JPS6135379B2 - - Google Patents

Info

Publication number
JPS6135379B2
JPS6135379B2 JP54110939A JP11093979A JPS6135379B2 JP S6135379 B2 JPS6135379 B2 JP S6135379B2 JP 54110939 A JP54110939 A JP 54110939A JP 11093979 A JP11093979 A JP 11093979A JP S6135379 B2 JPS6135379 B2 JP S6135379B2
Authority
JP
Japan
Prior art keywords
ignition timing
advance angle
engine
target
ignition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54110939A
Other languages
Japanese (ja)
Other versions
JPS5634959A (en
Inventor
Masakazu Ninomya
Atsushi Suzuki
Juji Hirabayashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
NipponDenso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NipponDenso Co Ltd filed Critical NipponDenso Co Ltd
Priority to JP11093979A priority Critical patent/JPS5634959A/en
Priority to US06/159,435 priority patent/US4379333A/en
Priority to DE8080105154T priority patent/DE3069511D1/en
Priority to EP80105154A priority patent/EP0024733B1/en
Publication of JPS5634959A publication Critical patent/JPS5634959A/en
Publication of JPS6135379B2 publication Critical patent/JPS6135379B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P5/00Advancing or retarding ignition; Control therefor
    • F02P5/04Advancing or retarding ignition; Control therefor automatically, as a function of the working conditions of the engine or vehicle or of the atmospheric conditions
    • F02P5/145Advancing or retarding ignition; Control therefor automatically, as a function of the working conditions of the engine or vehicle or of the atmospheric conditions using electrical means
    • F02P5/1455Advancing or retarding ignition; Control therefor automatically, as a function of the working conditions of the engine or vehicle or of the atmospheric conditions using electrical means by using a second control of the closed loop type
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Ignition Timing (AREA)

Description

【発明の詳細な説明】 本発明は内燃機関の出力の向上及び燃料消費率
を向上させるべく点火時期を帰還制御する点火時
期制御方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an ignition timing control method for performing feedback control of ignition timing in order to improve the output and fuel consumption rate of an internal combustion engine.

内燃機関の点火時期は、ノツキング、排気ガス
特性の問題等の特別の理由のない限り、内燃機関
の出力を最大限に発揮でき同時に燃料消費率を最
小に抑え得る様に内燃機関の運転状態に合せて、
回転数吸気圧力等で点火時期調節を行つている。
しかしながらこれらの従来の方法ではどうしても
限界があり、ある程度の出力及び燃料消費率の損
失がある。たとえば個々のエンジンのバラツキ、
点火時期補正のバラツキ、環境条件の変化等であ
る。
The ignition timing of an internal combustion engine is adjusted to the operating condition of the internal combustion engine so that the engine's output can be maximized and at the same time the fuel consumption rate can be minimized, unless there are special reasons such as knocking or problems with exhaust gas characteristics. Together,
The ignition timing is adjusted by the rotational speed and intake pressure.
However, these conventional methods have limitations and some loss in power and fuel consumption. For example, variations in individual engines,
These include variations in ignition timing correction and changes in environmental conditions.

これらの損失をなくして内燃機関出力を最大限
に発揮させるべく、点火時期を帰還制御する方法
が考え出されており、たとえば米国特許第
3142967号明細書等により公知である。これによ
ると目標点火時期近傍の互いに異なる2点の点火
時期で運転し、この2点のうちまず遅れ側の点火
時期で運転したときの回転数Nrと、次に進み側
の点火時期で運転したときの回転数Naとを検出
し両回転数の大小を比較し、Nr<Naのときは目
標点火時期を更に所定値だけ進め、Nr>Naのと
きは所定値だけ遅らすよう修正することによつ
て、機関の最大トルクを与える最適点火時期に制
御するようになつている。
In order to eliminate these losses and maximize internal combustion engine output, methods have been devised to feedback control the ignition timing, for example, as disclosed in U.S. Patent No.
It is known from the specification of No. 3142967. According to this, the engine was operated at two different ignition timings near the target ignition timing, and among these two points, the rotation speed Nr when operating at the delayed ignition timing, and then the engine speed at the advanced ignition timing. By detecting the rotational speed Na and comparing the magnitude of both rotational speeds, when Nr<Na, the target ignition timing is advanced by a predetermined value, and when Nr>Na, it is corrected to be delayed by a predetermined value. As a result, the ignition timing is controlled at the optimum ignition timing to provide the maximum torque of the engine.

しかしながら、たとえば出力の変化を回転数に
よつて判別する場合その回転数が種々の要因で変
化するにもかかわらずこの方法においては、回転
数の変化が点火時期によるものか、外的要因(た
とえばアクセル操作)によるものかの判別能力が
ないため、加減速時、登降坂等では回転数の最大
トルクを与える最適点火時期とは逆方向に点火時
期を修正制御してしまい、逆に回転数が低下し、
出力及び燃費の悪化を引き起す場合があつた。
However, when determining a change in output based on the number of revolutions, for example, although the number of revolutions changes due to various factors, in this method it is difficult to determine whether the change in the number of revolutions is due to ignition timing or whether it is due to external factors (e.g. Since there is no ability to determine whether the cause is due to accelerator operation), the ignition timing is corrected in the opposite direction to the optimal ignition timing that gives the maximum torque during acceleration or deceleration, or when climbing or descending slopes. decreases,
In some cases, this caused deterioration in output and fuel efficiency.

本発明は上記問題点に鑑みてなされたもので、
目標点火時期の近傍でかつ互いに異なる少なくと
〓〓〓〓
も2点の点火時期を選択すること、この選択した
少なくとも2点の点火時期にて交互に所定の期間
づつ内燃機関を運転すること、これら各点火時期
にて運転したときの機関の回転数の信号、トルク
の信号又はこれらに関連する運転状態の信号を検
出すること、前記の少なくとも2点の点火時期で
運転したときの検出信号のうち少なくとも連続し
て運転した3点の検出信号を比較することにより
前記の目標点火時期が機関出力を最大限に発揮さ
せる最適点火時期より進み側にあるか遅れ側にあ
るか判定しかつ目標点火時期を修正することを特
徴としており、アクセル操作等の外的要因によつ
て回転数、トルク等の検出信号が変化したのか異
なる2点での点火時期の変更によつて回転数、ト
ルク等の検出信号が変化したのか識別でき、目標
点火時期を誤りなく最適点火時期に修正して機関
出力を最大限発揮させ同時に燃料消費率を最小に
抑えるようにすることを目的としている。
The present invention has been made in view of the above problems, and
At least 〓〓〓〓 in the vicinity of the target ignition timing and different from each other.
also select two ignition timing points, operate the internal combustion engine alternately for a predetermined period at least at the selected two ignition timing points, and determine the engine speed when operating at each of these ignition timing points. Detecting a signal, a torque signal, or a signal of an operating state related to these, and comparing detection signals of at least three consecutive points among the detection signals obtained when operating at the at least two points of ignition timing. The system is characterized in that it determines whether the target ignition timing is ahead or behind the optimal ignition timing that maximizes the engine output, and corrects the target ignition timing. It is possible to identify whether the detection signals such as rotation speed, torque, etc. have changed due to various factors, or whether the detection signals such as rotation speed, torque, etc. have changed due to changes in the ignition timing at two different points, and the target ignition timing can be determined without error. The purpose is to adjust the ignition timing to the optimum level to maximize engine output while minimizing fuel consumption.

以下本発明方法を適用する装置の一実施例を第
1図のブロツク図を用いて説明する。1は内燃機
関、2は点火装置、3は吸気系である。5は内燃
機関の吸気管負圧を検出する吸気管圧力センサ
ー、6は回転角センサー、4はマイクロプロセツ
サを用いたコンピユータで、従来周知の点火時期
制御の如く、回転角センサー6及び吸気管圧力セ
ンサー5の出力から、エンジン状態を検知しその
時点での最適の点火時期を算出しこの計算結果に
従つて、実際の点火時期通電開始時期の信号を点
火装置2に出力する。点火装置2は公知のごとく
通電開始時期の信号で、点火コイルの1次コイル
に通電し、点火時期の信号で1次コイルへの電流
を遮断しこのとき2次コイル発生する高電圧を該
当の気筒の点火プラグに分配印加するものであ
る。7は車載のバツテリー、8はコンピユータ用
の電源回路である。なおコンピユータ4の構成は
公知であり、その演算処理内容が本発明制御方法
を実行すべく独特のものであるため、詳細回路の
説明は省略し演算処理内容をフローチヤートを用
いて説明する。
An embodiment of the apparatus to which the method of the present invention is applied will be described below with reference to the block diagram of FIG. 1 is an internal combustion engine, 2 is an ignition device, and 3 is an intake system. 5 is an intake pipe pressure sensor that detects the intake pipe negative pressure of the internal combustion engine, 6 is a rotation angle sensor, and 4 is a computer using a microprocessor. The engine condition is detected from the output of the pressure sensor 5, the optimum ignition timing at that point is calculated, and a signal indicating the actual ignition timing energization start timing is output to the ignition device 2 according to the calculation result. As is well known, the ignition device 2 energizes the primary coil of the ignition coil in response to the energization start timing signal, cuts off the current to the primary coil in response to the ignition timing signal, and transmits the high voltage generated by the secondary coil to the corresponding one. The power is distributed and applied to the spark plugs of the cylinders. 7 is an in-vehicle battery, and 8 is a power supply circuit for the computer. Note that the configuration of the computer 4 is well known, and the content of the arithmetic processing is unique for carrying out the control method of the present invention, so a detailed circuit description will be omitted and the content of the arithmetic processing will be explained using a flowchart.

第3図はコンピユータ4の演算処理内容つまり
は点火時期制御プログラムを概略的に示すフロー
チヤートであり、第4図はその作動説明のための
タイムチヤートであり、以下に説明する。
FIG. 3 is a flowchart schematically showing the arithmetic processing contents of the computer 4, that is, the ignition timing control program, and FIG. 4 is a time chart for explaining its operation, which will be explained below.

内燃機関1が起動すると、プログラムはステツ
プ440より開始され修正進角θBを0に初期設
定する。この時点火回数をカウントするカウンタ
を0にセツトする。まずステツプ400で回転角
センサー5と吸気管圧力センサー6の出力によつ
て基本進角θmapを算出する。この基本進角θ
mapはコンピユータ4内のメモリ内にマツプ化さ
れ回転数、吸気管圧力に対応して記憶されている
もので、公知であるため詳細説明は省略する。次
にステツプ401で基本進角θmapに修正進角θ
Bを加えた目標進角(目標点火時期)を求め、ス
テツプ402ではこの点火時期θに対応した制御
信号(点火信号)を発生させる。ステツプ403
で点火回数nを1増加させステツプ404で点火
回転nが設定点火回数KになるまではNOに分岐
し、ステツプ400から404をループする。こ
の実施例では第4図Dの如くK=3に設定してあ
る。点火回数nが設定回転数Kに一致したならば
YESに分岐し、ステツプ405でK点火分の一
定周波数のクロツクパルスのパルスのカウント値
BつまりK点火分の回転周期をメモリ内に格納
し、ステツプ406で点火回数を0にセツトし直
す。このステツプ400〜406の処理が、第4
図におけるベースステツプである。
When the internal combustion engine 1 starts, the program starts at step 440 and initializes the corrected advance angle θ B to zero. At this point, a counter that counts the number of ignitions is set to 0. First, in step 400, a basic advance angle θmap is calculated from the outputs of the rotation angle sensor 5 and the intake pipe pressure sensor 6. This basic advance angle θ
The map is mapped and stored in the memory of the computer 4 in correspondence with the rotational speed and intake pipe pressure, and since it is well known, a detailed explanation will be omitted. Next, in step 401, the modified advance angle θ is added to the basic advance angle θmap.
A target advance angle (target ignition timing) is obtained by adding B , and in step 402, a control signal (ignition signal) corresponding to this ignition timing θ is generated. Step 403
The number of ignitions n is increased by 1 at step 404, and the process branches to NO until the ignition rotation n reaches the set number of ignitions K at step 404, and steps 400 to 404 are looped. In this embodiment, K=3 is set as shown in FIG. 4D. If the number of ignitions n matches the set rotation speed K, then
The process branches to YES, and in step 405, the pulse count value N B of constant frequency clock pulses for K ignitions, that is, the rotation period for K ignitions, is stored in the memory, and in step 406, the number of ignitions is reset to 0. The processing of steps 400 to 406 is the fourth step.
This is the base step in the figure.

次にステツプ410に進み、ステツプ400と
同様に基本進角θmapを算出し、ステツプ411
では目標進角θ=θmap+θBを計算し、更にこ
の目標進角θに所定値△t1だけ加えた(つまり目
標進角θより△t1だけアドバンス(進み)側の)
点火時期θを計算する。ステツプ412ではこ
の目標進角θよりアドバンス側の点火時期θaに
対応した制御信号を発生させ、点火装置2により
θaにて点火させる。ステツプ413,414は
上記のステツプ403,404と同じであり、K
回410〜414のステツプで実行させる。ステ
ツプ415ではK点火分のクロツクパルスのカウ
ント値KA(回転周期)をメモリ内に格納し、ス
テツプ416では上記ステツプ406同様n=0
とする。このステツプ410〜416の処理が第
4図に示すアドバンスステツプである。
Next, proceed to step 410, calculate the basic advance angle θmap in the same way as step 400, and proceed to step 411.
Now, calculate the target advance angle θ = θmap + θ B , and then add a predetermined value △t 1 to this target advance angle θ (that is, advance the target advance angle θ by △t 1 )
Calculate the ignition timing θ 2 . In step 412, a control signal corresponding to an ignition timing θa on the more advanced side than the target advance angle θ is generated, and the ignition device 2 causes ignition at θa. Steps 413 and 414 are the same as steps 403 and 404 above, and K
The process is executed in steps 410 to 414. In step 415, the count value K A (rotation period) of clock pulses for K ignitions is stored in the memory, and in step 416, n=0 as in step 406 above.
shall be. The processing of steps 410 to 416 is the advanced step shown in FIG.

次にステツプ420に進み、ステツプ400
(410)と同様に基本進角θmapを算出し、ス
テツプ421では目標進角θ=θmap+θBを計
算し、更にこの目標進角θから所定値△t2だけ減
算した(つまり目標進角θより△t2だけリタード
〓〓〓〓
(遅れ)側の)点火時期θrを計算する。ステツ
プ422ではこの目標進角θよりリタード側の点
火時期θrに対応した制御信号を発生させ、点火
装置2よりθrにて点火させる。ステツプ42
3,424は上記ステツプ403,404(41
3,414)と同じであり、K回420〜424
のステツプを実行させる。ステツプ425ではK
点火分のクロツクパルスのカウント値NR(回転
周期)をメモリ内に格納し、ステツプ426では
上記ステツプ406(416)同様n=0とす
る。このステツプ420〜426の処理が第4図
に示すリターステツプである。
Next, proceed to step 420 and proceed to step 400.
The basic advance angle θmap is calculated in the same way as in (410), and in step 421, the target advance angle θ=θmap+θ B is calculated, and a predetermined value Δt 2 is subtracted from this target advance angle θ (that is, the target advance angle θ is △t Retard by 2〓〓〓〓
Calculate the ignition timing θr (on the delayed side). In step 422, a control signal corresponding to an ignition timing θr on the retard side than the target advance angle θ is generated, and the ignition device 2 causes ignition at θr. Step 42
3,424 is the step 403,404 (41
3,414), and K times 420 to 424
Execute the steps. In step 425, K
The count value N R (rotation period) of the clock pulse for ignition is stored in the memory, and in step 426, n=0 as in step 406 (416). The processing of steps 420 to 426 is the litter step shown in FIG.

次にステツプ430,431に進みステツプ4
05,415,425で求めた各回転周期NB
A,NRを比較する。例えば第2図に示す如く目
標点火時期(目標進角)θがそのときの機関状態
における機関出力(トルク)を最大限に発揮させ
得る最適点火時期θMより遅角側に存在するとき
で、かつ機関運転状態に変化がない場合におい
て、上述の処理ステツプの如くまず目標進角θで
点火したときはK点火回数当りの回転周期はNB
で回転数(rpm)はa/NB(ただしaは定数)
となり、次にθよりアドバンス側の点火時期θa
で点火したときは同回転周期NAで回転数はa/
Aとなり、次にθよりリタード側の点火時期θ
rで点火したときは同回転周期はNRで回転数は
a/NRとなり、第2図からもわかるように回転
数を比較するとa/NR<a/NB<a/NAつま
りNA<NB<NRとなる。従つてNA<NB<NR
る関係が成立するときはこれをステツプ430に
て判別しステツプ423に進み修正進角θaに修
正値△T1を加算する。つまり修正進角θBを増加
させることによつて目標進角θ(=θMAP+θB
を進角側へ修正することによつて機関出力を最大
限に発揮させ得る最適点火時期θMに目標進角θ
を近づける。NA<NB<NRが成立しないときは
ステツプ431に進む。例えば目標点火時期(進
角)θが機関出力を最大限に発揮させ得る最適点
火時期θMより進み側にあるときでかつ機関運転
状態に変化がない場合においては、第2図図示の
場合とは逆に回転数はa/NA<a/NB<a/N
RつまりNR<NB<NAとなる。従つてNR<NB
Aが成立したときはステツプ431にてこの旨
を判別しステツプ433に進み、修正進角θB
ら修正値△T2を減算する。つまり修正進角θB
減少させることによつて目標進角θ(=θMAP
θB)を遅角側へ修正することによつて機関出力
を最大限に発揮させ得る点火時期θMに目標進角
θを近づける。NA<NB<NR又はNR<NB<NA
の関係が成立しないときはステツプ434に進み
修正進角θBは修正しない。即ち、例えば機関の
過渡時において機関運転状態が変化するとき仮に
機関の加速時においてはまず目標進角θで点火し
て運転し次に目標進角θより△t1だけアドバンス
(進み)側の点火時期θaで点火して運転し次に
目標進角θより△t2だけリタード(遅れ)側の点
火時期θrで点火して運転するとしても目標進角
θの最適点火時期θMに対する時期にかかわらず
回転数は順次上昇していくわけであるからa/N
B<a/NA<a/NRつまりNR<NA<NBとなり
ステツプ430並びに431の判別条件は成立せ
ず修正進角θBつまりは目標進角θの修正は行な
わない。また機関の減速時においても同様にして
修正進角θBの修正は行なわない。また例えば目
標進角θが最適点火時期θMにあるかその極く近
傍にあるときで機関運転状態に変化がないときは
第2図からもわかるように目標進角θでの点火に
よる運転の回転数a/NBがアドバンス側の点火
時期θa、リタード側の点火時期θrでの点火に
よる運転の回転数a/NA,a/NRより大きくな
りつまりNB<NA,NB<NRとなりやはりステツ
プ430並びに431の判別条件は成立せず修正
進角θBつまりは目標進角θの修正はせず目標進
角θを最適点火時期θMに保とうとする。
Next, proceed to steps 430 and 431 and step 4.
Each rotation period N B obtained at 05, 415, 425,
Compare N A and N R . For example, as shown in Fig. 2, when the target ignition timing (target advance angle) θ is on the retard side than the optimum ignition timing θ M that can maximize the engine output (torque) in the engine state at that time, In addition, when there is no change in the engine operating condition, when ignition is first performed at the target advance angle θ as in the processing steps described above, the rotation period per K ignition times is N B
The rotation speed (rpm) is a/N B (where a is a constant)
Then, the ignition timing θa on the advanced side from θ
When ignited, the rotation period is N A and the rotation speed is a/
N A , then the ignition timing θ on the retard side from θ
When igniting at r, the same rotation period is N R and the number of revolutions is a/N R. As can be seen from Figure 2, comparing the number of revolutions, a/N R < a/N B < a/N A , that is. N A < N B < N R. Therefore, when the relationship N A <N B <N R holds true, this is determined in step 430, and the process proceeds to step 423, where the correction value ΔT 1 is added to the corrected advance angle θa. In other words, by increasing the corrected advance angle θ B , the target advance angle θ (= θ MAP + θ B )
By adjusting the target advance angle θ to the optimum ignition timing θ M that maximizes the engine output,
bring it closer. If N A <N B <N R does not hold, the process advances to step 431. For example, when the target ignition timing (advanced angle) θ is on the advanced side of the optimal ignition timing θ M that can maximize engine output, and when there is no change in the engine operating condition, the case shown in Figure 2 and Conversely, the rotation speed is a/N A < a/N B < a/N
R , that is, N R <N B < N A. Therefore, N R <N B <
If N A is established, this is determined in step 431, and the process proceeds to step 433, where the correction value ΔT 2 is subtracted from the corrected advance angle θ B. In other words, by decreasing the modified advance angle θ B , the target advance angle θ (=θ MAP +
By correcting θ B ) to the retarded side, the target advance angle θ is brought closer to the ignition timing θ M that can maximize engine output. N A <N B <N R or N R <N B <N A
If the relationship does not hold, the process proceeds to step 434 and the corrected advance angle θ B is not corrected. That is, for example, when the engine operating state changes during a transient period of the engine, if the engine is accelerating, first ignite and operate at the target advance angle θ, then advance the engine by △t 1 from the target advance angle θ. Even if the engine is operated with ignition at ignition timing θa, and then the ignition is operated with ignition timing θr on the retard (delay) side by △t 2 from the target advance angle θ, the timing for the target advance angle θ with respect to the optimum ignition timing θ M Regardless, the rotation speed will increase sequentially, so a/N
Since B < a/N A < a/N R , that is, N R < N A < N B , the determination conditions of steps 430 and 431 are not satisfied, and the corrected advance angle θ B , that is, the target advance angle θ is not corrected. Similarly, the corrected advance angle θ B is not corrected even when the engine is decelerating. For example, when the target advance angle θ is at or very close to the optimal ignition timing θ M and there is no change in the engine operating condition, as can be seen from Fig. 2, the operation with ignition at the target advance angle θ is The rotational speed a/N B becomes larger than the rotational speed a/N A , a/N R of operation with ignition at the advance side ignition timing θa and the retard side ignition timing θr, that is, N B <N A , N B < Since the determination conditions of steps 430 and 431 are not satisfied since N R , the corrected advance angle θB, that is, the target advance angle θ is not corrected, but an attempt is made to maintain the target advance angle θ at the optimum ignition timing θM .

ステツプ432または433または434を修
了すると再びステツプ400に戻り、上述の処理
をくり返す。上記実施例における所定値△t1,△
t2、修正値△T1,△T2並びに点火回数Kは機関
の安定性やK点火分の回転周期を計測するクロツ
クパルスの周期等を考慮して決定する。
When step 432, 433, or 434 is completed, the process returns to step 400 and the above-described process is repeated. Predetermined values △t 1 , △ in the above embodiment
t 2 , the correction values ΔT 1 and ΔT 2 and the number of ignitions K are determined by taking into consideration the stability of the engine and the period of the clock pulse for measuring the rotation period for K ignitions.

なお上記実施例においては修正進角θBは機関
運転状態に関係なく1つだけ書き替え記憶するも
のであつたが、機関運転状態区分毎に例えば上記
実施例における基本進角θmapと同様してマツプ
化しておき多数書き替え記憶して機関加減速時等
の運転状態の変化したときに素早く目標進角θを
最適点火時期θMに収束させるようにしてもよ
い。
In the above embodiment, only one corrected advance angle θ B is rewritten and stored regardless of the engine operating state, but for each engine operating state classification, for example, the basic advance angle θ B is changed in the same manner as the basic advance angle θ map in the above embodiment. It is also possible to create a map and rewrite and store it in large numbers so that the target advance angle θ can quickly converge to the optimum ignition timing θ M when the operating condition changes such as during engine acceleration or deceleration.

〓〓〓〓
また上記実施例では目標進角θは基本進角θ
mapと修正進角θBとの和で求めたが基本進角θ
mapを全て零としてもよい。つまり基本進角θ
mapを用いることなく目標進角θを修正進角θB
だけで求めるようにすることも可能である。
〓〓〓〓
In addition, in the above embodiment, the target advance angle θ is the basic advance angle θ
The basic advance angle θ is calculated by the sum of map and the modified advance angle θ B.
Map may be set to all zeros. In other words, the basic advance angle θ
Correct the target advance angle θ without using map Advance angle θ B
It is also possible to just ask for it.

また上記実施例では、目標進角θ、アドバンス
側点火時期θa、リタード側点火時期θrで運転
したときの回転数を求めて比較判別し目標進角θ
が最適点火時期θMより進み側にあるか遅れ側に
あるかを判定したが、回転数の他にも機関のトル
ク又はこれらに関連する運転状態信号によつても
判定し得ることは明らかである。
Further, in the above embodiment, the rotation speed when operating at the target advance angle θ, advance side ignition timing θa, and retard side ignition timing θr is determined and compared, and the target advance angle θ is determined.
Although we have determined whether the optimal ignition timing θ M is on the advanced side or on the delayed side, it is clear that it can be determined not only by the rotation speed but also by engine torque or operating status signals related to these. be.

また上記実施例では目標進角θ、次にアドバン
ス側点火時期θa、次にリタード側点火時期θr
の順で運転し、これら3点の点火時期で運転した
ときの回転数を検出し比較したものであつたが、
他にもまず目標進角θで、次にアドバンス側点火
時期θaで、次に目標進角θで、次にリタード側
点火時期θrで、次に目標進角θで運転し、5点
の回転数を検出し比較するようにしてもよく、要
は目標進角(目標点火時期)θを含めてこの目標
進角θ近傍の互いに異なる少なくとも2点の点火
時期を選択して順次交互にくり返して運転し、少
なくとも連続して運転した3点の回転数等の検出
信号を比較すればよい。
Further, in the above embodiment, the target advance angle θ, then the advance side ignition timing θa, and then the retard side ignition timing θr.
The engine was operated in this order, and the rotational speed was detected and compared when operating at these three ignition timing points.
In addition, first operate at the target advance angle θ, then at the advance side ignition timing θa, then at the target advance angle θ, then at the retard side ignition timing θr, then at the target advance angle θ, and rotate at 5 points. It is also possible to detect and compare the numbers, and the point is to select at least two ignition timings that are different from each other in the vicinity of the target advance angle θ, including the target advance angle (target ignition timing) θ, and to sequentially and alternately repeat the same. What is necessary is to compare detection signals such as the rotation speed at at least three consecutive points during operation.

以上述べたように本発明の点火時期制御方法は
目標点火時期の近傍でかつ互いに異なる少なくと
も2点の点火時期を選択すること、この選択した
少なくとも2点の点火時期にて交互に所定の期間
づつ内燃機関を運転すること、これら各点火時期
にて運転したときの機関の回転数の信号、トルク
の信号又はこれらに関連する運転状態の信号を検
出すること、前記の少なくとも2点の点火時期で
運転したときの検出信号のうちの少なくとも連続
して運転した3点の検出信号を比較することによ
り目標点火時期が機関出力を最大限に発揮させる
最適点火時期より進み側にあるか遅れ側にあるか
判定しかつ目標点火時期を修正することを特徴と
しており、機関の加減速等の外的要因により回転
数等検出信号が変化したのか点火時期の変更によ
り検出信号が変化したかを識別でき、目標点火時
期を誤りなく最適点火時期に制御できるため、機
関の出力を最大限引き出し燃料消費率も最小に抑
えることができるという優れた効果がある。
As described above, the ignition timing control method of the present invention includes selecting at least two ignition timing points that are close to the target ignition timing and different from each other, and alternately controlling the ignition timing at each of the selected at least two ignition timing points for a predetermined period. Operating the internal combustion engine; detecting the engine speed signal, torque signal, or operating status signal related to these when operating at each of these ignition timings; By comparing the detection signals of at least three consecutive points of the detection signals during operation, it is determined that the target ignition timing is ahead or behind the optimal ignition timing that maximizes the engine output. It is characterized by determining whether the detection signal such as the rotation speed has changed due to external factors such as engine acceleration/deceleration, or whether the detection signal has changed due to a change in the ignition timing. Since the target ignition timing can be controlled to the optimum ignition timing without error, it has the excellent effect of maximizing engine output and minimizing fuel consumption.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明を適用する装置の一実施例を示
すブロツク図、第2図は本発明の作動説明に供す
る特性図、第3図は第4図に示すコンピユータの
演算処理内容を概略的に示すフローチヤート、第
4図はこのコンピユータの作動説明のためのタイ
ムチヤートである。 1……内燃機関、2……点火装置、4……コン
ピユータ。 〓〓〓〓
FIG. 1 is a block diagram showing an embodiment of a device to which the present invention is applied, FIG. 2 is a characteristic diagram for explaining the operation of the present invention, and FIG. 3 is a schematic diagram of the arithmetic processing contents of the computer shown in FIG. The flowchart shown in FIG. 4 is a time chart for explaining the operation of this computer. 1... Internal combustion engine, 2... Ignition device, 4... Computer. 〓〓〓〓

Claims (1)

【特許請求の範囲】[Claims] 1 目標点火時期の近傍でかつ互いに異なる少な
くとも2点の点火時期を選択すること、この選択
した少なくとも2点の点火時期にて交互に所定の
期間づつ内燃機関を運転すること、これら各点火
時期にて運転したときの機関の回転数の信号、ト
ルクの信号又はこれらに関連する運転状態の信号
を検出すること、前記少なくとも2点の点火時期
で運転したときの前記検出信号のうち少なくとも
連続して運転した3点の検出信号を比較すること
により前記目標点火時期が機関出力を最大限に発
揮させる最適点火時期より進み側にあるか遅れ側
にあるか判定しかつ目標点火時期を修正すること
を特徴とする点火時期制御方法。
1 Selecting at least two ignition timings that are close to the target ignition timing and different from each other; operating the internal combustion engine alternately for a predetermined period at the selected at least two ignition timings; detecting a signal of the rotational speed of the engine, a signal of torque, or a signal of the operating state related thereto when the engine is operated at the ignition timing of the at least two points; By comparing the detection signals at three points during operation, it is determined whether the target ignition timing is on the advance side or behind the optimum ignition timing for maximizing the engine output, and the target ignition timing is corrected. Characteristic ignition timing control method.
JP11093979A 1979-08-29 1979-08-29 Control of ignition timing Granted JPS5634959A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP11093979A JPS5634959A (en) 1979-08-29 1979-08-29 Control of ignition timing
US06/159,435 US4379333A (en) 1979-08-29 1980-06-13 Method and system for operating a power-producing machine at maximum torque under varying operating conditions
DE8080105154T DE3069511D1 (en) 1979-08-29 1980-08-29 Method and system for operating an internal combustion engine at maximum torque under varying operating conditions
EP80105154A EP0024733B1 (en) 1979-08-29 1980-08-29 Method and system for operating an internal combustion engine at maximum torque under varying operating conditions

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11093979A JPS5634959A (en) 1979-08-29 1979-08-29 Control of ignition timing

Publications (2)

Publication Number Publication Date
JPS5634959A JPS5634959A (en) 1981-04-07
JPS6135379B2 true JPS6135379B2 (en) 1986-08-13

Family

ID=14548399

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11093979A Granted JPS5634959A (en) 1979-08-29 1979-08-29 Control of ignition timing

Country Status (1)

Country Link
JP (1) JPS5634959A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58172466A (en) * 1982-04-02 1983-10-11 Nippon Denso Co Ltd Ignition timing control method of multi-cylinder internal-combustion engine
JPS62214269A (en) * 1986-03-10 1987-09-21 オプテイマイザ− コントロ−ル コ−ポレ−シヨン Ignition timing optimizing device for diesel or spark ignition engine

Also Published As

Publication number Publication date
JPS5634959A (en) 1981-04-07

Similar Documents

Publication Publication Date Title
EP0733891B1 (en) Preignition detecting system
JPS6342111B2 (en)
US4510910A (en) Ignition timing control method and apparatus for internal combustion engines
JP3191676B2 (en) Ignition timing control device for internal combustion engine
JPH0375751B2 (en)
US4517944A (en) Ignition timing control for internal combustion engines
JPS6135379B2 (en)
JPH0233873B2 (en)
JPH01104973A (en) Ignition timing controller for internal combustion engine
JPS6135378B2 (en)
JPS6123868A (en) Ignition-timing controller
JPS5941666A (en) Ignition timing control method of internal-combustion engine
JPS623173A (en) Ignition timing controller for internal-combustion engine
JPH0826838B2 (en) Ignition timing control method for internal combustion engine
JP2625933B2 (en) Ignition timing control device for internal combustion engine
JPS6026171A (en) Ignition time controller for engine
JPH05141334A (en) Knocking control device for internal combustion engine
JP2914775B2 (en) Engine ignition timing control device
JP2537414B2 (en) Ignition timing control device for internal combustion engine
JP3104526B2 (en) Apparatus and method for controlling ignition timing of internal combustion engine
JPS6282273A (en) Ignition timing control device for internal combustion engine
JPS63280860A (en) Ignition timing controller for internal combustion engine
JPH01125563A (en) Ignition timing controlling
JPH077580Y2 (en) Ignition timing control device for internal combustion engine
JPH0256516B2 (en)