown in Table 3.

【表】【table】

Claims (1)

【特許請求の範囲】 1 炭素数4〜10の不飽和炭化水素をフリーデ
ル・クラフツ型触媒の存在下にカチオン重合して
炭化水素樹脂を製造するに際し、一塩化イオウま
たは三塩化リンの存在下に重合を実施することを
特徴とする炭化水素樹脂の製造方法。 2 不飽和炭化水素が炭素数4〜5の鎖状共役ジ
エンを少なくとも50重量%以上含有するものであ
る特許請求の範囲第1項記載の方法。 3 一塩化イオウまたは三塩化リンの添加量が触
媒1モル当り0.01〜1.0モルである特許請求の範
囲第1項記載の方法。 4 重合が予じめ触媒と一塩化イオウまたは三塩
化リンとを接触せしめた後に実施される特許請求
の範囲第1項記載の方法。 5 触媒がハロゲン化アルミニウムである特許請
求の範囲第1項記載の方法。
[Claims] 1. When producing a hydrocarbon resin by cationically polymerizing an unsaturated hydrocarbon having 4 to 10 carbon atoms in the presence of a Friedel-Crafts type catalyst, in the presence of sulfur monochloride or phosphorus trichloride. A method for producing a hydrocarbon resin, characterized by carrying out polymerization. 2. The method according to claim 1, wherein the unsaturated hydrocarbon contains at least 50% by weight of a chain conjugated diene having 4 to 5 carbon atoms. 3. The method according to claim 1, wherein the amount of sulfur monochloride or phosphorus trichloride added is 0.01 to 1.0 mol per mol of catalyst. 4. The method according to claim 1, wherein the polymerization is carried out after previously contacting the catalyst with sulfur monochloride or phosphorus trichloride. 5. The method according to claim 1, wherein the catalyst is aluminum halide.
JP9913577A 1977-08-19 1977-08-19 Preparation of hydrocarbon resin Granted JPS5433588A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9913577A JPS5433588A (en) 1977-08-19 1977-08-19 Preparation of hydrocarbon resin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9913577A JPS5433588A (en) 1977-08-19 1977-08-19 Preparation of hydrocarbon resin

Publications (2)

Publication Number Publication Date
JPS5433588A JPS5433588A (en) 1979-03-12
JPS6136005B2 true JPS6136005B2 (en) 1986-08-15

Family

ID=14239276

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9913577A Granted JPS5433588A (en) 1977-08-19 1977-08-19 Preparation of hydrocarbon resin

Country Status (1)

Country Link
JP (1) JPS5433588A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020036556A (en) * 2000-11-10 2002-05-16 노기호 Method for preparing acrylonitrile-butadiene-styrene latex having high total solid content
US20190085124A1 (en) * 2016-03-17 2019-03-21 Zeon Corporation Crosslinked rubber containing polyether rubber, and electroconductive roll

Also Published As

Publication number Publication date
JPS5433588A (en) 1979-03-12

Similar Documents

Publication Publication Date Title
US3577398A (en) Synthetic resin
US6310154B1 (en) Solid acids as catalysts for the preparation of hydrocarbon resins
JP3281088B2 (en) Method for producing butene polymer
EP0225945B1 (en) Aromatic high softening point petroleum resin and process for its preparation
US2753325A (en) Resins from selected distillates
US2753382A (en) Polymers from piperylene concentrates
US3478005A (en) Terpene copolymers
JP2964511B2 (en) Method for producing high softening point aliphatic petroleum resin
US2754288A (en) Petroleum resins using cyclodiene monomers
EP0057510B1 (en) Improvements in the production of hydrocarbon resins and products resulting therefrom
US2773051A (en) Preparation of resins from c5 fractions and cyclopentadiene dimers
JPS6136005B2 (en)
US4403080A (en) Isomerization and polymerization of hydrocarbon resins
US4419503A (en) Catalytic process for the production of petroleum resins
US3950453A (en) Process for preparing petroleum resins
US2862982A (en) Removal of alkali metals from viscous hydrocarbon liquids
US2999891A (en) Removing alkali metal catalysts from polymers
US5294697A (en) Procedure for the preparation of colorless hydrocarbon resins
EP0412597B1 (en) Method for removing A1C13-based catalyst residues from polymer mixtures
JPH0440367B2 (en)
US3361727A (en) Separation of mixtures of olefins
US2582425A (en) Tripolymer of a vinyl aromatic compound, a coumarone-indene fraction and material recovered from a hydrocarbon-catalyst sludge
US1892101A (en) Process for treating polymerizable unsaturated compounds
JPH09316116A (en) Production of hydrocarbon resin
GB1568330A (en) Process for manufacturing petroleum resins for adhesive thermofusible compositions