JPS6134879Y2 - - Google Patents

Info

Publication number
JPS6134879Y2
JPS6134879Y2 JP11756183U JP11756183U JPS6134879Y2 JP S6134879 Y2 JPS6134879 Y2 JP S6134879Y2 JP 11756183 U JP11756183 U JP 11756183U JP 11756183 U JP11756183 U JP 11756183U JP S6134879 Y2 JPS6134879 Y2 JP S6134879Y2
Authority
JP
Japan
Prior art keywords
circuit
thyristor
field winding
voltage
load
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP11756183U
Other languages
Japanese (ja)
Other versions
JPS5947300U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP11756183U priority Critical patent/JPS5947300U/en
Publication of JPS5947300U publication Critical patent/JPS5947300U/en
Application granted granted Critical
Publication of JPS6134879Y2 publication Critical patent/JPS6134879Y2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Control Of Eletrric Generators (AREA)

Description

【考案の詳細な説明】 本考案は負荷が進み力率負荷となつた場合の交
流発電機の制御装置に係り、特に進み力率負荷が
進行したような場合でも発電機自体の短絡比を比
較的小さくでき、且つ安定した動作を行なう事が
できる制御装置を提供しようとするものである。
[Detailed description of the invention] The present invention relates to a control device for an alternator when the load advances and becomes a power factor load, and in particular compares the short circuit ratio of the generator itself even when the leading power factor load advances. The object of the present invention is to provide a control device that can be made smaller in size and can operate stably.

一般に発電機の出力母線に複数の負荷群が接続
され、これら負荷群で一部の負荷が大幅に変動し
た場合とか、さらに高周波発電機で被加熱物を誘
導加熱する場合に、タンク回路のワーキングコイ
ルが何らかの原因で断線したような場合、負荷は
進み力率となつて発電機は周知の如く電機子電流
によつて生ずる起磁力と界磁磁束とが相加つて自
励現象を呈し、発電機出力電圧は異常に上昇して
発電機巻線の絶縁破壊,巻線焼損等の重大事故を
誘発するばかりでなく、異常電圧そのものが負荷
群に非常な脅威となる。この種自励現象を第1図
に示す従来回路例で具体的に説明する。
In general, when multiple load groups are connected to the output bus of a generator, and some of the loads fluctuate significantly in these load groups, or when heating objects by induction with a high-frequency generator, tank circuit If the coil is disconnected for some reason, the load will lead to a power factor, and as is well known, the generator will exhibit a self-excitation phenomenon due to the addition of the magnetomotive force generated by the armature current and the field magnetic flux, and the generator will not be able to generate electricity. Not only does the machine output voltage rise abnormally, causing serious accidents such as dielectric breakdown and burnout of the generator windings, but the abnormal voltage itself poses a serious threat to the load group. This type of self-excitation phenomenon will be specifically explained using an example of a conventional circuit shown in FIG.

第1図の従来装置は交流励磁機の界磁巻線を2
界磁とする事により、負荷である大容量の誘導電
動機が始動した場合でも発電機自体は電圧回復特
性が非常に優れている等の理由により、一般に使
用されている回路例であるが、同図AGは発電機
の電機子,F1はその界磁巻線を示し、EXは交流
励磁機の電機子でF2,F3はその第1,第2の界
磁巻線を示している。発電機の界磁巻線F1と交
流励磁機の電機子EXとは同一軸上に配置され、
この回転部にダイオードをグレーツ結線した回転
整流器Rf2が塔載されて、この回転整流器Rf2は周
知の如く励磁機電機子出力を整流する為のもので
ある。
The conventional device shown in Figure 1 has two field windings of an AC exciter.
This is a commonly used circuit example, because by using a field, the generator itself has very good voltage recovery characteristics even when the load, a large-capacity induction motor, starts. Figure AG shows the armature of the generator, F 1 shows its field winding, and EX shows the armature of the AC exciter, F 2 and F 3 show its first and second field windings. . The field winding F 1 of the generator and the armature EX of the AC exciter are arranged on the same axis,
A rotary rectifier Rf 2 in which diodes are connected in Graetz connection is mounted on this rotating part, and this rotary rectifier Rf 2 is used to rectify the exciter armature output as is well known.

CTは負荷電流に比例した電流を取出す為の電
力用変流器でこの変流器CTの二次側には整流回
路Rf1が設けられ、この整流回路Rf1は取出された
電流を整流してこの整流出力を以つて励磁機の第
1の界磁巻線F2を一定励磁するものである。
AVRは自動電圧調整装置で周知の如く基準値と
電圧検出量とを比較してこの比較結果による偏差
量を以つて、次記する整流回路Rf3のサイリスタ
群を適宜点弧制御して励磁機の第2の界磁巻線
F3に供給する励磁電流を調整し、間接的に発電
機出力電圧を指令通りに自動的にコントロールす
るものである。なお第2の整流回路Rf3は一般的
にはサイリスタをグレーツ結線したもの、或はサ
イリスタとダイオードとを混合ブリツジ接続した
構成となつている。
CT is a power current transformer for extracting a current proportional to the load current. A rectifier circuit Rf 1 is provided on the secondary side of this current transformer CT, and this rectifier circuit Rf 1 rectifies the extracted current. The rectified output of the lever is used to constantly excite the first field winding F2 of the exciter.
As is well known in the automatic voltage regulator, the AVR compares the reference value and the voltage detection amount, and uses the deviation amount based on the comparison result to appropriately control the firing of the thyristor group of the rectifier circuit Rf 3 described below to control the excitation. the second field winding of
It adjusts the excitation current supplied to F 3 and indirectly controls the generator output voltage automatically according to the command. The second rectifier circuit Rf 3 generally has a configuration in which thyristors are connected in a Graetz connection, or a thyristor and a diode are connected in a mixed bridge.

さてこのように構成して成る従来装置の定常時
の動作は周知であるので省略するものとし、先ず
負荷が進み力率負荷となつた場合の動作を簡単に
説明する。進み力率負荷となつた場合周知の如く
発電機は自励現象を呈し発電機出力電圧は異常に
上昇する。従つて発電機出力電圧を電圧設定指令
量通りに維持制御すべく、自動電圧調整装置
AVRは第2の整流回路Rf3のサイリスタの点弧角
を次第に進めて行つて、可能な限り励磁機の第2
の界磁巻線F3に供給する励磁電流を絞ろうとす
る動作を行なう。しかしながらこのように励磁電
流をできるだけ絞ろうと第2の整流回路Rf3のサ
イリスタ群の点弧角を限度一杯に拡げようとして
も、発電機出力電圧は一向に思惑通りには仲々低
下せず遂にはサイリスタ群は制御不能となつてし
まう。
Now, since the operation of the conventional device configured as described above during steady state is well known, the description thereof will be omitted, and first, the operation when the load advances and becomes a power factor load will be briefly explained. As is well known, when a leading power factor load occurs, the generator exhibits a self-excitation phenomenon and the generator output voltage increases abnormally. Therefore, in order to maintain and control the generator output voltage according to the voltage setting command amount, an automatic voltage regulator is used.
The AVR gradually advances the firing angle of the thyristor of the second rectifier circuit Rf 3 and , as far as possible,
An operation is performed to reduce the excitation current supplied to the field winding F3 . However, even if we tried to widen the firing angle of the thyristor group of the second rectifier circuit Rf 3 to the maximum limit in order to narrow down the excitation current as much as possible, the generator output voltage did not decrease at all as expected, and finally the thyristor The group becomes uncontrollable.

このように第1図の従来装置は負荷が例え進み
力率負荷となつた場合でもある程度の制御は可能
で多少の進み負荷は取れるものである。進み力率
負荷を取れる割合を発電機自体の短絡比で述べて
みるに、第2図は縦軸に短絡電流ISを横軸に励
磁電流IFを夫々取つた場合の、発電機の三相短
絡特性aと第1の整流回路Rf1より励磁機の第1
の界磁巻線F2に流れる励磁電流特性bとの関係
を示したもので、短絡比SRは周知の如く任意の
短絡電流値I0に対する励磁電流(界磁電流)I2
比であるからSR=I0/I2で表わせる。
As described above, in the conventional device shown in FIG. 1, even if the load becomes a leading power factor load, it is possible to control the load to a certain extent, and the leading load can be taken to some extent. To express the rate at which a leading power factor load can be taken in terms of the short-circuit ratio of the generator itself, Figure 2 shows the short-circuit current I S on the vertical axis and the excitation current I F on the horizontal axis. From the phase short circuit characteristic a and the first rectifier circuit Rf 1 , the first
The short circuit ratio SR is the ratio of the exciting current (field current) I 2 to any short circuit current value I 0 as is well known. Therefore, it can be expressed as SR=I 0 /I 2 .

この第2図で励磁電流特性bが上方で曲つてい
るのは飽和の為であつて、さらに負荷群で一部の
負荷が短絡事故を生じたような場合、周知の如く
発電機は略数秒間に渡つて持続短絡電流を流せ得
なくてはならない。従つて持続短絡電流を流し得
る条件としては第2図の関係図でb曲線はa直線
の下になければならない。
The reason why the excitation current characteristic b curves upward in Fig. 2 is due to saturation, and if some of the loads in the load group cause a short-circuit accident, as is well known, the generator It must be capable of carrying a sustained short-circuit current for a duration of 2 seconds. Therefore, the condition for allowing a sustained short circuit current to flow is that curve b must be below straight line a in the relationship diagram of FIG.

今、電力用変流器CTの飽和を無視すると持続
短絡電流を流す為には第2図のa直線とb直線と
を一致させればよい。こうした状態で進み力率負
荷をαPUだけとると電力用変流器CTより励磁機
の第1の界磁巻線F2に供給される電流はαI2であ
る。一方、必要な界磁電流は略々I0−αI2である
から、αI2≦I0−αI2…の関係がないと過励磁
となつて発電機出力電圧は上つてしまう。従つて
式に短絡比SR=I0/I2を代入して上記式より
αを求めるとα=SR/2…となる。この式
は何を意味するのかといえばとりも直さず短絡比
に対する進み力率負荷の取れる割合を示し、上記
式の関係式が成立しなければ発電機は過励磁を
なつてしまう。
Now, ignoring the saturation of the power current transformer CT, in order to flow a sustained short-circuit current, it is only necessary to match the a line and the b line in Fig. 2. In this state, if the leading power factor load is α PU , the current supplied from the power current transformer CT to the first field winding F 2 of the exciter is αI 2 . On the other hand, since the required field current is approximately I 0 −αI 2 , unless the relationship αI 2 ≦I 0 −αI 2 . . . is not present, overexcitation will occur and the generator output voltage will rise. Therefore, when α is calculated from the above formula by substituting the short circuit ratio SR=I 0 /I 2 into the formula, α=SR/2... is obtained. What this formula means is that it indicates the ratio of the leading power factor load to the short circuit ratio, and if the above relational expression does not hold, the generator will become overexcited.

この認識に立つて発電機が取り得る進み力率負
荷の割合を具体的に述べてみるに、近年発電機の
小型化に伴ない短絡比SRは周知の如く小さくな
る傾向にある。現在では短絡比は一般に0.3〜0.4
程度の機械が多く、従つて発電機が取り得る進み
力率負荷αは上記式よりα=0.15〜0.2となり
たかだか20%しか取れない。実際は電力用変流器
CTの飽和があるので最、小さくなるのは明らか
である。このように従来装置のものは電力用変流
器の飽和を無視すれば発電機自体の短絡比の1/2
に相当する値の進み力率負荷を取れるものである
が、進み力率負荷を限度一杯に取り得たとしても
励磁制御系の第2の整流回路Rf3はのサイリスタ
群が制御不能に陥入るので、取り得る進み力率負
荷は略10〜15%位の値となる事は申すまでもな
い。
Based on this understanding, let us specifically describe the ratio of leading power factor load that a generator can take.As it is well known, in recent years, as generators have become smaller, the short-circuit ratio SR has been decreasing. Currently, the short circuit ratio is generally 0.3 to 0.4
Therefore, the leading power factor load α that the generator can take is only 20% at most, which is α=0.15 to 0.2 from the above formula. Actually a power current transformer
It is obvious that the value becomes smaller due to the saturation of CT. In this way, with conventional equipment, if the saturation of the power current transformer is ignored, the short circuit ratio of the generator itself is 1/2
However, even if the leading power factor load can be taken to the maximum limit, the thyristor group in the second rectifier circuit Rf 3 of the excitation control system will become uncontrollable. Needless to say, the possible leading power factor load is approximately 10 to 15%.

このような従来装置の欠点を解決すべく例えば
第1図の回路例で第2の整流回路Rf3が正励磁の
みの機能しか持ち合せていないのに対して、この
第2の整流回路Rf3に逆励磁を行なう機能を付加
せしめて、進み力率負荷の場合、第2の整流回路
Rf3が併持する逆励磁機能を以つて励磁機EXの第
2のの界磁巻線F3に逆励磁電流を供給して、発
電機出力電圧の異常を抑制し進み力率負荷が進行
した場合でも制御面で安定性を有する方法が提案
されている。しかしながらこの従来のものは第2
の整流回路の構成として、例えば正励磁を行なう
部分と逆励磁を行なう部分とは同一構成でなけれ
ばならず、高価なサイリスタ素子及びダイオード
素子を2倍も必要とするので装置自体は非常に不
経済となる事である。
In order to solve these drawbacks of conventional devices, for example, in the circuit example shown in FIG. 1, the second rectifier circuit Rf 3 has only the function of forward excitation, whereas this second rectifier circuit Rf In the case of a leading power factor load, the second rectifier circuit is
With the reverse excitation function that Rf 3 has, it supplies a reverse excitation current to the second field winding F 3 of the exciter EX, suppressing abnormalities in the generator output voltage and increasing the leading power factor load. A method has been proposed that provides stability in terms of control even when However, this conventional method is second
As for the configuration of the rectifier circuit, for example, the part that performs forward excitation and the part that performs reverse excitation must have the same configuration, which requires twice as many expensive thyristor elements and diode elements, making the device itself very expensive. It's about the economy.

本考案はこの点に鑑みて考案されたものであつ
て、特に、本考案は励磁機の第1の界磁巻線に所
定の電流成分を与える整流回路の端子間に、サイ
リスタと積分回路よりなる並列回路を並設して、
短絡比が従来装置と同一の場合でもより多くの進
み負荷をとることができ、さらに過電圧を防止で
きる制御装置を得ることにあり以下第3図に示す
実施例に基づき詳述する。
The present invention has been devised in view of this point, and in particular, the present invention is designed to connect a thyristor and an integrating circuit between the terminals of a rectifier circuit that provides a predetermined current component to the first field winding of the exciter. By installing parallel circuits in parallel,
The purpose of this invention is to obtain a control device that can take a larger lead load and prevent overvoltage even when the short-circuit ratio is the same as that of the conventional device, and will be described in detail below based on the embodiment shown in FIG.

第3図の実施例で第1図と同一のものは同一符
号を付しており、本願のものは例えば第1の整流
回路Rf1の直流出力側にこの整流回路Rf1に抵抗
R1とコンデンサC1との直列回路と、サイリスタ
Sとから成る並列回路を並列接続せしめた事を回
路上の一特徴とし、抵抗R1−コンデンサC1の直
列回路は積分機能を併持し例えば励磁機EXの第
1の界磁巻線F2の界磁電圧のピーク値を制限す
る為に挿入されたものであつて、一方サイリスタ
Sは定常運転時は励磁機EXの第1の界磁巻線F2
の界磁電圧FVをある所要値に保持せしめて、発
電機界磁に供給する励磁電流のベース分を確保し
て、負荷が進み力率負荷となつた場合のみサイリ
スタSを点弧する事により第1の整流回路Rf1
短絡して、電力用変流器CTより第1の界磁巻線
F2に流れ込む励磁電流を全て抑えようとする所
定の動作を行なうもので、このサイリスタSの点
弧回路は第4図に示すように発電機出力母線U,
V及びWより端子電圧に関連する信号を取出す電
圧検出用変成器Tを設け、この変成器Tより取出
される電圧成分を整流する整流回路Rf4とダブル
ベースダイオードUJT等より成る弛張発振回路
とで構成され、コンデンサC2−可変抵抗VR1の回
路は弛張発振回路の発振周期を決定する時定数回
路である。PTはパルストランスでサイリスタS
のゲート信号を得る為のものである。なおこの発
振回路の同期は第1の界磁巻線F2に同期回路SC
を挿入してこの回路を通してとるようにしてい
る。
In the embodiment shown in FIG. 3, the same parts as in FIG .
One feature of the circuit is that a series circuit consisting of R 1 and capacitor C 1 and a parallel circuit consisting of thyristor S are connected in parallel, and the series circuit of resistor R 1 and capacitor C 1 also has an integral function. For example, the thyristor S is inserted to limit the peak value of the field voltage of the first field winding F2 of the exciter EX, while the thyristor S is inserted to limit the peak value of the field voltage of the first field winding F2 of the exciter EX. Magnetic winding F2
By keeping the field voltage F V at a certain required value, securing the base portion of the excitation current supplied to the generator field, and firing the thyristor S only when the load progresses and becomes a power factor load. The first rectifier circuit Rf 1 is short-circuited, and the first field winding is connected to the power current transformer CT.
It performs a predetermined operation to suppress all the excitation current flowing into F2 , and the ignition circuit of this thyristor S is connected to the generator output bus U, as shown in Figure 4.
A voltage detection transformer T is provided to take out a signal related to the terminal voltage from V and W, and a relaxation oscillation circuit consisting of a rectifier circuit Rf 4 that rectifies the voltage component taken out from this transformer T, a double base diode UJT, etc. The circuit of capacitor C 2 and variable resistor VR 1 is a time constant circuit that determines the oscillation period of the relaxation oscillation circuit. PT is a pulse transformer and thyristor S
This is to obtain the gate signal. Note that the synchronization of this oscillation circuit is performed by connecting the first field winding F2 to the synchronization circuit SC.
is inserted and taken through this circuit.

さてこのように構成して成る本実施例の動作を
第5図のタイムチヤート図を参照しながら詳述す
ると、先ず定常時の動作は端子電圧検出用変成器
Tより取出される端子電圧に関連する電圧成分を
第3の整流回路Rf4で一旦整流して、この整流出
力で時定数回路のコンデンサC2が略々入力電源
電圧値までチヤージされる。このチヤージ電圧V
C2がダブルベースダイオードUJTの先頭点電圧に
達するとダブルベースダイオードUJTが導通
し、コンデンサC2にチヤージされている電荷は
ダブルベースダイオードUJT→バルストランス
PTの経路を通してデスチヤージされパルストラ
ンスPTの二次側には急峻な立上り波形のパルス
信号が得られる。このパルス信号をサイリスタS
のゲート信号として利用するものであるが、サイ
リスタSが点弧すると第1の整流回路Rf1はこの
サイリスタSにより短絡されるので励磁機EXの
第1の界磁巻線F2に供給される励磁電流は遮断
され、これにより第1の界磁巻線F2の界磁電圧
VはサイリスタSが点弧した時点で零となる。
Now, the operation of this embodiment configured as described above will be explained in detail with reference to the time chart shown in FIG. This voltage component is once rectified by the third rectifier circuit Rf 4 , and the rectified output charges the capacitor C 2 of the time constant circuit to approximately the input power supply voltage value. This charge voltage V
When C2 reaches the voltage at the top point of the double base diode UJT, the double base diode UJT becomes conductive, and the electric charge charged in the capacitor C2 is transferred from the double base diode UJT to the pulse transformer.
A pulse signal with a steep rising waveform is obtained on the secondary side of the pulse transformer PT by being descharged through the path of the PT. Thyristor S
When the thyristor S fires, the first rectifier circuit Rf 1 is short-circuited by the thyristor S, so it is supplied to the first field winding F 2 of the exciter EX. The excitation current is cut off, so that the field voltage F V of the first field winding F 2 becomes zero when the thyristor S fires.

従つて励磁機EXの第1の界磁巻線F2の界磁電
圧FVをある所要値に保持したい場合は、サイリ
スタSの点弧時点、即ち弛張発振回路の発振周期
を規制する時定数を適宜調整すればよい。
Therefore, if it is desired to maintain the field voltage F V of the first field winding F 2 of the exciter EX at a certain required value, the time constant that regulates the firing point of the thyristor S, that is, the oscillation period of the relaxation oscillation circuit may be adjusted accordingly.

このような定常時の動作を示したものが第5図
のタイムチヤート図で、このタイムチヤート図で
第5図Bは時定数回路のコンデンサ電圧VC2を、
同様に第5図CはサイリスタSに供給するゲート
信号VGの波形を夫々示しており、この第5図よ
り明らかなようにサイリスタSが点弧した時点で
第1の界磁巻線F2の界磁電圧FVは第5図Aの如
く零となつて、界磁に供給する励磁電流の内ベー
ス分を変えたい場合はサイリスタSの点弧時点を
任意に変えればよい事は明らかである。
The time chart in Fig. 5 shows such steady state operation, and in this time chart, Fig. 5B shows the capacitor voltage V C2 of the time constant circuit,
Similarly, FIG. 5C shows the waveforms of the gate signal V G supplied to the thyristor S, and as is clear from FIG. 5, when the thyristor S is fired, the first field winding F 2 The field voltage F V becomes zero as shown in Figure 5A, and it is clear that if you want to change the base portion of the excitation current supplied to the field, you can arbitrarily change the firing point of the thyristor S. be.

このように定常時はサイリスタSの点弧時点を
任意に選択する事によつて界磁が必要とする励磁
電流の内でベース分のみを確保するようにし、発
電機出力電圧を電圧設定指令量通りに保持すべく
界磁に供給する励磁電流の調整は、自動電圧調整
装置AVR→第2の整流回路Rf3の励磁系を介して
行なうようにしたものである。
In this way, in steady state, by arbitrarily selecting the firing point of the thyristor S, only the base portion of the excitation current required by the field is secured, and the generator output voltage is adjusted to the voltage setting command amount. Adjustment of the excitation current supplied to the field in order to keep the field constant is performed via the excitation system of the automatic voltage regulator AVR→the second rectifier circuit Rf3 .

さて何らかの原因で負荷が進み負荷となつた場
合の動作を述べると、進み負荷となつた検出は、
例えば従来周知の力率検出装置PFを利用するよ
うにするか或は本考案者が実開昭53−146916号
(実願昭52−52848号)で既に提案しているよう
に、励磁制御系のサイリスタ、例えば第3図の実
施例であれば第2の整流回路Rf3のサイリスタ群
の制御進み角又は制御遅れ角を検出して、これら
制御角が基準値以下であれば進み力率負荷に突入
したと判断するようにした力率検出装置を利用し
てもよい。
Now, to describe the operation when the load advances and becomes a load for some reason, the detection of the advance load is as follows:
For example, the conventional well-known power factor detector PF may be used, or the excitation control system may be modified as already proposed by the present inventor in Utility Model Application No. 53-146916 (Utility Application No. 52848). For example, in the embodiment of FIG. 3, the control lead angle or control delay angle of the thyristor group of the second rectifier circuit Rf 3 is detected, and if these control angles are less than the reference value, the leading power factor load is detected. It is also possible to use a power factor detection device that determines that the vehicle has entered the area.

このように検出装置で負荷が進み力率負荷であ
る旨を検出されると、この検出信号で第3図のサ
イリスタSを直にフル点弧(導通しつ放し)する
ようにする。この場合上記検出信号で第4図に示
すサイリスタSの点弧回路を不動作とすべくこの
点弧回路を何らかの手段で短絡する事は申すまで
もない。
In this manner, when the load progresses and the detection device detects that it is a power factor load, the thyristor S shown in FIG. 3 is immediately fully fired (conducted and released) in response to this detection signal. In this case, it goes without saying that the detection signal should be used to short-circuit the ignition circuit of the thyristor S shown in FIG. 4 by some means in order to make it inoperable.

このように励磁機EXの一方の界磁巻線の励磁
を遮断した状態で、次に自動電圧調整装置AVR
→第2の整流回路Rf3→励磁機EXの第2の界磁巻
線F3の励磁系を介して、第2の整流回路Rf3のサ
イリスタ群の制御角を徐々に絞つて行つて第2の
界磁巻線F3に供給する励磁電流を極力絞ろうと
する動作を行なうものである。
With the excitation of one field winding of the exciter EX cut off in this way, next the automatic voltage regulator AVR
→ Second rectifier circuit Rf 3 → The control angle of the thyristor group of the second rectifier circuit Rf 3 is gradually narrowed down through the excitation system of the second field winding F 3 of the exciter EX. This is an operation to reduce the excitation current supplied to the second field winding F3 as much as possible.

このように励磁機EXの一方の界磁巻線の励磁
は遮断して他方の界磁巻線に供給する励磁電流を
絞ると、一方の界磁巻線の励磁が遮断された事に
よる発電機出力電圧の低下と相俟つて他方の界磁
巻線に供給する励磁電流を極力絞ろうとするの
で、自励現象による異常電圧を効果的に抑制でき
る事になる。即ち先ず始めは励磁機EXの第1の
界磁巻線F2の界磁電圧を零とするので、これに
より発電機出力電圧は低下しこの低下した状態で
励磁制御系を介して第2の界磁巻線F3に供給す
る励磁電流を絞ろうとするので、例え進み力率負
荷が進行したような場合でも、本考案によれば第
2の整流回路Rf3のサイリスタ群が制御不能にな
るまでの範囲を拡大でき、従来装置に比しより以
上の進み力率負荷を取り得るものである。
In this way, if the excitation of one field winding of the exciter EX is cut off and the excitation current supplied to the other field winding is reduced, the generator In combination with the decrease in output voltage, the excitation current supplied to the other field winding is tried to be reduced as much as possible, so that abnormal voltage due to self-excitation phenomenon can be effectively suppressed. That is, first of all, the field voltage of the first field winding F2 of the exciter EX is set to zero, so the generator output voltage decreases, and in this decreased state, the second field voltage is applied via the excitation control system. Since an attempt is made to throttle the excitation current supplied to the field winding F3 , even if a leading power factor load progresses, according to the present invention, the thyristor group of the second rectifier circuit Rf3 becomes uncontrollable. It is possible to expand the range of up to 100 kW, and it is possible to take a higher leading power factor load than conventional devices.

このように本考案によれば第2の整流回路とし
て単に正励磁機能のみを有するものを適用しても
所期の目的を達成できるものであるが、以上の説
明は回転整流器としてダイオードをブリツジ接続
した場合を述べたが、例えば回転整流器としてサ
イリスタのみを純ブリツジ接続したもの或はサイ
リスタとダイオードとの混合ブリツジ接続したも
のを適用し、且つ第2の整流回路をダイオードで
ブリツジ接続した構成の励磁系にも本方法を適用
できる事は申すまでもなく、さらに第1の界磁巻
線F2の界磁電圧FVのピーク値を制限する回路と
して抵抗R1−コンデンサC1の直列回路を適用し
た場合を述べたが、この直列回路は単に積分機能
のみを有していれば良いのでコンデンサのみの回
路であつても動作上何ら支障はない。
As described above, according to the present invention, the desired purpose can be achieved even if a circuit having only a forward excitation function is applied as the second rectifier circuit, but the above explanation is based on bridge-connecting diodes as a rotary rectifier. For example, we have described the case where a pure bridge connection of only thyristors or a mixed bridge connection of thyristors and diodes is applied as a rotary rectifier, and the excitation has a configuration in which the second rectifier circuit is bridge connected with diodes. It goes without saying that this method can also be applied to a system, and furthermore, a series circuit of resistor R 1 and capacitor C 1 can be used as a circuit to limit the peak value of the field voltage F V of the first field winding F 2 . Although the application case has been described, since this series circuit only needs to have an integrating function, there is no problem in operation even if it is a circuit consisting only of capacitors.

さらに本実施例で第1の整流回路Rf1としてダ
イオードをブリツジ接続した単相用で構成した場
合を述べたが、この理由は整流回路の出力側に挿
入されるサイリスタSを自然消弧できないので整
流回路を単相とした訳であるが、例えばサイリス
タSを強制消弧する為に強制消弧回路を新たに設
ければ、整流回路Rf1を三相のもので構成しても
よく、さらにサイリスタSの代わりにゲートでオ
ン−オフできるゲートターンオフサイリスタを用
いれば、整流回路として三相用の構成であつても
よい。
Furthermore, in this embodiment, a case has been described in which the first rectifier circuit Rf 1 is configured with a single-phase bridge-connected diode, but the reason for this is that the thyristor S inserted on the output side of the rectifier circuit cannot be turned off naturally. Although the rectifier circuit is a single-phase one, for example, if a new forced extinguishing circuit is provided to forcibly extinguish the thyristor S, the rectifier circuit Rf 1 may be configured as a three-phase one. If a gate turn-off thyristor that can be turned on and off by a gate is used instead of the thyristor S, the rectifier circuit may have a three-phase configuration.

以上のように本考案に於ては、励磁機の界磁を
2界磁とした構成のもので電力用変流器より取り
込む電流成分を第1の界磁巻線に励磁電流として
供給する系に、整流回路を短絡するサイリスタS
を設けて、このサイリスタを定常時は単にオン−
オフ制御して界磁に供給する励磁電流の内で固定
的なベース量を確保し、負荷が進み力率負荷とな
つた場合のみ上記サイリスタSを単にフル点弧し
て第1の界磁巻線に供給する励磁電流を遮断し
て、この動作と併行して自動電圧調整装置の励磁
制御系を介して第2の界磁巻線に供給する励磁電
流を極力絞るような制御を行なうようにしたもの
である。従つて、本考案によれば以下に示すよう
な種々の効果を奏する。
As described above, in the present invention, the field of the exciter is configured as two fields, and the system supplies the current component taken in from the power current transformer to the first field winding as an exciting current. thyristor S short-circuiting the rectifier circuit
This thyristor is simply turned on during normal operation.
A fixed base amount is ensured in the excitation current supplied to the field by off-control, and only when the load advances and becomes a power factor load, the thyristor S is simply fully fired and the first field winding is turned off. The excitation current supplied to the line is cut off, and in parallel with this operation, control is performed to minimize the excitation current supplied to the second field winding via the excitation control system of the automatic voltage regulator. This is what I did. Therefore, the present invention provides various effects as shown below.

短絡比が小さい場合でも進み力率負荷を従来
装置に比しより以上取れるので、発電機自体は
一層小型化でき非常に経済的な装置を実現でき
る。
Even when the short-circuit ratio is small, the leading power factor load can be taken more than in the conventional device, so the generator itself can be further downsized and a very economical device can be realized.

進み力率負荷が進行した場合でも動作上非常
に安定しており、特に負荷が頻繁に進み力率負
荷となるような場合に本装置を適用すれば如何
なくその特徴を発揮できる。
It is very stable in operation even when a leading power factor load progresses, and this feature can be fully utilized if this device is applied especially when the load frequently advances and becomes a power factor load.

自動電圧調整装置の出力を以つて動作する励
磁制御系の整流回路は、単に正励磁の機能のみ
を有するものであればよいので一層装置自体は
コスト面で有利なものを提供できる。
Since the rectifier circuit of the excitation control system operated by the output of the automatic voltage regulator only has to have a forward excitation function, the apparatus itself can be provided with a further cost advantage.

定常時に場合によつては界磁電圧が異常に上
昇する場合がままあるが、積分機能を有した回
路をサイリスタSと並列接続しているのでこの
回路により界磁電圧のピーク値が制限され、界
磁巻線の焼損或は界磁が高電圧になつた場合に
他のパーツ品(特に整流回路)に及ぼす影響を
緩和できる。
In some cases, the field voltage may rise abnormally during normal operation, but since a circuit with an integral function is connected in parallel with the thyristor S, this circuit limits the peak value of the field voltage. If the field winding burns out or the field becomes high voltage, the influence on other parts (especially the rectifier circuit) can be alleviated.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は交流励磁機の界磁を2界磁とした場合
の従来装置を示す具体的な回路構成図、第2図は
発電機の三相短絡特性と励磁電流特性との関係を
示す短絡電流IS−励磁電流特性図、第3図は本
考案による一実施例を示す具体的な回路構成図、
第4図は本願に係るサイリスタの点弧回路を示す
具体的な回路図、第5図は本考案の動作を示すタ
イムチヤート図。 AGは発電機の電機子,F1はその界磁巻線,EX
は交流励磁機の電機子,F2,F3はその界磁巻
線,Rf1,Rf3及びRf4は整流回路,Rf2は回転整流
器,AVRは自動電圧調整装置,SCは同期回路,
CTは電力用変流器,Tは電源トランス,UJTは
ダブルベースダイオード,Sはサイリスタ,PF
は力率検出器。
Figure 1 is a specific circuit configuration diagram showing a conventional device when the field of the AC exciter is set to two fields, and Figure 2 is a short circuit diagram showing the relationship between the three-phase short circuit characteristics and exciting current characteristics of the generator. Current IS - excitation current characteristic diagram, FIG. 3 is a specific circuit configuration diagram showing an embodiment of the present invention,
FIG. 4 is a specific circuit diagram showing a thyristor ignition circuit according to the present invention, and FIG. 5 is a time chart showing the operation of the present invention. AG is the generator armature, F 1 is its field winding, EX
is the armature of the AC exciter, F 2 and F 3 are its field windings, Rf 1 , Rf 3 and Rf 4 are the rectifier circuits, Rf 2 is the rotary rectifier, AVR is the automatic voltage regulator, SC is the synchronous circuit,
CT is a power current transformer, T is a power transformer, UJT is a double base diode, S is a thyristor, PF
is a power factor detector.

Claims (1)

【実用新案登録請求の範囲】 (1) 交流発電機の負荷電流に比例した電流成分を
整流して交流励磁機の第1の界磁巻線に供給す
る第1の整流回路と、この回路に並列接続され
交流発電機の界磁電圧のピーク値を制限する積
分回路と、前記整流回路に並列接続されたサイ
リスタと、該サイリスタを定常時に所定の周期
でオン−オフ制御する点弧回路と、前記発電機
の負荷力率を検出して設定した進み力率負荷時
に前記サイリスタをフル点弧させる力率検出器
と、発電機の端子電圧に比例した電圧成分を整
流して交流励磁機の第2の界磁巻線に供給する
一方向性の第2の整流回路と、交流励磁機の電
機子出力を整流して発電機の界磁巻線に供給す
る一方向性の回転整流器と、発電機の端子に接
続され該電圧に比例した電圧検出信号と基準値
との偏差量を零にするように前記交流発電機の
界磁巻線の供給電流を調整する自動電圧調整回
路とを備えたことを特徴とする交流発電機の制
御装置。 (2) サイリスタとしてゲートでオン−オフできる
ゲートターンオフサイリスタを適用して、且つ
第1の整流回路としてダイオードを三相ブリツ
ジ接続した回路で構成するようにした実用新案
登録請求の範囲第1項に記載の交流発電機のの
制御装置。
[Claims for Utility Model Registration] (1) A first rectifier circuit that rectifies a current component proportional to the load current of an AC generator and supplies it to a first field winding of an AC exciter; an integrating circuit that is connected in parallel and limits the peak value of the field voltage of the alternator; a thyristor that is connected in parallel to the rectifier circuit; and an ignition circuit that controls the thyristor on and off at a predetermined period during steady state. A power factor detector detects the load power factor of the generator and fully fires the thyristor at a set leading power factor load; a unidirectional second rectifier circuit that supplies the field winding of the AC exciter to the field winding of the generator; an automatic voltage adjustment circuit that is connected to a terminal of the alternator and adjusts the current supplied to the field winding of the alternator so as to zero the deviation between a voltage detection signal proportional to the voltage and a reference value. An alternator control device characterized by the following. (2) Claim 1 of the utility model registration application applies a gate turn-off thyristor that can be turned on and off with a gate as a thyristor, and the first rectifier circuit is configured with a circuit in which diodes are connected in a three-phase bridge. A control device for the alternator described.
JP11756183U 1983-07-28 1983-07-28 AC generator control device Granted JPS5947300U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11756183U JPS5947300U (en) 1983-07-28 1983-07-28 AC generator control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11756183U JPS5947300U (en) 1983-07-28 1983-07-28 AC generator control device

Publications (2)

Publication Number Publication Date
JPS5947300U JPS5947300U (en) 1984-03-29
JPS6134879Y2 true JPS6134879Y2 (en) 1986-10-09

Family

ID=30270571

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11756183U Granted JPS5947300U (en) 1983-07-28 1983-07-28 AC generator control device

Country Status (1)

Country Link
JP (1) JPS5947300U (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012212777A1 (en) 2012-07-20 2014-01-23 Wobben Properties Gmbh Method for controlling a wind farm
JP2019092330A (en) * 2017-11-16 2019-06-13 Ntn株式会社 Brushless synchronous generator

Also Published As

Publication number Publication date
JPS5947300U (en) 1984-03-29

Similar Documents

Publication Publication Date Title
US4051425A (en) Ac to dc power supply circuit
EP3068023B1 (en) Inrush limiter for motor drive ac/ac power converters
JPS6146195A (en) Induction motor power controller
EP0114274A1 (en) Control and stabilizing system for damperless synchronous motor
JPH0767393A (en) Overvoltage protecting device for variable-speed pumped-storage power generation system
US4482852A (en) Motor slip controller for AC motors
US3564391A (en) Rotating alternating current generator system
US4704570A (en) Power controller
US2719259A (en) Regulating system for alternating current generators
Landis A static power supply for induction heating
JPS6134879Y2 (en)
JP6538530B2 (en) Excitation device for synchronous machine, power storage device, and excitation method
KR100216015B1 (en) Output voltage control device of ac generator
US4629960A (en) Induction motor controller
KR100846201B1 (en) Automatic voltage regulator for ship generator
US6934169B2 (en) Method of controlling half-controlled rectifier, and rectifier structure
WO2004098038A1 (en) Method of controlling half-controlled rectifier, and rectifier structure
KR100311322B1 (en) Internal combustion engine-driven discharge lamp lighting device
US4173039A (en) Current based power supply
GB2100894A (en) Motor slip controller for AC induction motor
JPS603680Y2 (en) Protection circuit for exciter for alternator
JPS62135269A (en) Rush-current preventive circuit
JPH0136358B2 (en)
US4314324A (en) Transformer power supply having an inductively loaded full wave rectifier in the primary
JPS6123760B2 (en)