JPS6135333A - Flow cell for photometry - Google Patents

Flow cell for photometry

Info

Publication number
JPS6135333A
JPS6135333A JP15851584A JP15851584A JPS6135333A JP S6135333 A JPS6135333 A JP S6135333A JP 15851584 A JP15851584 A JP 15851584A JP 15851584 A JP15851584 A JP 15851584A JP S6135333 A JPS6135333 A JP S6135333A
Authority
JP
Japan
Prior art keywords
flow cell
blocks
optical blocks
optical
lens
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15851584A
Other languages
Japanese (ja)
Inventor
Yuji Ito
勇二 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP15851584A priority Critical patent/JPS6135333A/en
Publication of JPS6135333A publication Critical patent/JPS6135333A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • G01N21/03Cuvette constructions
    • G01N21/05Flow-through cuvettes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/47Scattering, i.e. diffuse reflection
    • G01N21/49Scattering, i.e. diffuse reflection within a body or fluid
    • G01N21/53Scattering, i.e. diffuse reflection within a body or fluid within a flowing fluid, e.g. smoke
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • G01N21/03Cuvette constructions
    • G01N2021/0346Capillary cells; Microcells

Abstract

PURPOSE:To improve convergence efficiency and measurement accuracy by using a distributed index lens and photodetecting sideway scattered light directly from nearby a flowing part. CONSTITUTION:The flow cell consists of the 1st two optical blocks 11a and 11b having a through hole 10 respectively, the 2nd two plate type optical blocks 12a and 12b of the same material, and two cylindrical distributed index lenses 13a and 13b. The 2nd optical blocks 12a and 12b are sandwiched between the 1st optical blocks 11a and 11b and a flowing hole 2 is formed between those; and the distributed index lenses 13a and 13b are inserted into through holes 10 of the 1st optical blocks 11a and 11b and the whole is fixed by melt-sticking or adhesion. At this time, end surfaces of the lenses 13a and 13b are inscribed with the 2nd optical blocks 12a and 12b and contact the flowing part 2 to form part of the flow cell body. For the purpose, the flow cell body and optical elements are united together to improve photometry accuracy and perform efficient convergence.

Description

【発明の詳細な説明】 本発明は、フローサイトメータ等に用いられ、例えば血
液細胞などの検体を波しながら、検体を観測するための
フローセル本体と測光用光学素子とを一体化した測光用
フローセルに関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention is a photometric device that is used in a flow cytometer or the like and integrates a flow cell body and a photometric optical element for observing a sample while waving the sample, such as blood cells. It is related to flow cells.

フローサイトメータとは、高速で流れる細胞浮遊溶液に
例えばレーザー光を照射し、その散乱光による光電信号
を検出し細胞の性質・構造を解明する装置であり、細胞
化学、免疫学、血液学、腫瘍学、遺伝学等の分野で使用
されつつある。
A flow cytometer is a device that elucidates the properties and structure of cells by irradiating a rapidly flowing cell suspension solution with, for example, a laser beam and detecting a photoelectric signal from the scattered light. It is being used in fields such as oncology and genetics.

このフローサイトメータに用いる従来のフローセルは、
フローセル本体と測光光学系とが分離されている。例え
ば、第1図はフローセル本体1の斜視図、第2図はフロ
ーセル本体に測光用光学系を組合わせた構成図を示して
いる。検体Sはフローセル本体lの中央の例えば707
LmX20ILmの微小な矩形断面を有する流通部2を
流れ、図示しないレーザー光源からの平行光が、レンズ
3を介して流通部2中の検体Sに集光される。流通部2
を直進する方向の前方散乱光は、レンズ4を介して光電
検出器5上に集光され、検体Sの大きさの情報が得られ
る。一方、直角方向の側方に散乱された光は、レンズ6
と光電検出器7により検出され、検体Sの内部状態の情
報を得ることができる。また、蛍光標識された検体Sの
場合には、図示しないバリアフィルタを経てレンズ8、
検出器9の組み合わせにより測光が可能である。
The conventional flow cell used in this flow cytometer is
The flow cell body and the photometric optical system are separated. For example, FIG. 1 shows a perspective view of a flow cell main body 1, and FIG. 2 shows a configuration diagram in which a photometric optical system is combined with the flow cell main body. The sample S is located at the center of the flow cell main body l, for example, at 707.
Flowing through the flow section 2 having a minute rectangular cross section of LmX20ILm, parallel light from a laser light source (not shown) is focused on the sample S in the flow section 2 via the lens 3. Distribution department 2
The forward scattered light in the direction of traveling straight is focused on the photoelectric detector 5 via the lens 4, and information on the size of the specimen S is obtained. On the other hand, the light scattered laterally in the right angle direction is reflected by the lens 6
is detected by the photoelectric detector 7, and information on the internal state of the specimen S can be obtained. In addition, in the case of a fluorescently labeled specimen S, it passes through a barrier filter (not shown) through a lens 8,
Photometry is possible by combining the detectors 9.

この場合に、側方への散乱光は前方への散乱光に比較し
て、極めて微弱であり出射立体角も狭いため、光電検出
器7.9には例えばマルチフォトプライヤなどの光増倍
管が使用されている。ここで、側方散乱光の検出精度を
向上させるためには更に十分な光電出力を得る必要があ
り、そのためにはレーザー光源の出力を大とするか、或
いはレンズ6.8を流通部2に近接して側方散乱光を効
率良く集光しなければならない。しかし、前者はレーザ
ー光源の出力を大にしなければならず、後者は構造的に
なかなか困難である。
In this case, the sideward scattered light is extremely weak and has a narrow exit solid angle compared to the forward scattered light, so the photoelectric detector 7.9 is equipped with a photomultiplier such as a multi-photoplier. is used. Here, in order to improve the detection accuracy of side scattered light, it is necessary to obtain even more sufficient photoelectric output, and for this purpose, the output of the laser light source must be increased, or the lens 6.8 must be placed in the flow section 2. Side scattered light must be efficiently collected in close proximity. However, the former requires a large output of the laser light source, and the latter is structurally difficult.

本発明の目的は、屈折率分布型レンズを使用して、流通
部の近傍から直接に側方散乱光を受光するようにし、集
光効率、測光精度共に良好な測光用フローセルを提供す
ることにある。
An object of the present invention is to provide a photometric flow cell that uses a gradient index lens to directly receive side scattered light from the vicinity of a flow section, and has good light collection efficiency and photometric accuracy. be.

上述の目的を達成するための本発明の要旨は、少なくと
も1個に貫通孔を有する2個の第1のブロックと、これ
ら第1のブロックの間に挟まれ第1のブロックと共に検
体が通過する流通部を形成する透明体から成る2個の第
2の光学ブロックと、前記第1のブロックの貫通孔に挿
入しかつその先端を前記流通部に面した屈折率分布型レ
ンズとから成り、これらの部材を接合して構成したこと
を特徴とする測光用フローセルである。
The gist of the present invention for achieving the above-mentioned object is to include two first blocks each having at least one through hole, and a block sandwiched between these first blocks through which a sample passes together with the first blocks. It consists of two second optical blocks made of transparent bodies that form a flow section, and a gradient index lens that is inserted into a through hole of the first block and whose tip faces the flow section. This is a photometric flow cell characterized by being constructed by joining together the following members.

本発明を第3図以下に図示の実施例を基に詳細に説明す
る。なお、第1図、第2図と同一の符号は同−又は同等
の部材、位置等を示している。
The present invention will be explained in detail based on the embodiment shown in FIG. 3 and below. Note that the same reference numerals as in FIGS. 1 and 2 indicate the same or equivalent members, positions, etc.

第3図は測光用フローセルの横断面図、第4図はその分
解斜視図であり、例えばガラス材から成り貫通孔10を
それぞれ有する2個の第1の光学ブロックlla、ll
bと、同材質で板体状の2個の第2の光学ブロック12
a、12bと、グリノ(GRIN)型レンズ或いはセル
フォックレンズ(商品名)とも呼ばれ、例えば直径1.
0〜1.8mmの2個の円柱状の屈折率分布型レンズ1
3a、13bとから成っている。
FIG. 3 is a cross-sectional view of the photometric flow cell, and FIG. 4 is an exploded perspective view thereof, showing two first optical blocks lla and ll made of, for example, glass and each having a through hole 10.
b, and two second plate-shaped optical blocks 12 made of the same material.
a, 12b, and is also called a GRIN type lens or SELFOC lens (trade name), for example, a diameter of 1.
Two cylindrical gradient index lenses 1 of 0 to 1.8 mm
It consists of 3a and 13b.

第1の光学ブロックlla、llbにより第2の光学ブ
ロック12a、12bを挟み込むと共に、これらの間に
流通孔2を形成するように組立てて、第1の光学ブロッ
クlla、llbの貫通孔10に屈折率分布型レンズ1
3a、13bをそれぞれ挿入し、全体を溶着或いは接着
により固定する。このとき、屈折率分布型レンズ13a
The second optical blocks 12a, 12b are sandwiched between the first optical blocks lla, llb, and assembled so as to form the communication hole 2 between them, and the refraction is made into the through hole 10 of the first optical block lla, llb. Rate distribution lens 1
3a and 13b are inserted, respectively, and the whole is fixed by welding or gluing. At this time, the gradient index lens 13a
.

13bの端面は、第2の光学ブロック12a、12bに
内接すると共に、流通部2に面した状態でフローセル本
体の一部を形成している。
The end surface of 13b is inscribed in the second optical blocks 12a, 12b and forms a part of the flow cell main body in a state facing the flow section 2.

第5図は屈折率分布型レンズ13の結像作用についての
説明図であり、この屈折率分布型レンズ13は光がレン
ズ13内をその長手方向に通過しながらピッチ単位で規
則的に収束、発散を繰り返す特性を持っている。つまり
、レンズ13をa−b面で切断すると、入射面での平行
光が出射面で収束し、a−0面で切断すると平行光が平
行光に、a−d面では平行光が収束光に、b−c面では
収束光が平行光に、b−d面では収束光が収束光になる
。このように、レンズ13のピッチ単位で結像状態を変
化させることができる。
FIG. 5 is an explanatory diagram of the image forming effect of the gradient index lens 13. The gradient index lens 13 converges light regularly in pitch units while passing through the lens 13 in its longitudinal direction. It has the characteristic of repeating divergence. In other words, when the lens 13 is cut along the a-b plane, parallel light on the incident surface converges on the exit surface, when cut on the a-0 plane, the parallel light becomes parallel light, and on the a-d plane, parallel light becomes convergent light. In the b-c plane, convergent light becomes parallel light, and in the b-d plane, convergent light becomes convergent light. In this way, the imaging state can be changed in units of the pitch of the lens 13.

本実施例の場合には、屈折率分布型レンズ13a、13
bを一方の端面をb面で切断して流通部2に臨ませ、他
方の端面なcd間で切断するようにして使用し、第6図
に示すように出射端面の集光点には光電検出器7.9が
配置されている。
In the case of this embodiment, the gradient index lenses 13a, 13
b is used by cutting one end face along the b plane to face the flow section 2, and cutting the other end face between cd, and as shown in FIG. A detector 7.9 is arranged.

ここで、レーザー光はレンズ3を介して第2のブロック
12aから入射し、流通部2内の検体Sを照射し、その
前方散乱光を第2のブロック12b、レンズ4を経て検
出器5により検出する。また、側方散乱光は流通光2か
ら直接に屈折率分布型レンズ13a、13bにより取り
出すことができ、特にその集光性を高めることができる
Here, the laser light enters from the second block 12a via the lens 3, irradiates the sample S in the flow section 2, and transmits the forward scattered light to the second block 12b, the lens 4, and the detector 5. To detect. In addition, the side scattered light can be directly extracted from the circulating light 2 by the gradient index lenses 13a and 13b, and the light convergence can be particularly improved.

屈折率分布型レンズ13a、13bの切断は、他の位置
で行ってもよく、例えばb−c面で切断したものを使う
こともできる。また、屈折率分布型レンズ13a、13
bの集光点には、光電検出器7.9を直接配することな
く、光ファイバの入射端を配置し遠隔の光電検出器に光
伝送してもよい。
The gradient index lenses 13a and 13b may be cut at other positions; for example, lenses cut along the b-c plane may be used. In addition, the gradient index lenses 13a, 13
At the condensing point b, the input end of an optical fiber may be arranged to transmit light to a remote photoelectric detector without directly disposing the photoelectric detector 7.9.

また実施例においては、2個の第1の光学ブロックll
a、llbに共に貫通孔10を設けたが、側方散乱光を
一方側だけで検出する場合には、一方の第1の光学ブロ
ックのみに貫通孔10を形成してもよい。更には第1の
光学ブロック11a、llbは必ずしも透明である必要
はなく、レーザー光の入出射の障害とならなければよい
Further, in the embodiment, two first optical blocks ll
Although the through holes 10 are provided in both a and llb, if side scattered light is to be detected only on one side, the through holes 10 may be formed only in one first optical block. Furthermore, the first optical blocks 11a and 11b do not necessarily have to be transparent, and it is sufficient that they do not interfere with the input and output of laser light.

このように本発明に係る測光用フローセルは、フローセ
ル本体と光学素子とを一体化することにより、測光精度
の向上−集光の効率化・光学的調整の容易性が達成でき
る。
As described above, the photometric flow cell according to the present invention can achieve improved photometric accuracy, increased efficiency of light collection, and ease of optical adjustment by integrating the flow cell main body and the optical element.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来のフローセル本体の斜視図、第2図は従来
の測光時の構成図、第3図以下は本発明に係る測光用フ
ローセルの一実施例を示し、第3図はその横断面図、第
4図は分解斜視図、第5図は屈折率分布型レンズの結像
説明図、第6図は測光時の構成図である。 符号lはフローセル本体、2は流通部、3.4はレンズ
、5.7.9は光電検出器、10は貫通孔、lla、l
lbは第1の光学ブロック、12a、12bは第2の光
学ブロック、13a、13bは屈折率分布型レンズ、S
は検体である。 特許出願人  キャノン株式会社 第3図 しt4図 11(] 1^八 78開口RGI−35333(4) 第5図 第6図 “°胃■ ]し)
Fig. 1 is a perspective view of a conventional flow cell main body, Fig. 2 is a configuration diagram during conventional photometry, Fig. 3 and the following show an embodiment of a photometric flow cell according to the present invention, and Fig. 3 is a cross section thereof. 4 is an exploded perspective view, FIG. 5 is an explanatory diagram of image formation of the gradient index lens, and FIG. 6 is a configuration diagram during photometry. Symbol l is the flow cell main body, 2 is the flow section, 3.4 is the lens, 5.7.9 is the photoelectric detector, 10 is the through hole, lla, l
lb is a first optical block, 12a and 12b are second optical blocks, 13a and 13b are gradient index lenses, and S
is the specimen. Patent applicant: Canon Co., Ltd. Figure 3 and Figure 11 (] 1^878 opening RGI-35333 (4)

Claims (1)

【特許請求の範囲】 1、少なくとも1個に貫通孔を有する2個の第1のブロ
ックと、これら第1のブロックの間に挟まれ第1のブロ
ックと共に検体が通過する流通部を形成する透明体から
成る2個の第2の光学ブロックと、前記第1のブロック
の貫通孔に挿入しかつその先端を前記流通部に面した屈
折率分布型レンズとから成り、これらの部材を接合して
構成したことを特徴とする測光用フローセル。 2、前記2つの第1のブロックに共に貫通孔を設けた特
許請求の範囲第1項に記載の測光用フローセル。
[Claims] 1. Two first blocks each having at least one through hole, and a transparent material sandwiched between these first blocks to form a flow section through which a specimen passes together with the first blocks. It consists of two second optical blocks made of a body, and a gradient index lens inserted into a through hole of the first block and with its tip facing the communication part, and these members are joined. A photometric flow cell characterized by the following configuration. 2. The photometric flow cell according to claim 1, wherein the two first blocks are both provided with through holes.
JP15851584A 1984-07-28 1984-07-28 Flow cell for photometry Pending JPS6135333A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15851584A JPS6135333A (en) 1984-07-28 1984-07-28 Flow cell for photometry

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15851584A JPS6135333A (en) 1984-07-28 1984-07-28 Flow cell for photometry

Publications (1)

Publication Number Publication Date
JPS6135333A true JPS6135333A (en) 1986-02-19

Family

ID=15673421

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15851584A Pending JPS6135333A (en) 1984-07-28 1984-07-28 Flow cell for photometry

Country Status (1)

Country Link
JP (1) JPS6135333A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5748298A (en) * 1995-09-14 1998-05-05 Toa Medical Electronics Co., Ltd. Light receiving optical system having a light selector integral with a lens and particle analyzer including the same
US5822062A (en) * 1995-09-14 1998-10-13 Toa Medical Electronics Co., Ltd. Particle analyzer including a rod lens having a curved surface

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5748298A (en) * 1995-09-14 1998-05-05 Toa Medical Electronics Co., Ltd. Light receiving optical system having a light selector integral with a lens and particle analyzer including the same
US5822062A (en) * 1995-09-14 1998-10-13 Toa Medical Electronics Co., Ltd. Particle analyzer including a rod lens having a curved surface

Similar Documents

Publication Publication Date Title
US11002659B2 (en) Optical detector for a particle sorting system
US4341471A (en) Apparatus and method for measuring the distribution of radiant energy produced in particle investigating systems
US6409141B1 (en) Particle analyzer and composite lens formed by integrally joining plural lens elements of different focal points
JP3891925B2 (en) Device for obtaining information on biological particles
US5371585A (en) Particle detecting instrument with sapphire detecting cell defining a rectangular flow path
US6921908B2 (en) Methods for fluorescence detection that minimizes undesirable background fluorescence
JP2009505101A (en) Light scattering and imaging optical system
EP3516369B1 (en) Particle detection using thin lenses
US4286876A (en) Apparatus and method for measuring scattering of light in particle detection systems
US5028135A (en) Combined high spatial resolution and high total intensity selection optical train for laser spectroscopy
JPS6135333A (en) Flow cell for photometry
ZA200704831B (en) Optical detector for a particle sorting system
JP2003004625A (en) Flow sight meter
JPH0552895B2 (en)
JPH02181632A (en) Sheath flow cell
KR100860933B1 (en) Flow cell and particle measuring apparatus using the same