JPS6135408B2 - - Google Patents

Info

Publication number
JPS6135408B2
JPS6135408B2 JP15404679A JP15404679A JPS6135408B2 JP S6135408 B2 JPS6135408 B2 JP S6135408B2 JP 15404679 A JP15404679 A JP 15404679A JP 15404679 A JP15404679 A JP 15404679A JP S6135408 B2 JPS6135408 B2 JP S6135408B2
Authority
JP
Japan
Prior art keywords
flow
control means
width
slit
becomes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP15404679A
Other languages
Japanese (ja)
Other versions
JPS5676708A (en
Inventor
Norio Sugawara
Motoyuki Nawa
Yutaka Takahashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP15404679A priority Critical patent/JPS5676708A/en
Publication of JPS5676708A publication Critical patent/JPS5676708A/en
Publication of JPS6135408B2 publication Critical patent/JPS6135408B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/02Ducting arrangements
    • F24F13/06Outlets for directing or distributing air into rooms or spaces, e.g. ceiling air diffuser
    • F24F13/072Outlets for directing or distributing air into rooms or spaces, e.g. ceiling air diffuser of elongated shape, e.g. between ceiling panels

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Air-Flow Control Members (AREA)

Description

【発明の詳細な説明】 本発明は、流れのスイング動作を行なう流れ方
向制御装置に関し、軸を回転させるだけの簡単な
機構でスイング動作を行ない、且つ風量及び騒音
の変化が少ない装置を提供することを目的とす
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a flow direction control device that performs a swing motion of flow, and provides a device that performs a swing motion with a simple mechanism of rotating a shaft and that has little change in air volume and noise. The purpose is to

従来の流れ方向制御装置は、偏向板をカムある
いはリンク機構による揺動機構を用いて揺動させ
てスイング動作を行なつていた。そのため揺動機
構を構成するメカニズムが必要であるため構成上
のスペースや信頼性の面において問題があつた。
A conventional flow direction control device performs a swing operation by swinging the deflection plate using a swing mechanism using a cam or a link mechanism. Therefore, a mechanism for constructing the swinging mechanism is required, which poses problems in terms of structural space and reliability.

本発明は流れ方向制御装置を、軸を中心として
回動する制御手段と漸次拡大形状を有する案内壁
とを有し、前記制御手段は、スリツトを有する複
数の制御板をスライド(摺動)可能に連結すると
共に、この回転によつて前記制御手段の幅および
それぞれのスリツトの重なり面積が変化するよう
に構成され、前記制御手段が回転して入口に入る
流れの流線方向と垂直な状態に近づくにつれて、
前記制御手段の幅が小さくなる如く構成すると共
に、前記制御手段にスリツトを設け、前記制御手
段が回転して入口に入る流れの流線方向と垂直な
状態に近づくにつれて、該スリツトの幅が大きく
なる如く構成することにより、軸を回転させるだ
けの簡単な機構でスイング動作を可能にすること
によつて上記従来の欠点を解消するものである。
The present invention provides a flow direction control device that includes a control means that rotates around an axis and a guide wall that has a gradually expanding shape, and the control means is capable of sliding a plurality of control plates having slits. and is configured such that the width of the control means and the overlapping area of the respective slits are changed by this rotation, and the control means is rotated to a state perpendicular to the streamline direction of the flow entering the inlet. As you get closer,
The width of the control means is configured to become smaller, and the control means is provided with a slit, and as the control means rotates and approaches a state perpendicular to the streamline direction of the flow entering the inlet, the width of the slit becomes larger. By configuring the device as described above, the above-mentioned drawbacks of the conventional device can be solved by making it possible to perform a swing operation using a simple mechanism that only rotates the shaft.

以下本発明の実施例について第1図〜第7図に
基づいて説明する。
Embodiments of the present invention will be described below based on FIGS. 1 to 7.

第1図〜第3図において、1は本発明の流れ方
向制御装置本体、2は流れの入口、3は絞りを有
するノズル、4は制御手段であり、制御板4aと
4bとから構成されている。制御板4aと4bに
は、それぞれスリツト5aと5bが設けられてい
る。また制御手段4の上下端には軸9と同軸に回
転する支持部材6が設けられている。この支持部
材6には案内溝6aと6bが穿設されており、こ
の案内溝6aと6bの中を制御板4aと4bが摺
動する如く構成されている。また案内溝6aと6
〓〓〓〓
bの中にはスプリング7aと7bが設けられてお
り、制御板4aと4bを常に外側へ押し出す様に
構成している。そして制御手段4の上下端付近に
は本体1に設けられた案内穴8が形成されてお
り、制御板4aと4bが案内溝6aと6bから突
出する長さを規制している。すなわち制御手段幅
Wを規制していることになる。ノズル3の下流側
には、下流側に行くに従つて漸次流路幅が拡大す
る案内壁10R,10Lが、制御手段4によつて
上流偏向された流れが付着する様に形成されてい
る。12はモーターであり、連結部材11によつ
て軸9に回転力を伝達する様に構成されている。
In FIGS. 1 to 3, 1 is a main body of the flow direction control device of the present invention, 2 is a flow inlet, 3 is a nozzle having a throttle, and 4 is a control means, which is composed of control plates 4a and 4b. There is. The control plates 4a and 4b are provided with slits 5a and 5b, respectively. Further, support members 6 that rotate coaxially with the shaft 9 are provided at the upper and lower ends of the control means 4. Guide grooves 6a and 6b are bored in this support member 6, and the control plates 4a and 4b are configured to slide within these guide grooves 6a and 6b. Also, the guide grooves 6a and 6
〓〓〓〓
Springs 7a and 7b are provided in b to constantly push the control plates 4a and 4b outward. A guide hole 8 provided in the main body 1 is formed near the upper and lower ends of the control means 4, and regulates the length of the control plates 4a and 4b protruding from the guide grooves 6a and 6b. In other words, the control means width W is regulated. On the downstream side of the nozzle 3, guide walls 10R and 10L are formed so that the flow deflected upstream by the control means 4 adheres to guide walls 10R and 10L, the flow path width of which gradually increases toward the downstream side. Reference numeral 12 denotes a motor, which is configured to transmit rotational force to the shaft 9 via the connecting member 11.

上記構成において動作を説明する。第4図〜第
7図に本発明の動作を示す。第4図では制御手段
4は正面を向いているが、第5図、第6図、第7
図になるに従つて右回りに回転し、第7図では90
゜回転して入口の流れに対して垂直になつた場合
を示す。この時、制御板4aと4bは案内穴8に
よつて内側に押し込まれるため、制御手段4の幅
Wは徐々に小さくなつていく結果となる。これと
同時に、制御板4aと4bに設けられたスリツト
5aと5bは互いに重なり合う幅が増加してくる
ため、制御手段4の中央のスリツト幅が徐々に増
加してくる結果となる。そして第7図において最
大のスリツト幅となる。次に流れの状態を説明す
る。第4図における様に入口2から入つた流れ
Fiは、制御手段4の左側の流れFL0(図示せず)
と中央の流れF0と制御手段4の右側の流れFL0
(図示せず)とに分かれる。まず第4図においけ
る如く制御手段4が正面を向いている場合につい
て説明する。この場合、中央の流れF0は制御手
段4の左側と右側に分かれるため全体の流れはF
R0とFL0の2つだけとなる。この時、FR0とFL0
は左右対称であるためFR0について説明する。F
R0は制御手段4に沿つた流れFR1とノズル3の絞
り部分で内側に偏向された流れFR2とに分かれ
る。そしてこの2つの流れの合流FR3はやや内側
を向いた流れとなる。一方制御手段4の左側の流
れFL0は、同様にやや内側を向いた流れFL3とな
り、FR3とFL3の合流は正面を向いた流れFとな
つて吹き出す。次に第5図の様に制御手段4を左
側に少しだけ回転させた場合について説明する。
まず制御手段4の右側の流れFR0は前記と同様に
正面向きの流れFR1と内側を向いた流れFR2とに
分かれ、合流した流れFR3はやや内側を向いた流
れとなる。一方、中央の流れF0は一部分は制御
手段4に生じたスリツトを通過した流れFSとな
るが大部分の流れは制御手段4に沿つて流れる。
制御手段4の左側の流れFL1とFL2の合流FL3
は、前記と同様にやや内側を向いた流れとなる
が、制御手段4に衝突することにより、中央の流
れF0と合流して、制御手段4に沿つた流れFL3
となる。このFL3′は案内壁10Lの方向を向い
ているため、案内壁10Lとの間にコアンダ効果
を生じて流れFL3′は案内壁10Lに付着する。
また右側の流れFR3まやや左側(内側)を向いて
いるためFL3とFR3とは合流し、共に案内壁10
に付着して流れる。従つて合流Fは左側に偏向し
て吹き出すことになる。この時の合流Fの偏向角
度θはコアンダ効果という流体自身の作用を利用
して偏向しているため、制御手段4の傾き角度α
に対して、より大きな角度θとなつている。従つ
て風量抵抗はあまり増加せずに大きく偏向してい
るという結果となる。この時、中央の流れの一部
であるFSがスリツトから流れ出るが、この場合
は僅かであるため偏向には殆ど影響することはな
い。次に第6図に示す様に制御板を大きく傾けた
場合について説明する。まず制御手段4の右側の
流れは前記と同様にやや内側を向いた流れFR3
なる。また、中央の流れF0は制御手段4に衝突
して一部は制御手段4のスリツトから流れ出た流
れFSとなり、他は制御手段4に沿つた流れとな
る。この場合、制御手段4に形成されたスリツト
は大きく広がつており、この結果としてFSは大
きな流れとなる。一方制御手段4の左側の流れF
L1とFL2の合流はFL3は第5図の場合と同様に制
御手段4に衝突し、F0の一部と合流して案内壁
10Lに付着する。そしてFR3′もFL3′誘引され
て合流しようとするが、スリツトからの流れFS
によつてある程度合流が妨害されるため合流Fは
完全に偏向し切れずに第6図に示す様な方向に吹
き出すことになる。この時、前記の様に制御手段
幅Wは小さくなつていると共にスリツトから吹き
出す流れも多くなつているため風量抵抗は殆ど増
加していない。次に第7図に示す様に、制御手段
4が入口流れFiに対して垂直になつて場合につ
いて説明する。中央の流れF0は制御手段4に衝
突してFL2′とFL2′とに分かれる。制御手段4の
〓〓〓〓
右側の流れFR1′,FR2はFR2′によつて外側を向
いたベクトルを与えられるが内側を向くベクトル
の方が大きいためFR3はやや内側を向いた流れと
なる。FL1,FL2についても同様にやや内側を向
いた流れとなる。従つてFR3,FL3,FSの3つ
の流れの合流Fは正面を向いた流れとなる。この
場合も流れの抵抗は6図の場合と同様に少ないも
のである。
The operation in the above configuration will be explained. The operation of the present invention is shown in FIGS. 4 to 7. In FIG. 4, the control means 4 faces the front, but in FIGS.
It rotates clockwise as the diagram progresses, and in Figure 7 it rotates 90 degrees.
The case is shown when rotated to be perpendicular to the inlet flow. At this time, since the control plates 4a and 4b are pushed inward by the guide hole 8, the width W of the control means 4 gradually becomes smaller. At the same time, the width of the overlap between the slits 5a and 5b provided in the control plates 4a and 4b increases, resulting in a gradual increase in the width of the slit at the center of the control means 4. In FIG. 7, the slit width is the maximum. Next, the state of flow will be explained. Flow entering from inlet 2 as shown in Figure 4
Fi is the flow F L0 on the left side of the control means 4 (not shown)
and the central flow F 0 and the flow to the right of control means 4 F L0
(not shown). First, the case where the control means 4 faces the front as shown in FIG. 4 will be explained. In this case, the central flow F 0 is divided into the left and right sides of the control means 4, so the overall flow is F
There are only two, R0 and F L0 . At this time, F R0 and F L0
Since is symmetrical, F R0 will be explained. F
R0 is divided into a flow F R1 along the control means 4 and a flow F R2 deflected inward at the constricted portion of the nozzle 3. The confluence of these two flows F R3 becomes a flow slightly inward. On the other hand, the flow F L0 on the left side of the control means 4 similarly becomes a flow F L3 directed slightly inward, and the confluence of F R3 and F L3 becomes a flow F directed toward the front and is blown out. Next, the case where the control means 4 is slightly rotated to the left as shown in FIG. 5 will be explained.
First, the flow F R0 on the right side of the control means 4 is divided into a front flow F R1 and an inward flow F R2 as before, and the combined flow F R3 becomes a slightly inward flow. On the other hand, a part of the central flow F 0 becomes a flow F S that passes through the slit created in the control means 4, but most of the flow flows along the control means 4.
Confluence F L3 of flows F L1 and F L2 on the left side of control means 4
The flow turns slightly inward as before, but by colliding with the control means 4, it merges with the central flow F 0 and becomes a flow F L3 ′ along the control means 4.
becomes. Since this F L3 ' faces toward the guide wall 10L, a Coanda effect occurs between the flow F L3 ' and the guide wall 10L, and the flow F L3 ' adheres to the guide wall 10L.
Also, since the flow on the right side F R3 is facing leftward (inward), F L3 and F R3 merge, and both reach the guide wall 10.
It adheres to and flows. Therefore, the confluence F will be deflected to the left and blown out. At this time, the deflection angle θ of the confluence F is deflected using the action of the fluid itself called the Coanda effect, so the inclination angle α of the control means 4 is
However, the angle θ is larger than that of the angle θ. Therefore, the result is that the airflow resistance does not increase much but is largely deflected. At this time, F S , which is a part of the central flow, flows out of the slit, but in this case, the amount is small and has almost no effect on the deflection. Next, a case where the control plate is tilted greatly as shown in FIG. 6 will be explained. First, the flow on the right side of the control means 4 becomes a flow F R3 directed slightly inward as before. Further, the central flow F 0 collides with the control means 4, and part of it becomes a flow F S flowing out from the slit of the control means 4, and the other part becomes a flow along the control means 4. In this case, the slit formed in the control means 4 is widened, resulting in a large flow of F S . On the other hand, the flow F on the left side of the control means 4
When L1 and F L2 merge, F L3 collides with the control means 4 as in the case of FIG. 5, merges with a part of F 0 and adheres to the guide wall 10L. Then, F R3 ′ is also attracted by F L3 ′ and tries to merge, but the flow from the slit F S
Since the merging is obstructed to some extent by the flow, the merging F cannot be completely deflected and blows out in the direction shown in FIG. At this time, as described above, the control means width W has become smaller and the flow blown out from the slit has increased, so the air flow resistance has hardly increased. Next, a case will be described in which the control means 4 is perpendicular to the inlet flow Fi, as shown in FIG. The central flow F 0 impinges on the control means 4 and is split into F L2 ' and F L2 '. Control means 4〓〓〓〓
The right-side flows F R1 ' and F R2 are given outward vectors by F R2 ', but since the inward vector is larger, F R3 becomes a slightly inward flow. Similarly, the flow for F L1 and F L2 is slightly inward. Therefore, the confluence F of the three flows F R3 , F L3 , and F S becomes a flow facing the front. In this case as well, the flow resistance is small as in the case of FIG.

上記の様な動作を行なうために、本発明におい
ては制御手段4を同一方向回転させることによつ
て、始めは制御手段4の回転角に比例して左へ偏
向するが、ある点に達するとそれ以上は偏向しな
くなり、今度はスリツトからの吹き出し流れFS
の影響で偏向角度θは徐々に小さくなり、入口流
れと制御手段が垂直になつたところで正面吹き出
しに戻る。またこれ以上に回転させると前記と同
様の作用で今度は、左方向に徐々に偏向角度は大
きくなり、ある角度でピーク値になり、今度は正
面に戻るに従つて偏向角度も小さくなつてくる。
結局この動作を繰り返すことによつて左右へスイ
ング動作を行なうことになる。
In order to perform the above operation, in the present invention, by rotating the control means 4 in the same direction, the deflection is initially made to the left in proportion to the rotation angle of the control means 4, but when a certain point is reached, the control means 4 is rotated in the same direction. It no longer deflects, and now the blowing flow from the slit F S
The deflection angle θ gradually decreases under the influence of , and when the inlet flow and the control means become perpendicular, the air blows back to the front. If you rotate it further, the deflection angle will gradually increase to the left due to the same effect as above, reaching a peak value at a certain angle, and then the deflection angle will become smaller as you return to the front. .
Eventually, by repeating this motion, a swing motion to the left and right will be performed.

すなわちモータ12を同一方向に回転させるだ
けで制御手段4が回転しその結果左右へのスイン
グ動作を行なえるという効果が得られる。また制
御手段が傾くに従つて制御手段幅Wが小さくなる
と共に、スリツト幅が大きくなるため風量抵抗
も、殆ど変化しないでスイング動作が行なえると
いう効果も得られる。
That is, by simply rotating the motor 12 in the same direction, the control means 4 is rotated, and as a result, it is possible to perform a swing motion from side to side. Further, as the control means is tilted, the width W of the control means becomes smaller and the width of the slit becomes larger, so that the swing operation can be performed with almost no change in air flow resistance.

次に本発明の実施例を第8図において説明す
る。図においては案内壁10の片側10Rだけが
漸次拡大形状に構成されている。従つて制御手段
4を回転させた場合には右半分だけの片側スイン
グを行なわせることができる。
Next, an embodiment of the present invention will be described with reference to FIG. In the figure, only one side 10R of the guide wall 10 is configured to have a gradually enlarged shape. Therefore, when the control means 4 is rotated, it is possible to perform a one-sided swing of only the right half.

以上の説明から明らかなように、本発明の流れ
方向制御装置は、軸を中心として回動する制御手
段と漸次拡大形状を有する案内壁とを有し、前記
制御手段が回転して入口に入る流れの流線方向と
垂直な状態に近づくにつれて、前記制御手段の幅
が小さくなる如く構成すると共に、前記制御板に
スリツトを設け、前記制御手段が回転して入口に
入る流れの流線方向と垂直な状態に近づくにつれ
て該スリツトの幅が大きくなる如く構成してある
ため次の様な効果を有する。
As is clear from the above description, the flow direction control device of the present invention has a control means that rotates around an axis and a guide wall that has a gradually expanding shape, and the control means rotates and enters the inlet. The width of the control means is configured to become smaller as it approaches a state perpendicular to the streamline direction of the flow, and a slit is provided in the control plate, so that the control means rotates so that the width of the control means becomes smaller as it approaches a state perpendicular to the streamline direction of the flow. Since the width of the slit increases as it approaches the vertical state, the following effects are achieved.

(1) 軸を回転させるだけでスイング動作を行なわ
せることが可能となるため、簡単な機構で構成
することが出来、スペースや信頼性の面で大き
な効果を有する。
(1) Since it is possible to perform a swing motion simply by rotating the shaft, it can be configured with a simple mechanism and has great effects in terms of space and reliability.

(2) 風量抵抗を殆ど変化させずにスイング動作が
行なえるため、風量及び騒音がほぼ一定の状態
で作動し得るという多大な空調効果が得られ
る。
(2) Since the swing operation can be performed with almost no change in airflow resistance, a great air conditioning effect can be obtained by operating with almost constant airflow and noise.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の流れ方向制御装置の実施例を
示す正面図、第2図は第1図のA−A線断面図、
第3図は第2図のB−B線断面図、第4図、第5
図、第6図、第7図は本発明の作用を説明するた
めの断面図、第8図は他の実施例を示す断面図で
ある。 1……流れ方向制御装置本体、2……入口、3
……ノズル、4……制御手段、4a,4a……制
御板、5a,5b……スリツト、9……軸、10
R,10L……案内壁。 〓〓〓〓
FIG. 1 is a front view showing an embodiment of the flow direction control device of the present invention, FIG. 2 is a sectional view taken along the line A-A in FIG. 1,
Figure 3 is a sectional view taken along line B-B in Figure 2, Figures 4 and 5.
6 and 7 are cross-sectional views for explaining the effects of the present invention, and FIG. 8 is a cross-sectional view showing another embodiment. 1... Flow direction control device main body, 2... Inlet, 3
... Nozzle, 4 ... Control means, 4a, 4a ... Control board, 5a, 5b ... Slit, 9 ... Shaft, 10
R, 10L...Guidance wall. 〓〓〓〓

Claims (1)

【特許請求の範囲】 1 絞りを有する1つのノズルと、軸を中心とし
て回動する制御手段と、前記制御手段によつて流
線を制御された流れが付着する如く配置された少
なくとも1つが下流に行くに従つて流路幅が漸次
拡大形状を有する案内壁とを有し、前記制御手段
は、スリツトを有する複数の制御板をスライド
(摺動)可能に連結すると共に、この回動によつ
て前記制御手段の幅およびそれぞれのスリツトの
重なり面積が変化するように構成され、前記制御
手段が回転して入口に入る流れの流線方向と垂直
な状態に近づくにつれて、前記スリツトの幅が大
きくなる如く構成したことを特徴とする流れ方向
制御装置。 2 軸が同一方向に回動することを特徴とする特
許請求の範囲第1項記載の流れ方向制御装置。
[Scope of Claims] 1. One nozzle having a restriction, a control means that rotates around an axis, and at least one nozzle arranged so that a flow whose streamline is controlled by the control means is attached to a downstream nozzle. and a guide wall having a shape in which the width of the flow path gradually increases as the width of the flow path increases. The width of the control means and the overlapping area of each slit are configured to change, and as the control means rotates and approaches a state perpendicular to the streamline direction of the flow entering the inlet, the width of the slit increases. A flow direction control device characterized in that it is configured as follows. 2. The flow direction control device according to claim 1, wherein the two shafts rotate in the same direction.
JP15404679A 1979-11-27 1979-11-27 Flow direction controller Granted JPS5676708A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15404679A JPS5676708A (en) 1979-11-27 1979-11-27 Flow direction controller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15404679A JPS5676708A (en) 1979-11-27 1979-11-27 Flow direction controller

Publications (2)

Publication Number Publication Date
JPS5676708A JPS5676708A (en) 1981-06-24
JPS6135408B2 true JPS6135408B2 (en) 1986-08-13

Family

ID=15575728

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15404679A Granted JPS5676708A (en) 1979-11-27 1979-11-27 Flow direction controller

Country Status (1)

Country Link
JP (1) JPS5676708A (en)

Also Published As

Publication number Publication date
JPS5676708A (en) 1981-06-24

Similar Documents

Publication Publication Date Title
KR900004861B1 (en) Fluid flow control assembly
KR890002921B1 (en) Fluid deflecting assembly
JP6713543B2 (en) Air conditioner blowout device
CN110539616A (en) Outlet device
JPS61119941A (en) Air distributing controller
US4424937A (en) Fluid deflecting assembly
US6083101A (en) Device for controlling diffused air
JPS6135408B2 (en)
JPS6027844B2 (en) flow direction control device
JPH0354254B2 (en)
JPS6135402B2 (en)
JPS604370B2 (en) flow direction control device
JPS5833048A (en) Structure of fluid blow-off port
JPH0354364Y2 (en)
JPH0235165B2 (en)
JPS6040805A (en) Control device for direction of flow
JPH10238516A (en) Fluid flow direction control device
JPS60234110A (en) Flow-direction control device
JPH0226142B2 (en)
JPH0338500B2 (en)
JPS5833043A (en) Structure of fluid blow-off port
JPH02268763A (en) Apparatus for controlling flow direction
JPS5938447B2 (en) flow direction control device
JPH01113599A (en) Blowing device with deflecting function
JPS6330521B2 (en)