JPS6135162B2 - - Google Patents

Info

Publication number
JPS6135162B2
JPS6135162B2 JP58108937A JP10893783A JPS6135162B2 JP S6135162 B2 JPS6135162 B2 JP S6135162B2 JP 58108937 A JP58108937 A JP 58108937A JP 10893783 A JP10893783 A JP 10893783A JP S6135162 B2 JPS6135162 B2 JP S6135162B2
Authority
JP
Japan
Prior art keywords
investment material
expansion
weight
investment
heating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP58108937A
Other languages
Japanese (ja)
Other versions
JPS601109A (en
Inventor
Fuminobu Kubo
Kazuhiko Kamiara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TAISEI SHIKA KOGYO KK
Original Assignee
TAISEI SHIKA KOGYO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TAISEI SHIKA KOGYO KK filed Critical TAISEI SHIKA KOGYO KK
Priority to JP58108937A priority Critical patent/JPS601109A/en
Publication of JPS601109A publication Critical patent/JPS601109A/en
Publication of JPS6135162B2 publication Critical patent/JPS6135162B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

この発明は精密鋳造用埋没材組成物に関する。
金属冠やインレーなどの歯科用鋳造品の精密鋳造
において、リング中に充填した埋没材中にワツク
ス原型を埋没し、この埋没材を加熱してワツクス
原型を溶出または焼却させることによつて形成さ
れた成型空所に合金の溶湯を注入して鋳造品を製
造することが広く行なわれている。上記鋳造にお
いて合金が冷却固化する際に約1.4〜2.3%収縮す
るために、溶湯を注入する成型空所はあらかじめ
膨張させておく必要がある。この成型空所の膨張
は、埋没材の硬化時および加熱時において生ずる
膨張によつて行なわれている。 従来の埋没材には、シリカなどの耐火材に、せ
つこう結合剤として混合したせつこう系埋没材
と、第1リン酸アンモニウムおよび酸化マグネシ
ウムを結合材として混合したリン酸塩系埋没材と
が一般的であるが、後者のリン酸塩系埋没材は、
前者のせつこう系埋没材に比べて、耐熱性が大き
いので、ニツケル・クロム合金、コバルト、クロ
ム合金などの比較的融点の高い合金の鋳造にも使
用することができ、また鋳造時の埋没材の強度が
大きいなどの利点がある。しかしながら上記公知
のリン酸塩系埋没材は、水で混練すると強度が小
さく、硬化膨張は殆どなく、加熱膨張は1%程度
であるので、合金の収縮を十分に補償することが
できないため、リン酸塩系埋没材の混練にはコロ
イダルシリカ溶液が使用され、この場合コロイダ
ルシリカ溶液のシリカ濃度を大きくすることによ
つて硬化膨張は1%程度にまで向上される。埋没
材の主成分である耐火材のシリカは加熱膨張率が
約2.5%であるがリン酸塩などの結合剤の混合量
が多くなると埋没材の加熱膨張は低下するので、
結合材量を少なくすることによつて加熱膨張の低
下を防止することができるが、コロイダルシリカ
溶液の使用によつてリン酸塩系埋没材の大きな硬
化膨張の発生を避けることはできない。 近時、硬化膨張の大きな埋没材を使用すると鋳
造体が変形することが報告され、合金の収縮の補
償は、埋没材の加熱膨張のみを利用すべきである
ことが強調されている。しかしながら加熱膨張の
みを利用して合金の収縮を補償するような埋没材
は未だ市販されていない。 この発明者らは、リン酸塩系埋没材においてコ
ロイダルシリカ溶液で混練しても硬化膨張が0.3
%以下であり、しかも鋳造可能な強度が得られ、
加熱膨張の大きいものを得ることについて鋭意研
究した結果、埋没材中に少量のアルミナセメント
を混合することによつて所期の目的を達成したの
である。 すなわちこの発明は、シリカ80〜96重量%、酸
化マグネシウム2〜10重量%、第1リン酸アンモ
ニウム2〜10重量%、アルミナセメント0.05〜3
重量%を混合した埋没材をコロイダルシリカ溶液
で混練したことを特徴とする精密鋳造用埋没材組
成物である。 この発明における埋没材の主成分となる耐火材
のシリカは、クリストバライトもしくは石英が好
適である。埋没材中のシリカの混合割合は80〜96
重量%であり、80重量%未満であると加熱膨張が
小さくなり、鋳造体の収縮を補なうことができな
い。 第1リン酸アンモニウムおよび酸化マグネシウ
ムは結合材であり、加熱時に収縮性を示し、シリ
カの、加熱膨張性を消去する作用がある。第1リ
ン酸アンモニウムおよび酸化マグネシウムのそれ
ぞれの混合割合は2〜10重量%であり、混合割合
が2重量%未満であると埋没材の硬化性が低下
し、混練組成物の硬化に長時間を要すると共に加
熱後の埋没材の強度が低下して鋳造圧力に耐えら
れず、鋳造不良の原因となる。また混合割合が10
重量%を越えると埋没材の加熱時の膨張が小さく
なり、鋳造体の収縮を補なうことができないと共
に、鋳造体の表面のきめが粗くなる。 アルミナセメントの混合割は、0.05〜3重量%
であり、0.05重量%未満であると硬化膨張を低下
させる作用が小さくなり、また3重量%を越える
と100〜200℃の加熱時において収縮を示し、加熱
膨張が低下する。さらに加熱時に埋没材に亀裂が
発生し鋳造不良となる。 上記埋没材の各成分の混合割合は、コロイダル
シリカ溶液で混練した際の加熱時の膨張性によつ
て適宜調節される。概していえば、結合材の量が
多い場合はアルミナセメントの混合量を多くして
硬化膨張の発生を抑制する。 上記のようにして得られた埋没材組成物を使用
すると、硬化時の膨張が0.3%以下に小さくな
り、また加熱時の膨張は減少されることなく、さ
らに固化された埋没材の強度は十分に保持されて
いる。 以下にこの発明の実施例を説明する。 実施例 1 石英(ふるい目149μmを90%以上通過する粒
度分布)、クリストバライト(粒度74μm以下、
大成歯科工業社製)、第1リン酸アンモニウム
(粒度74μm以下、片山化学社製)、酸化マグネシ
ウム(粒度74μm以下、大成歯科工業社製)、お
よびアルミナセメント(商品名ハイアルミナセメ
ントスーパー、電気化学工業社製)を下記第1表
で示す混合割合で混合器内で30分間混合し、この
混合物100gに対してコロイダルシリカ溶液(シ
リカ濃度20重量%、商品名スノーテツクス0−
20、日産化学工業社製)28c.c.を添加し、真空練和
器(G−C社製)で300rpmで混練した。別記第
1表に示される埋没材組成物を、筆本秀和著報文
「試作無膨張埋没材を用いての鋳造体の変形につ
いて」(補綴誌、第24巻第2号、1980年、165〜
185ページ)中に記載の方法に準じて硬化膨張お
よび加熱膨張を測定し、またJIS−T6601歯科鋳
造用埋没材の測定法に準じて強度を測定し、その
結果を第1表、および図面のグラフで示した。
The present invention relates to an investment material composition for precision casting.
In precision casting of dental castings such as metal crowns and inlays, wax patterns are formed by immersing a wax model in an investment material filled in a ring, and heating the investment material to dissolve or burn the wax model. It is widely practiced to produce cast products by injecting molten alloy into a mold cavity. In the above casting process, the alloy contracts by about 1.4 to 2.3% when it cools and solidifies, so it is necessary to expand the mold cavity into which the molten metal is injected in advance. This expansion of the mold cavity is caused by expansion that occurs during curing and heating of the investment material. Conventional investment materials include gypsum-based investment materials, which are made by mixing a refractory material such as silica with a gypsum binder, and phosphate-based investment materials, which are made by mixing diammonium phosphate and magnesium oxide as binders. Although it is common, the latter phosphate-based investment material is
Compared to the former plaster-based investment material, it has greater heat resistance, so it can be used for casting alloys with relatively high melting points such as nickel-chromium alloys, cobalt, and chromium alloys. It has advantages such as high strength. However, the above-mentioned known phosphate-based investment materials have low strength when kneaded with water, have almost no curing expansion, and only have a heating expansion of about 1%, so they cannot sufficiently compensate for the shrinkage of the alloy. A colloidal silica solution is used for kneading the acid-based investment material, and in this case, by increasing the silica concentration of the colloidal silica solution, the curing expansion can be improved to about 1%. Silica, a refractory material that is the main component of investment materials, has a coefficient of thermal expansion of approximately 2.5%, but as the amount of binder such as phosphate increases, the thermal expansion of investment materials decreases.
Although a decrease in thermal expansion can be prevented by reducing the amount of binder, the use of a colloidal silica solution cannot avoid the occurrence of large curing expansion of the phosphate investment material. Recently, it has been reported that the use of investment materials with large hardening expansion causes deformation of cast bodies, and it has been emphasized that only the heating expansion of the investment material should be used to compensate for the shrinkage of the alloy. However, an investment material that compensates for the contraction of the alloy using only thermal expansion has not yet been commercially available. These inventors found that even when kneading a phosphate-based investment material with a colloidal silica solution, the curing expansion was 0.3.
% or less, and yet has a strength that can be cast.
As a result of intensive research into obtaining a material with large thermal expansion, the desired objective was achieved by mixing a small amount of alumina cement into the investment material. That is, this invention contains 80 to 96% by weight of silica, 2 to 10% by weight of magnesium oxide, 2 to 10% by weight of monoammonium phosphate, and 0.05 to 3% by weight of alumina cement.
This is an investment material composition for precision casting, characterized in that an investment material mixed with % by weight is kneaded with a colloidal silica solution. The silica of the refractory material which is the main component of the investment material in this invention is preferably cristobalite or quartz. The mixing ratio of silica in the investment material is 80-96
If it is less than 80% by weight, the thermal expansion will be small and it will not be possible to compensate for the shrinkage of the cast body. Monoammonium phosphate and magnesium oxide are binders that exhibit shrinkage when heated, and have the effect of eliminating the thermal expansion properties of silica. The mixing ratio of monoammonium phosphate and magnesium oxide is 2 to 10% by weight, and if the mixing ratio is less than 2% by weight, the hardenability of the investment material will decrease, and it will take a long time to harden the kneaded composition. At the same time, the strength of the investment material after heating decreases, making it unable to withstand casting pressure and causing casting defects. Also, the mixing ratio is 10
If it exceeds % by weight, the expansion of the investment material upon heating will be small, making it impossible to compensate for the shrinkage of the cast body, and the surface of the cast body will become rough. The mixing ratio of alumina cement is 0.05 to 3% by weight.
If it is less than 0.05% by weight, the effect of reducing curing expansion will be small, and if it exceeds 3% by weight, it will shrink when heated at 100 to 200°C and the heating expansion will decrease. Furthermore, cracks occur in the investment material during heating, resulting in poor casting. The mixing ratio of each component of the investment material is appropriately adjusted depending on the expandability upon heating when kneaded with a colloidal silica solution. Generally speaking, when the amount of binder is large, the amount of alumina cement mixed is increased to suppress the occurrence of hardening expansion. When using the investment material composition obtained as described above, the expansion during curing is reduced to 0.3% or less, the expansion during heating is not reduced, and the strength of the solidified investment material is sufficient. is maintained. Examples of the present invention will be described below. Example 1 Quartz (particle size distribution that passes 90% or more through a sieve of 149 μm), cristobalite (particle size of 74 μm or less,
(manufactured by Taisei Dental Industry Co., Ltd.), ammonium monophosphate (particle size 74 μm or less, manufactured by Katayama Chemical Co., Ltd.), magnesium oxide (particle size 74 μm or less, manufactured by Taisei Dental Industry Co., Ltd.), and alumina cement (trade name: Hi-Alumina Cement Super, Electrochemical (manufactured by Kogyo Co., Ltd.) was mixed in a mixer for 30 minutes at the mixing ratio shown in Table 1 below, and 100 g of this mixture was mixed with a colloidal silica solution (silica concentration 20% by weight, trade name Snowtex 0-
28 c.c. (manufactured by Nissan Chemical Industries, Ltd.) was added and kneaded at 300 rpm in a vacuum kneader (manufactured by GC Corporation). The investment material composition shown in appendix Table 1 was used in a report by Hidekazu Fudemoto, "On the deformation of a cast body using a prototype non-expandable investment material" (Prosthetics Journal, Vol. 24, No. 2, 1980, 165 ~
The hardening expansion and heating expansion were measured according to the method described in page 185), and the strength was measured according to the method for measuring investment materials for dental castings in JIS-T6601.The results are shown in Table 1 and the drawings. Shown in a graph.

【表】 第1表にみられるように、アルミナセメントを
混合しない実験番号1は硬化膨張率が大きくてこ
の発明の目的に反するものである。実験番号2、
3を比較すれば結合材が多くなると硬化膨張率が
若干大きく加熱膨張率が若干小さくなることがわ
かる。また実験番号3、4、5を比較すればアル
ミナセメントが多くなると加熱膨張率が小さくな
ることがわかる。 なお上記実験番号3の埋没材組成物で鋳型を作
り、硬化後、電気炉にいれて700℃まで昇温し、
縦型遠心鋳造機(商品名キヤストマート、G−C
社製)を用いて歯科鋳造法によつてK−メタルを
鋳造した結果、変形の非常に小さな良好な鋳造品
が得られた。 実施例 2 上記実施例1の実験番号3の混合物について、
コロイダルシリカ溶液(シリカ濃度40重量%、商
品名スノテツクス0−40、日産化学工業社製)を
水で希釈してシリカ濃度を変化させた各組成物
を、実施例1と同様にして物性を測定し、その結
果を第2表に示す。
[Table] As shown in Table 1, Experiment No. 1, in which no alumina cement was mixed, had a large curing expansion coefficient and was contrary to the purpose of the present invention. Experiment number 2,
Comparing No. 3, it can be seen that as the amount of binder increases, the curing expansion coefficient becomes slightly larger and the heating expansion coefficient becomes slightly smaller. Furthermore, by comparing Experiment Nos. 3, 4, and 5, it can be seen that the thermal expansion coefficient decreases as the amount of alumina cement increases. A mold was made with the investment material composition of Experiment No. 3 above, and after hardening, it was placed in an electric furnace and heated to 700°C.
Vertical centrifugal casting machine (product name Castmart, G-C
As a result of casting K-metal by the dental casting method using a molding machine (manufactured by K.K.), a good cast product with very little deformation was obtained. Example 2 Regarding the mixture of experiment number 3 of Example 1 above,
Physical properties were measured in the same manner as in Example 1 for each composition in which the silica concentration was varied by diluting a colloidal silica solution (silica concentration 40% by weight, trade name Sunotex 0-40, manufactured by Nissan Chemical Industries, Ltd.) with water. The results are shown in Table 2.

【表】【table】

【表】 第2表にみられるように、シリカ濃度の変化に
よつて、硬化膨張率、加熱膨張率はほとんど変化
しないが、シリカ濃度の上昇によつて強度が向上
していく。なお実験番号6の強度は比較的小さい
が実用できる範囲である。
[Table] As shown in Table 2, the curing expansion coefficient and heating expansion coefficient hardly change as the silica concentration changes, but the strength improves as the silica concentration increases. Although the strength of Experiment No. 6 was relatively low, it was within a practical range.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は、実施例1における硬化膨張率と加熱膨
張率の変化を示すグラフである。
The drawing is a graph showing changes in the curing expansion coefficient and heating expansion coefficient in Example 1.

Claims (1)

【特許請求の範囲】[Claims] 1 シリカ80〜96重量%、酸化マグネシウム2〜
10重量%、第1リン酸アンモニウム2〜10重量
%、アルミナセメント0.05〜3重量%を混合した
埋没材をコロイダルシリカ溶液で混練したことを
特徴とする精密鋳造用埋没材組成物。
1 Silica 80-96% by weight, Magnesium oxide 2-
An investment material composition for precision casting, characterized in that an investment material containing 10% by weight of monoammonium phosphate, 2 to 10% by weight of monoammonium phosphate, and 0.05 to 3% by weight of alumina cement is kneaded with a colloidal silica solution.
JP58108937A 1983-06-16 1983-06-16 Embedding composition for precision casting Granted JPS601109A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58108937A JPS601109A (en) 1983-06-16 1983-06-16 Embedding composition for precision casting

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58108937A JPS601109A (en) 1983-06-16 1983-06-16 Embedding composition for precision casting

Publications (2)

Publication Number Publication Date
JPS601109A JPS601109A (en) 1985-01-07
JPS6135162B2 true JPS6135162B2 (en) 1986-08-12

Family

ID=14497426

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58108937A Granted JPS601109A (en) 1983-06-16 1983-06-16 Embedding composition for precision casting

Country Status (1)

Country Link
JP (1) JPS601109A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6293041A (en) * 1985-10-16 1987-04-28 Ohara:Kk Molding material for casting pure titanium or titanium alloy
JPH0637376B2 (en) * 1987-11-18 1994-05-18 而至歯科工業株式会社 Dental fireproof model material
JPH0327841A (en) * 1989-06-26 1991-02-06 Okazaki Kousanbutsu Kk Molding material
JP2857872B2 (en) * 1997-03-31 1999-02-17 大成歯科工業株式会社 Dental investment

Also Published As

Publication number Publication date
JPS601109A (en) 1985-01-07

Similar Documents

Publication Publication Date Title
KR100864717B1 (en) Plastery Investment used for Investment casting
US2209035A (en) Refractory investment
US4591385A (en) Die material and method of using same
JPS6135162B2 (en)
US5820662A (en) Dental investing material
EP0511546B1 (en) Investment material and mold for dental use and burnout thereof
JP3447769B2 (en) Dental investment composition
JPS6044061B2 (en) Investment material composition for precision casting
US2195452A (en) Method of making articles of porcelain
US1962764A (en) Investment
JPS61193741A (en) Investment casting material for dental purpose
JP2648996B2 (en) Investment for refractory metal casting
SU1207620A1 (en) Paste for removing defects and reconditioning working cavities of permanent and semipermanent moulds and cores
JPH1176270A (en) Gypsum type embedding material composition for dentistry
JPS6115778B2 (en)
JP2802908B2 (en) Dental investment
JPS622896B2 (en)
JPH04317461A (en) Casting mold material for casting high melting point metal
JPH0155063B2 (en)
KR100530313B1 (en) Magnesia-Phosphate bonded Investment
JPS62865B2 (en)
JP2578076B2 (en) Dental refractory profile
JPS6317017B2 (en)
JPS632521B2 (en)
JPS60208902A (en) Dental embedding commposition for casting having high thermal expansion coefficient