JPS6135871Y2 - - Google Patents

Info

Publication number
JPS6135871Y2
JPS6135871Y2 JP1981050521U JP5052181U JPS6135871Y2 JP S6135871 Y2 JPS6135871 Y2 JP S6135871Y2 JP 1981050521 U JP1981050521 U JP 1981050521U JP 5052181 U JP5052181 U JP 5052181U JP S6135871 Y2 JPS6135871 Y2 JP S6135871Y2
Authority
JP
Japan
Prior art keywords
control port
guide wall
wind
fluid blowing
fluid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1981050521U
Other languages
Japanese (ja)
Other versions
JPS57163005U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP1981050521U priority Critical patent/JPS6135871Y2/ja
Publication of JPS57163005U publication Critical patent/JPS57163005U/ja
Application granted granted Critical
Publication of JPS6135871Y2 publication Critical patent/JPS6135871Y2/ja
Expired legal-status Critical Current

Links

Landscapes

  • Air-Flow Control Members (AREA)

Description

【考案の詳細な説明】 本考案は、流体吹出素子の改良に関するもの
で、特に空気調和機の吹出部に取付けられる流体
吹出素子の偏向角度の改善および偏向時の騒音の
改善をはかることを目的の一つとするものであ
る。
[Detailed description of the invention] The present invention relates to the improvement of a fluid blowing element, and in particular aims to improve the deflection angle of the fluid blowing element attached to the blowing part of an air conditioner and the noise during deflection. This is one of the

従来、空気調和機に設けられたこの種流体吹出
素子は、風向偏向角度が小さくしかも案内壁上流
端部制御口内において気流の巻込み現象が安定し
ないため、一様な偏向流が得られず、その結果、
風の到達距離が短くなり、また前記不安定な巻込
み現象のため風の最大偏向時において騒音が高く
なるという欠点があつた。
Conventionally, this type of fluid blowing element installed in an air conditioner has a small wind direction deflection angle and the entrainment phenomenon of the air flow within the control port at the upstream end of the guide wall is not stable, so a uniform deflection flow cannot be obtained. the result,
There are disadvantages in that the distance the wind reaches is shortened, and the unstable entrainment phenomenon increases the noise level at the time of maximum wind deflection.

本考案は、上記従来の流体吹出素子にみられる
欠点を除去するものである。
The present invention eliminates the drawbacks of the conventional fluid ejection elements mentioned above.

以下、本考案をその一実施例を示す添付図面を
参考に説明する。
Hereinafter, the present invention will be described with reference to the accompanying drawings showing one embodiment thereof.

まず、第1図により流体吹出素子の構造につい
て説明する。
First, the structure of the fluid blowing element will be explained with reference to FIG.

図において、1は合成樹脂からなる素子側壁
で、ノズル形成部2および案内壁3と制御口4を
押出し成形加工により一体化している。この素子
側壁1は吹出口の軸X−Xを中心として左右対称
に形成されている。また前記案内壁3の上流側端
部には円弧状部rが形成され、前記制御口4内側
へわん曲している。5は合成樹脂等からなる下蓋
で、前記素子側壁1の下端へ嵌合する溝5aが素
子側壁1の平面形状と同形状で形成されている。
この溝5aの形成により素子側壁1との密封性を
良好にしている。6は前記素子側壁1の上端を閉
塞する上蓋で、前記下蓋5と同様に溝(図示せ
ず)が形成され、素子側壁1との密封性を良好に
している。前記上蓋6に設けられた閉塞口で、前
記制御口4に対応して左右対称となる位置に形成
されている。8はモータ9により駆動回転される
閉塞板で、一定周期で回転し、前記上蓋6に設け
られた閉塞口7を一定周期で順次開閉する。
In the figure, reference numeral 1 denotes an element side wall made of synthetic resin, on which a nozzle forming portion 2, a guide wall 3, and a control port 4 are integrated by extrusion molding. This element side wall 1 is formed symmetrically with respect to the axis XX of the air outlet. Further, an arcuate portion r is formed at the upstream end of the guide wall 3, and is curved toward the inside of the control port 4. Reference numeral 5 denotes a lower cover made of synthetic resin or the like, and a groove 5a that fits into the lower end of the element side wall 1 is formed in the same planar shape as the element side wall 1.
The formation of this groove 5a improves the sealing performance with the element side wall 1. Reference numeral 6 denotes an upper lid that closes the upper end of the element side wall 1, and has a groove (not shown) formed therein similarly to the lower lid 5, and provides good sealing with the element side wall 1. This is a closing port provided in the upper lid 6, and is formed at a laterally symmetrical position corresponding to the control port 4. Reference numeral 8 denotes a closing plate driven and rotated by a motor 9, which rotates at a constant cycle to sequentially open and close the closing port 7 provided in the upper lid 6 at a constant cycle.

次に、上記構造における流体吹出素子の動作を
簡単に説明する。上流側より送風機(図示せず)
により送られてきた風は、ノズル形成部2により
縮流を生じ噴流となつて流体素子内に流入する。
噴流となつた風は左右の素子側壁1に設けられた
制御口4内の空気を巻込み、制御口4内の圧力を
大気に対して負圧にせしめながら、流体素子より
流出す。ここで、モータ9により駆動回転されて
いる閉塞板8が、上蓋6に設けられた閉塞口7の
どちらも閉塞しない状態ににあるとすると、左右
の制御口4内は等しく閉塞口7より空気の供給を
受け、噴流は中心より正面に吹出される。
Next, the operation of the fluid blowing element in the above structure will be briefly explained. Blower from upstream side (not shown)
The air sent by the nozzle forming portion 2 causes a contracted flow and flows into the fluid element as a jet flow.
The jetted wind entrains the air in the control ports 4 provided on the left and right side walls 1 of the element, and flows out from the fluid element while making the pressure in the control ports 4 negative with respect to the atmosphere. Here, assuming that the closing plate 8 driven and rotated by the motor 9 is in a state in which neither of the closing ports 7 provided in the upper lid 6 is closed, the insides of the left and right control ports 4 are equally filled with air from the closing ports 7. The jet is blown out from the center to the front.

次に、モータ9が回転し閉塞板8が第1図の左
側の閉塞口7を閉塞すると、左側の制御口4は空
気の供給を受けることができず、圧力低下を生じ
る。この負圧により噴流は左側に引かれ、上流端
に円弧状部rを有する案内壁3の表面に付着し、
コアンダ効果により風は案内壁3に添つて流れ、
左側に偏向されて吹出される。右側への偏向動作
は前記左側への偏向動作と同様に右側の閉塞口7
を閉塞することにより行われる。
Next, when the motor 9 rotates and the closing plate 8 closes the left closing port 7 in FIG. 1, the left control port 4 cannot receive air supply, resulting in a pressure drop. The jet is pulled to the left by this negative pressure and adheres to the surface of the guide wall 3 having an arcuate portion r at the upstream end.
Due to the Coanda effect, the wind flows along the guide wall 3,
It is deflected to the left and blown out. The deflection operation to the right side is similar to the deflection operation to the left side.
This is done by occluding the

次に、上記構成からなる流体吹出素子の偏向動
作における案内壁3に設けた円弧状部rの効果に
ついて第2図〜第9図を参考に説明する。
Next, the effect of the arcuate portion r provided on the guide wall 3 in the deflection operation of the fluid blowing element having the above structure will be explained with reference to FIGS. 2 to 9.

ここで、第2図には本考案の実験を行つた流体
吹出素子の構造を示し、また第3図には従来周知
の流体吹出素子の構造を示し、第4図には風速分
布の測定状態を示している。さらに第6図〜第9
図は、後述する実験結果のデータを示す。
Here, Fig. 2 shows the structure of the fluid blowing element used for experiments of the present invention, Fig. 3 shows the structure of a conventionally known fluid blowing element, and Fig. 4 shows the measurement state of the wind speed distribution. It shows. Furthermore, Figures 6 to 9
The figure shows data of experimental results described below.

すなわち、第6図は第2図における案内壁3の
上流端の円弧状部rをパラメータとしてセツトバ
ツク値Seと各制御口4における圧力PL,PR
差圧4P:(PL−PR)との関係を示したグラフ
である。その結果、円弧状部rの径を大きくする
ほど左右の制御口4の差圧4Pも大きくなり、ま
たセツトバツクSeも大きいほど左右の制御口4
の差圧4Pが大きくとれることがわかる。(本実
験では、前記円弧状部rの半径を7.5mmの場合ま
で確認した。)これはノズルから出た流れが制御
口4部で巻込みを生じるにあたり、円弧状部rの
半径が大きいほど第3図に示す従来の巻込み流b
と比較して損失の少ない状態での巻込み流aを生
じ、その結果、制御口4内の負圧がより大きくな
るためである。
That is, FIG. 6 shows the differential pressure 4P between the setback value Se and the pressures P L and P R at each control port 4 using the arcuate portion r at the upstream end of the guide wall 3 in FIG . 2 as a parameter. ) is a graph showing the relationship between As a result, the larger the diameter of the arcuate portion r is, the larger the differential pressure 4P between the left and right control ports 4 is, and the larger the setback Se is, the larger the pressure difference 4P between the left and right control ports 4 is.
It can be seen that a large differential pressure 4P can be obtained. (In this experiment, the radius of the arcuate portion r was confirmed up to 7.5 mm.) This is because the flow coming out of the nozzle is entrained at the control port 4, and the larger the radius of the arcuate portion r, the more the radius of the arcuate portion r is 7.5 mm. Conventional entrainment flow b shown in Figure 3
This is because the entrainment flow a is generated with less loss compared to the above, and as a result, the negative pressure inside the control port 4 becomes larger.

また第7図は、同じく案内壁3の円弧状部rの
半径を0mm〜7.5mmから2.5mmずつ変化させた場合
におけるセツトバツク値Seと偏向角度θとの関
係を示したものである。偏向角度θは円弧状部r
の半径を5mmとしたときが最も大きくなつてい
る。またセツトバツク値Seも7mmまでの範囲で
大きくするほど大きな偏向角度θが得られる。こ
れらの実験結果により、セツトバツク値Seが7
mm以下においては制御口の差圧4Pと偏向角度θ
との間に正の相関関係があることがわかる。
FIG. 7 also shows the relationship between the setback value Se and the deflection angle θ when the radius of the arcuate portion r of the guide wall 3 is changed from 0 mm to 7.5 mm in steps of 2.5 mm. The deflection angle θ is the arcuate portion r
It is largest when the radius of is set to 5 mm. Furthermore, the larger the setback value Se is within the range of 7 mm, the larger the deflection angle θ can be obtained. Based on these experimental results, the setback value Se is 7.
At mm or less, the differential pressure 4P at the control port and the deflection angle θ
It can be seen that there is a positive correlation between

次に第8図、第9図に示す実験結果について説
明する。これは、第8図に円弧状部rの半径が0
すなわち従来の構造を示し、第9図は円弧状部r
の半径を5mmとした場合の結果を示している。そ
して、第4図に示すように、流体素子の吹出口の
端面より下流側50mmのX方向各点における風速分
布および偏向角度を二次元熱線風速計A(X形プ
ル一つ)を用いて10mm間隔で測定し、計算機によ
るデータ処理および作図をそれぞれのセツトバツ
ク値Seについて行なつたものである。そして各
点線縦軸で示す風速分布Vは相対比較を示すもの
であり、またその方向は偏向角度θを示してい
る。なお、二次元熱線風速計は吹出方向より20゜
傾斜させて測定しているため、実際の偏向角度θ
は風速Vを示す点線に20゜を加こた値である。
Next, the experimental results shown in FIGS. 8 and 9 will be explained. This means that the radius of the arcuate portion r is 0 in Fig. 8.
That is, the conventional structure is shown, and FIG. 9 shows the arcuate part r.
The results are shown when the radius of is 5 mm. Then, as shown in Fig. 4, the wind speed distribution and deflection angle at each point in the X direction 50 mm downstream from the end face of the air outlet of the fluidic element were measured using a two-dimensional hot wire anemometer A (one X-shaped pull). Measurements were made at intervals, and data processing and plotting using a computer were performed for each setback value Se. The wind speed distribution V indicated by each dotted vertical axis indicates relative comparison, and its direction indicates the deflection angle θ. In addition, since the two-dimensional hot wire anemometer measures at an angle of 20° from the blowout direction, the actual deflection angle θ
is the value obtained by adding 20° to the dotted line indicating the wind speed V.

この第8図、第9図に示す各データより円弧状
部rの半径を0mmと5mmとした場合を比較する
と、第9図(円弧状部rの半径=5mm)の場合が
風速の最も速い中心部分を左へ(このデータは左
偏向動作を示す)移動している。
Based on the data shown in Figures 8 and 9, when comparing the cases where the radius of the circular arc part r is 0 mm and 5 mm, the case of Figure 9 (radius of the circular part r = 5 mm) has the fastest wind speed. The central portion is moved to the left (this data indicates left deflection motion).

この効果が風の到達距離を長くし、その結果人
体の体感として風が良く曲るという感覚を与える
のである。
This effect increases the distance that the wind travels, and as a result, the human body feels that the wind is bending more easily.

以上、案内壁3の上流端に形成した円弧状部r
の大きさと偏向角度θの関係について説明した
が、次に案内壁3の円弧状部rのもう一つの効果
である騒音低下について、説明する。従来の流体
吹出素子を組込んだ窓用一体型空気調和機(図示
せず)において風量11m3/分の動作状態において
正面吹出状態での騒音値は56dB(A)である
が、左または右の最大偏向時は58dB(A)と大
きくなり、非常な不快感を与えていた。しかるに
案内壁3の上流端に半径5mmの円弧状部を設けた
流体の吹出素子を組込んだ窓用一体空気調和機に
おいては、正面吹出し時、また左右への偏向時に
おいても56dB(A)と静寂かつ快的なる運転騒
音結果が得られた。
As described above, the arcuate portion r formed at the upstream end of the guide wall 3
Having explained the relationship between the size of .theta. and the deflection angle .theta., next, another effect of the arcuate portion r of the guide wall 3, which is noise reduction, will be explained. In a window integrated air conditioner (not shown) incorporating a conventional fluid blowing element, the noise value in the front blowing state is 56 dB (A) when the air volume is 11 m 3 /min, but the noise level is 56 dB (A) when the air is blowing from the left or right. The maximum deflection was 58 dB (A), causing extreme discomfort. However, in a window integrated air conditioner that incorporates a fluid blowing element with an arcuate portion with a radius of 5 mm at the upstream end of the guide wall 3, the air flow rate is 56 dB (A) even when blowing from the front and when deflecting to the left and right. A quiet and pleasant driving noise result was obtained.

なお、本実施例においては、案内壁3の上流側
の円弧状部rを円弧状に曲げ加工した構造につい
て説明したが第5図のa〜cに示す如く曲面形状
とし、その端部を前記曲面の接線yより内側とな
るように延出しても同様の結果が得られるもので
ある。
In this embodiment, a structure was explained in which the arcuate portion r on the upstream side of the guide wall 3 was bent into an arcuate shape, but it was formed into a curved shape as shown in a to c of FIG. Similar results can be obtained even if the curved surface is extended inward from the tangent y.

上記実施例より明らかなように、本考案の流体
吹出素子は、案内壁の上流端に円弧状部を設け、
その端部をこの円弧状部接続の内側となるように
延出した簡単な構造にて、大きな風向き偏向角度
が得られ、また風の到達距離も長くなり、結果と
して、風が良く曲るという体感的な偏向効果を増
大せしめしかも、左右への最大偏向時における異
常騒音の発生もなく、静寂な運転効果が得られる
ものである。
As is clear from the above embodiments, the fluid blowing element of the present invention includes an arcuate portion provided at the upstream end of the guide wall,
With a simple structure in which the end extends inside this arc-shaped connection, a large wind deflection angle can be obtained, and the distance the wind can reach is also extended, resulting in a good wind deflection. In addition to increasing the perceptible deflection effect, there is no abnormal noise generated during the maximum deflection to the left or right, and a quiet operation effect can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本考案の一実施例における流体吹出素
子の分解斜視図、第2図a・bは同流体吹出素子
の風向き偏向動作の説明図および要部拡大図、第
3図は従来例における流体吹出素子の風向き偏向
動作の説明図、第4図は流体吹出素子の実騒測定
状態を示す説明図、第5図a〜cはそれぞれ本考
案の他の実施例を示す流体吹出素子の円弧状部の
断面図、第6図は本考案の流体吹出素子における
セツトバツク値Seと制御口差圧4Pの関係を示
す実験結果図、第7図は同流体吹出素子における
セツトバツク値と偏向角度θの関係を示す実験結
果図、第8図、第9図はそれぞれ同流体吹出素子
における異なる場合の風速分布図である。 1……素子側壁、2……ノズル形成部、3……
案内壁、4……制御口、7……閉塞口、r……円
弧状部、y……接線。
Fig. 1 is an exploded perspective view of a fluid blowing element according to an embodiment of the present invention, Fig. 2 a and b are explanatory diagrams and enlarged views of essential parts of the wind direction deflection operation of the fluid blowing element, and Fig. 3 is an exploded perspective view of a fluid blowing element according to an embodiment of the present invention. An explanatory diagram of the wind direction deflection operation of the fluid blowing element, FIG. 4 is an explanatory diagram showing the actual noise measurement state of the fluid blowing element, and FIGS. 5 a to 5 c are circles of the fluid blowing element showing other embodiments of the present invention. 6 is a cross-sectional view of the arcuate portion, FIG. 6 is an experimental result diagram showing the relationship between the setback value Se and the control port differential pressure 4P in the fluid blowing element of the present invention, and FIG. 7 is a graph showing the relationship between the setback value and the deflection angle θ in the fluid blowing element. Experimental results diagrams showing the relationship, FIGS. 8 and 9, are wind speed distribution diagrams in different cases in the same fluid blowing element, respectively. 1... Element side wall, 2... Nozzle forming part, 3...
Guide wall, 4... Control port, 7... Obstruction port, r... Arc-shaped portion, y... Tangent line.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 送風機からの送風を絞つて流入させるノズル部
と、このノズル部を通過した風の流れに、その流
れ方向に対して直角方向から圧力を印加させる制
御口部と、この制御口部に圧力を生じさせる閉塞
板と、吹出される風にコアンダ効果を生じさせる
略円弧状に形成された案内壁とを有した流体吹出
素子において、前記案内壁の上流側端部を、その
接線より内側となる位置に設定した流体吹出素
子。
A nozzle part that throttles the air from the blower and allows it to flow in, a control port part that applies pressure to the flow of air that has passed through the nozzle part from a direction perpendicular to the flow direction, and a control port part that generates pressure at the control port part. In the fluid blowing element, the upstream end of the guide wall is located at a position inside the tangent line of the fluid blowing element, which has a closing plate that causes the wind to blow out, and a guide wall that is formed in a substantially arc shape that causes a Coanda effect in the blown wind. Fluid blowout element set to .
JP1981050521U 1981-04-07 1981-04-07 Expired JPS6135871Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1981050521U JPS6135871Y2 (en) 1981-04-07 1981-04-07

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1981050521U JPS6135871Y2 (en) 1981-04-07 1981-04-07

Publications (2)

Publication Number Publication Date
JPS57163005U JPS57163005U (en) 1982-10-14
JPS6135871Y2 true JPS6135871Y2 (en) 1986-10-18

Family

ID=29847237

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1981050521U Expired JPS6135871Y2 (en) 1981-04-07 1981-04-07

Country Status (1)

Country Link
JP (1) JPS6135871Y2 (en)

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS609628Y2 (en) * 1980-10-20 1985-04-04 株式会社デンソー air outlet

Also Published As

Publication number Publication date
JPS57163005U (en) 1982-10-14

Similar Documents

Publication Publication Date Title
CN101802509B (en) Ceiling-embedded air conditioner
US11273688B2 (en) Outlet device
EP0208174B1 (en) Novel inertance loop construction for air sweep fluidic oscillator
US4266722A (en) Fluid deflecting assembly
CN206290465U (en) Fan head and bladeless fan
JPH09300943A (en) Air-conditioning register
JPS6135871Y2 (en)
JPS6027844B2 (en) flow direction control device
CN211650476U (en) Air conditioner indoor unit and air conditioner
CN206094454U (en) Wind channel structure and air conditioner of air conditioner
JPS5833454B2 (en) air conditioner
CN211550051U (en) Air duct component for air supply device and air supply device
JP4367110B2 (en) Air outlet structure for vehicles
JP2525126Y2 (en) Nozzle blower for air conditioner
JPH0731074Y2 (en) Air blower
JPS6329044U (en)
JPS6114426B2 (en)
JPH08119069A (en) Defroster device for vehicle
CN212057498U (en) Indoor unit volute tongue assembly, indoor unit and air conditioner
CN215929788U (en) Air deflector and air conditioner
JPS609628Y2 (en) air outlet
JPS595786Y2 (en) Air conditioner wind direction control device
CN217541046U (en) Air guide structure and air conditioner
JP5029109B2 (en) Air conditioner
JPS5833045A (en) Structure of fluid blow-off port