JPS6134942A - Plasma treatment device - Google Patents

Plasma treatment device

Info

Publication number
JPS6134942A
JPS6134942A JP14484484A JP14484484A JPS6134942A JP S6134942 A JPS6134942 A JP S6134942A JP 14484484 A JP14484484 A JP 14484484A JP 14484484 A JP14484484 A JP 14484484A JP S6134942 A JPS6134942 A JP S6134942A
Authority
JP
Japan
Prior art keywords
gas
waveguide
plasma
microwave
blow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14484484A
Other languages
Japanese (ja)
Inventor
Shuzo Fujimura
藤村 修三
Hiroshi Yano
弘 矢野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP14484484A priority Critical patent/JPS6134942A/en
Publication of JPS6134942A publication Critical patent/JPS6134942A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/3244Gas supply means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32357Generation remote from the workpiece, e.g. down-stream

Abstract

PURPOSE:To upgrade the production efficiency of plasma by a method wherein reaction gas is made to blow off in a direction, which is parallel to the progressing direction of the micro wave in the waveguide, in a beam form. CONSTITUTION:Reaction gas is made to blow off in a waveguide 1 from a gas channel 2 and a beam 5 is formed. The reaction gas to blow off in a beam form is mainly brought into a plasmic state at the position of the loop of the electric field of micro wave in the waveguide 1, spreads in the interior of the waveguide 1 sectioned by a partition 3, the neutral gas including active species passes through an opening 6 and is guided into a plasma treating chamber 4. By this way, there is no need to match the position of the loop of the micro wave, the operation is simplified, and moreover, the rematching of the position can be dispensed with to a change of the impedance due to a modification of gas species and so forth.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はプラズマ処理装置、特にマイクロ波を用いて高
効率で安定してプラズマが生成されるプラズマ処理装置
の改良に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a plasma processing apparatus, and particularly to an improvement in a plasma processing apparatus in which plasma is generated stably with high efficiency using microwaves.

半導体集積回路装置(以下ICと略称する)等の製造プ
ロセスにおいて、プラズマプロセスはプロセスのドライ
化、低温化を可能とし、パターンの微細化に適するなど
の特徴によって、エツチング、化学気相成長(CVD)
等に広く応用されている。
In the manufacturing process of semiconductor integrated circuit devices (hereinafter abbreviated as IC), the plasma process enables dry and low-temperature processes, and is suitable for finer patterns. )
It is widely applied to

これらのプラズマを応用するプロセスにおいては、プラ
ズマが安定してかつ高い効率で生成されることが要望さ
れる。
In these processes that apply plasma, it is desired that plasma be generated stably and with high efficiency.

〔従来の技術〕[Conventional technology]

プラズマを発生するには、真空容器内に所要のガスを例
えば0.Ol乃至10Torr程度の圧力で導入して、
これに電界を印加する。電界からエネルギーを受けた自
由電子がガスの分子や原子と衝突し、弾性衝突の場合に
は中性粒子の運動エネルギーが高められるが、非弾性衝
突の場合にはガスの分子の内部エネルギーが高められて
励起、解離。
To generate plasma, the required gas is placed in a vacuum container at, for example, 0. Introducing at a pressure of about 10 Torr to 10 Torr,
An electric field is applied to this. Free electrons that receive energy from the electric field collide with gas molecules or atoms, and in the case of elastic collisions, the kinetic energy of the neutral particles increases, but in the case of inelastic collisions, the internal energy of the gas molecules increases. excitation and dissociation.

イオン化が行なわれプラズマ状態が形成される。Ionization occurs and a plasma state is formed.

このプラズマを生成するための電界にしばしばマイクロ
波が用いられる。第2図(a)はマイクロ波によってプ
ラズマを励起する装置の1従来例を示す模式図である。
Microwaves are often used in the electric field to generate this plasma. FIG. 2(a) is a schematic diagram showing a conventional example of an apparatus for exciting plasma by microwaves.

マイクロ波発振器2において通常マグネトロンによって
2.45GH2のマイクロ波を発生させ、このマイクロ
波をアイソレータ12に導く。アイソレータ12は入射
波は通過させるが、不整合で戻ってきた反射波は90°
に偏向して擬似負荷に吸収させる。また方向性結合器1
3を介して入射波1反射波の電力モニターが行なわれる
In the microwave oscillator 2, a microwave of 2.45 GH2 is normally generated by a magnetron, and this microwave is guided to the isolator 12. The isolator 12 allows the incident wave to pass through, but the reflected wave that returns due to mismatch is 90°
is deflected and absorbed by the pseudo load. Also, directional coupler 1
The power of the incident wave 1 and the reflected wave is monitored through 3.

マイクロ波のTEo、モードの導波管15の電界方向に
石英管17が挿入され、どの石英管17内にガスが導入
されるが、3本柱整合器14と短絡プランジャ整合器1
6とによって、石英管L7の位置に電界7腹を整合させ
る。なお18は冷却装置である。
A quartz tube 17 is inserted in the electric field direction of the microwave TEo mode waveguide 15, and gas is introduced into which quartz tube 17.
6, the antinode of the electric field 7 is aligned with the position of the quartz tube L7. Note that 18 is a cooling device.

また第2図ω)に示す従来例においては、導波管15に
石英又はアルミナ等よりなる隔壁」9を設けてガスを遮
断する構造として、との導波管15内にガスを導入して
いるが、この方法においてもガスの流れが強く圧力が高
くなっている必中斜線で示す位置忙マイクロ波の電界の
腹を短絡プランジャ整合器16などによって整合する。
In addition, in the conventional example shown in Fig. 2 ω), a partition wall 9 made of quartz or alumina, etc. is provided in the waveguide 15 to cut off the gas, and the gas is introduced into the waveguide 15. However, in this method as well, the antinode of the electric field of the microwave shown by diagonal lines where the gas flow is strong and the pressure is high is matched by the short-circuit plunger matching device 16 or the like.

上述のマイクロ波の整合はその反射波を最小にしプラズ
マの生成効率を最大にするために必要である。
The microwave matching described above is necessary to minimize the reflected waves and maximize plasma generation efficiency.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

以上説明した如きプラズマ処理装置のマイクロ波による
プラズマ生成では、マイクロ波の電界の腹をガス流に整
合させるチューニングを行なっているが、ガス種の変更
などによってインピーダンスが変化した場合には、改め
てチューニングを行なうことが必要となる。
In plasma generation using microwaves in plasma processing equipment as explained above, tuning is performed to match the antinode of the microwave's electric field to the gas flow, but if the impedance changes due to a change in gas type, etc., the tuning must be done again. It is necessary to do this.

これはプラズマ処理装置の作業性を低下させるのみなら
ず、プラズマ処理装置のマイクロ波整合手段を複雑なも
のとしている。
This not only reduces the workability of the plasma processing apparatus, but also complicates the microwave matching means of the plasma processing apparatus.

なおガスの圧力が2Torr程度以下の場合にはマイク
ロ波の吸収効率が低下して、マイクロ波の整合が一段と
重要になる。
Note that when the gas pressure is about 2 Torr or less, the microwave absorption efficiency decreases, and microwave matching becomes even more important.

〔問題点を解決するための手段〕[Means for solving problems]

前記問題点は、マイクロ波を伝播する導波管内圧おいて
、マイクロ波の進行方向と平行な方向に反応ガスをビー
ム状忙吹出してプラズマ生成を行なう本発明によるプラ
ズマ処理装置により解決される。
The above-mentioned problem is solved by the plasma processing apparatus according to the present invention, which generates plasma by blowing out a reactive gas in a beam shape in a direction parallel to the direction of propagation of microwaves at the internal pressure of a waveguide in which microwaves are propagated.

〔作用〕[Effect]

本発明のプラズマ処理装置においては、所要の反応ガス
を導波管内のマイクロ波進行方向に平行な方向にビーム
状に吹出す構造とする。ただしガスの吹出し方向はマイ
クロ波の入射方向と同一でも反対でもよい。
The plasma processing apparatus of the present invention has a structure in which a required reaction gas is blown out in a beam shape in a direction parallel to the direction of microwave propagation within a waveguide. However, the blowing direction of the gas may be the same as or opposite to the direction of incidence of the microwave.

吹出されたガスビームはがなりの長さまで吹出し方向に
進行してその周囲より高密度、高圧力の状態を形成する
。従ってこのガスビームはマイクロ波の電界が最大であ
る腹の部分を通り、ここで高い効率でプラズマが生成さ
れる。
The blown gas beam travels in the blowing direction to a long length, forming a state of higher density and higher pressure than its surroundings. Therefore, this gas beam passes through the antinode part where the electric field of the microwave is maximum, and plasma is generated here with high efficiency.

ガス種の変更等によってインピーダンスが変化しマイク
ロ波の波長が伸縮した場合においても腹の位置を調整す
る必要はない。
There is no need to adjust the position of the antinode even if the impedance changes due to a change in gas type and the microwave wavelength expands or contracts.

またビーム部分はプラズマ処理圧力より高圧となり、前
記の2Torr程度以下の圧力の場合に効率が向上する
効果が得られる。
Further, the beam portion has a higher pressure than the plasma processing pressure, and when the pressure is about 2 Torr or less, an effect of improving efficiency can be obtained.

〔実施例〕〔Example〕

以下本発明を第1図に模式断面図を示す実施例によって
具体的に説明する。
The present invention will be specifically explained below by referring to an embodiment whose schematic cross-sectional view is shown in FIG.

図において、lはマイクロ波導波管、2はガス導管、3
は隔壁、4はプラズマ処理室を示す。反で示す如きビー
ム5を形成する。また例えば周波数2.45GH2のマ
イクロ波が、本実施例においては隔壁3を透過してガス
吹出し口に同って入射する。
In the figure, l is a microwave waveguide, 2 is a gas conduit, and 3 is a microwave waveguide.
4 indicates a partition wall, and 4 indicates a plasma processing chamber. A beam 5 as shown by the arrow is formed. Further, in this embodiment, microwaves having a frequency of 2.45 GH2, for example, pass through the partition wall 3 and simultaneously enter the gas outlet.

ビーム状に吹出した反応ガスは主としてマイクロ波の電
界の腹の位置でプラズマ化して、隔壁3で区切られた導
波管l内に拡がり、活性種を含む中性ガスが開口6を通
過してプラズマ処理室4内に導かれる。
The reactant gas blown out in a beam shape turns into plasma mainly at the antinode of the electric field of the microwave and spreads into the waveguide l separated by the partition wall 3, and the neutral gas containing active species passes through the opening 6. It is guided into the plasma processing chamber 4.

本実施例の装置に、シリコン(St)のエツチング処理
に用いる4弗化炭゛素(CF’4’)に酸素(02)を
約20%添加したガスを前記の如くに吹出させ、プラズ
マ処理室内の圧力を0.5Torr程度とする。
A gas prepared by adding about 20% oxygen (02) to carbon tetrafluoride (CF'4') used for etching silicon (St) was blown into the apparatus of this example as described above, and plasma processing was performed. The pressure in the room is about 0.5 Torr.

2.45 GHz 、 L KWのマイクロ波を本実施
例の装置に整合させた場合に、前記ガスについて反射波
は22乃至30%程度である。先に第2図(a)に示し
た従来例の装置では、前述の整合を実施しても反射波は
45乃至55チ程度に達するのに対して、本実施例では
大幅な効率改善が達成されているー 〔発明の効果〕 以上説明した如く本発明によれば、マイクロ波プラズマ
処理装置のマイクロ波の腹の位置を整合する必要がなく
、操作が極めて簡単忙なり、かつガス種の変更等に起因
するインピーダンスの変化に対して再整合を必要としな
い。
When microwaves of 2.45 GHz and L KW are matched to the apparatus of this embodiment, the reflected waves of the gas are about 22 to 30%. In the conventional device shown in FIG. 2(a), the reflected waves reach approximately 45 to 55 inches even if the above-mentioned matching is performed, whereas this embodiment achieves a significant efficiency improvement. [Effects of the Invention] As explained above, according to the present invention, there is no need to align the position of the microwave antinode of the microwave plasma processing apparatus, and the operation is extremely simple and time-consuming, and it is easy to change the gas type, etc. does not require rematching due to impedance changes.

またマイクロ波パワーの効率向上が、2Torr程度以
下の場合に特に顕著である。従って高効率で安定してプ
ラズマが生成されて、半導体IC等のプラズマプロセス
に寄与することができる。
Further, the efficiency improvement of microwave power is particularly remarkable when the power is about 2 Torr or less. Therefore, plasma is generated stably with high efficiency and can contribute to plasma processes for semiconductor ICs and the like.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例を示す模式断面図、第2図は従
来例を示す模式図である。 図において、lはマイクロ波導波管、2はガス導管、3
は隔壁、4はプラズマ処理室、5はガスビーム、6は開
口を示す。 泰1目 v−2昭 1rイア0鉤X 手続補正書C自発ン 昭和   年   IiIコ ロQ、s、’2s 1事件の表示 昭和す1手持許願第1個394号 3 補正をする者 事件との関係     特許出願人 住所 神奈川県用崎市中祿区j―小口j中1015番地
(522)名称富士通株式会社 4、代  理  人     住所 神奈川県用崎山中
原区上小81中1015番地8、補正の内容別紙の轡ト (1)明細書第6頁第16行目の「第2図(a)」を「
第2図(b)」と補正する。
FIG. 1 is a schematic sectional view showing an embodiment of the present invention, and FIG. 2 is a schematic diagram showing a conventional example. In the figure, l is a microwave waveguide, 2 is a gas conduit, and 3 is a microwave waveguide.
4 indicates a partition wall, 4 indicates a plasma processing chamber, 5 indicates a gas beam, and 6 indicates an opening. Tai 1st v-2 Showa 1r Ia 0 hook Related Patent Applicant Address: 1015-8 Koguchi J-Naka, Nakaku-ku, Yosaki City, Kanagawa Prefecture (522) Name: Fujitsu Limited 4, Agent Address: 1015-8, Kami Elementary School, 81 Nakahara Ward, Yosakiyama, Kanagawa Prefecture, Contents of Amendment Attachment (1) "Figure 2 (a)" on page 6, line 16 of the specification
2(b)".

Claims (1)

【特許請求の範囲】[Claims]  マイクロ波を伝播する導波管内において、マイクロ波
の進行方向と平行な方向に反応ガスをビーム状に吹出し
てプラズマ生成を行なうことを特徴とするプラズマ処理
装置。
A plasma processing apparatus that generates plasma by blowing out a reactive gas in a beam shape in a direction parallel to the direction of propagation of microwaves in a waveguide that propagates microwaves.
JP14484484A 1984-07-12 1984-07-12 Plasma treatment device Pending JPS6134942A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14484484A JPS6134942A (en) 1984-07-12 1984-07-12 Plasma treatment device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14484484A JPS6134942A (en) 1984-07-12 1984-07-12 Plasma treatment device

Publications (1)

Publication Number Publication Date
JPS6134942A true JPS6134942A (en) 1986-02-19

Family

ID=15371734

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14484484A Pending JPS6134942A (en) 1984-07-12 1984-07-12 Plasma treatment device

Country Status (1)

Country Link
JP (1) JPS6134942A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0327908A (en) * 1989-06-26 1991-02-06 Babu Hitachi Kogyo Kk Control device for core drill

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58202532A (en) * 1982-05-21 1983-11-25 Hitachi Ltd Microwave plasma discharge tube

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58202532A (en) * 1982-05-21 1983-11-25 Hitachi Ltd Microwave plasma discharge tube

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0327908A (en) * 1989-06-26 1991-02-06 Babu Hitachi Kogyo Kk Control device for core drill

Similar Documents

Publication Publication Date Title
KR100291152B1 (en) Plasma generating apparatus
US5111111A (en) Method and apparatus for coupling a microwave source in an electron cyclotron resonance system
JP3217274B2 (en) Surface wave plasma processing equipment
US4851630A (en) Microwave reactive gas generator
KR20100024323A (en) Plasma processing apparatus
KR0174070B1 (en) Plasma treatment device and plasma treatment method
WO2006120904A1 (en) Surface wave excitation plasma processing system
JP4678905B2 (en) Plasma processing equipment
JP4381001B2 (en) Plasma process equipment
JPS6134942A (en) Plasma treatment device
JPH0729889A (en) Microwave plasma treatment processing equipment
Leprince et al. Microwave excitation technology
JP3156492B2 (en) Plasma processing apparatus and plasma processing method
JP3806752B2 (en) Microwave discharge generator and method for treating environmental pollutant gas
JPH09293599A (en) Plasma treating method and device
JPH0217636A (en) Dry etching device
JP2595128B2 (en) Microwave plasma processing equipment
JP2857090B2 (en) Microwave-excited plasma processing equipment
JPS5941838A (en) Microwave plasma device
JPH1145799A (en) Plasma processing device
JP2001044175A (en) Plasma processing apparatus
KR100771508B1 (en) Microwave plasma electric discharging system
JPH10107011A (en) Plasma processing apparatus
JP2001326216A (en) Plasma processing device
JP2972507B2 (en) Microwave plasma processing equipment