JPS6134619B2 - - Google Patents

Info

Publication number
JPS6134619B2
JPS6134619B2 JP54105962A JP10596279A JPS6134619B2 JP S6134619 B2 JPS6134619 B2 JP S6134619B2 JP 54105962 A JP54105962 A JP 54105962A JP 10596279 A JP10596279 A JP 10596279A JP S6134619 B2 JPS6134619 B2 JP S6134619B2
Authority
JP
Japan
Prior art keywords
ion
chemically sensitive
bias voltage
reference electrode
selectively
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54105962A
Other languages
Japanese (ja)
Other versions
JPS5630640A (en
Inventor
Kyozo Koshiishi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Optical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Optical Co Ltd filed Critical Olympus Optical Co Ltd
Priority to JP10596279A priority Critical patent/JPS5630640A/en
Publication of JPS5630640A publication Critical patent/JPS5630640A/en
Publication of JPS6134619B2 publication Critical patent/JPS6134619B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Description

【発明の詳細な説明】 本発明は、同一または異なる基板上に形成さ
れ、それぞれ異なる特定物質に選択的に感応する
化学感応部を有する複数の絶縁ゲート形トランジ
スタ構造の化学感応素子を、少く共その化学感応
部を1個の参照電極と共に同一被検物質に接触さ
せて、該被検物質中の種々の特定物質を検出する
絶縁ゲート形トランジスタ構造の化学感応素子を
用いた化学物質の検出方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides chemically sensitive elements having a plurality of insulated gate transistor structures formed on the same or different substrates and each having a chemically sensitive part selectively sensitive to different specific substances. A method for detecting a chemical substance using a chemical sensitive element having an insulated gate transistor structure, in which the chemical sensitive element is brought into contact with the same test substance together with one reference electrode to detect various specific substances in the test substance. It is related to.

従来、電解効果型トランジスタのゲート部に、
特定の化学物質に感応する化学感応部を形成して
各種のイオン、ガス、酵素、抗原や抗体等を検出
する化学感応素子が種々提案されている。かかる
化学感応素子には、1つの半導体基板に1つの特
定の化学物質に選択的に感応する化学感応部を形
成したものと、それぞれ異なる化学物質に選択的
に感応する複数の化学感応部を形成したものとが
ある。このような化学感応素子、例えばイオンセ
ンサーを用いて血清等の被検液中の特定イオン濃
度や活量を検出する方法も従来種々提案されてい
る。第1図は本願人が先に特願昭53―43862号
(特公昭60―21344号公報)において提案したイオ
ン濃度の測定回路の一例の構成を示す線図で、被
検液中の特定イオン濃度に感応するイオンセンサ
ーのソース・ドレイン間に所定の電流が流れるよ
うに、参照電極に印加するバイアス電圧を制御
し、そのバイアス電圧値に基いて被検液中の特定
イオン濃度や活量を検出するようにしたものであ
る。第1において、容器1に収容された被検液2
中には、イオンセンサー3を少く共その化学感応
部4を参照電極5と共に浸漬して配置されてい
る。イオンセンサー3のドレイン端子6には、電
源7を接続して一定電圧を印加すると共に、ソー
ス端子8およびイオンセンサー3を構成する半導
体基板9は抵抗10を経て接地する。また、参照
電極5にはバイアス電源を含む電位制御回路11
が接続され、この電位制御回路11によりソース
端子8の電位が所定の電位となるように、すなわ
ちソース・ドレイン間に所定の電流が流れるよう
にバイアス電圧が制御され、そのときの電圧値を
出力端子12,13間においてバルボル等で検出
するよう構成されている。かかるイオン濃度測定
回路によれば、イオンセンサー3を定電流で動作
させるものであるから、動作が安定であると共
に、イオン濃度に応じた界面電位の微小な変化を
高精度で検出することができる利点がある。
Conventionally, in the gate part of a field effect transistor,
Various chemically sensitive elements have been proposed that detect various ions, gases, enzymes, antigens, antibodies, etc. by forming chemically sensitive portions that are sensitive to specific chemical substances. Such chemically sensitive elements include those in which a chemically sensitive part selectively sensitive to one specific chemical substance is formed on one semiconductor substrate, and those in which a plurality of chemically sensitive parts each selectively sensitive to different chemical substances are formed. There are some things that I did. Various methods have been proposed in the past for detecting the concentration and activity of specific ions in test liquids such as serum using such chemically sensitive elements, such as ion sensors. Figure 1 is a diagram showing the configuration of an example of an ion concentration measurement circuit proposed earlier by the applicant in Japanese Patent Application No. 53-43862 (Japanese Patent Publication No. 60-21344). The bias voltage applied to the reference electrode is controlled so that a predetermined current flows between the source and drain of the concentration-sensitive ion sensor, and the concentration and activity of specific ions in the sample solution are determined based on the bias voltage value. It is designed to be detected. In the first step, the test liquid 2 contained in the container 1
Inside, an ion sensor 3 and a chemically sensitive part 4 are immersed together with a reference electrode 5. A power source 7 is connected to the drain terminal 6 of the ion sensor 3 to apply a constant voltage, and the source terminal 8 and the semiconductor substrate 9 constituting the ion sensor 3 are grounded via a resistor 10. Further, the reference electrode 5 includes a potential control circuit 11 including a bias power supply.
is connected, and the bias voltage is controlled by the potential control circuit 11 so that the potential of the source terminal 8 becomes a predetermined potential, that is, a predetermined current flows between the source and drain, and the voltage value at that time is output. It is configured to detect with a bulb or the like between the terminals 12 and 13. According to such an ion concentration measurement circuit, since the ion sensor 3 is operated with a constant current, the operation is stable and minute changes in the interfacial potential depending on the ion concentration can be detected with high precision. There are advantages.

一方、生化学分野においては、一般に同一被検
液から多項目のイオン濃度や活量を測定する場合
が多い。この場合の測定法の1つとして、同一被
検液を複数の容器に分注して、それぞれ第1図に
示す測定回路を構成して多チヤンネルで測定する
方法が考えられる。しかし、この方法は各項目の
イオン濃度や活量を独立に測定するため多量の被
検液が必要になると共に、操作が面倒であり、特
に同一半導体基板にそれぞれ異なるイオンに感応
する複数の化学感応部を形成したイオンセンサー
を用いる場合には、その機能を十分発揮すること
ができない欠点がある。このような欠点は、イオ
ンセンサーのみでなく、ガスセンサー、酵素セン
サー、免疫センサー等についても同様である。
On the other hand, in the field of biochemistry, it is common to measure multiple ion concentrations and activities from the same sample solution. One possible measurement method in this case is to dispense the same test liquid into a plurality of containers, configure a measurement circuit as shown in FIG. 1 in each container, and perform multichannel measurement. However, this method requires a large amount of test liquid to measure the ion concentration and activity of each item independently, and is cumbersome to operate. When using an ion sensor in which a sensitive part is formed, there is a drawback that its function cannot be fully demonstrated. These drawbacks apply not only to ion sensors, but also to gas sensors, enzyme sensors, immunosensors, and the like.

本発明の目的は、上述した欠点を除去し、同一
セル内で、したがつて少量の被検物質量で多項目
の特定の化学物質を容易に検出できる絶縁ゲート
形トランジスタ構造の化学感応素子を用いた化学
物質の検出方法を提供せんとするにある。
An object of the present invention is to provide a chemically sensitive element with an insulated gate transistor structure that eliminates the above-mentioned drawbacks and can easily detect multiple specific chemical substances in the same cell with a small amount of analyte. The purpose is to provide a method for detecting the chemical substances used.

本発明は同一または異なる基板上に形成され、
それぞれ異なる特定物質に選択的に感応する化学
感応部を有する複数の絶縁ゲート形トランジスタ
構造の化学感応素子を、少く共その化学感応部を
1個の参照電極と共に同一被検物質に接触させ
て、該被検物質中の種々の特定物質を検出するに
あたり、前記各化学感応素子のソース・ドレイン
間に所定の電流が流れるように、前記参照電極に
印加するバイアス電圧を選択的に制御し、そのバ
イアス電圧値に基いて前記被検物質中の種々の特
定物質を選択的に検出することを特徴とするもの
である。
The invention may be formed on the same or different substrates,
A plurality of chemically sensitive elements each having a chemically sensitive part selectively sensitive to different specific substances, each having a structure of an insulated gate transistor, are brought into contact with the same test substance, at least all of the chemically sensitive parts together with one reference electrode, In detecting various specific substances in the test substance, the bias voltage applied to the reference electrode is selectively controlled so that a predetermined current flows between the source and drain of each chemically sensitive element. This method is characterized in that various specific substances in the test substance are selectively detected based on the bias voltage value.

以下図面を参照して本発明を詳細に説明する。 The present invention will be described in detail below with reference to the drawings.

第2図は本発明方法を実施する検出装置の一例
の構成を示す線図である。この検出装置は容器2
0内に収容された被検液21中の3項目のイオン
濃度や活量を測定するものである。容器20内に
は、本例では同一半導体基板に形成され、それぞ
れ異なる所望の3種のイオンに選択的に感応する
絶縁ゲート形トランジスタ構造のイオンセンサー
22の各イオン感応部23,24および25を被
検液21に接触させて配置すると共に参照電極2
6を被検液21内に浸漬して配置する。各イオン
感応部を構成するイオンセンサーのドレイン端子
Dには共通の電源27を接続して一定の直流電圧
を印加し、またソース端子Sおよび半導体基板K
は、切換スイツチ28および基準抵抗29を経て
接地する。一方、参照電極26には電位制御回路
30を接続し、この電位制御回路30により参照
電極26に印加するバイアス電圧値を、基準抵抗
29の点の電位が各イオン感応部を構成するイ
オンセンサーに対して予じめ定めた所定の電位と
なるように、すなわち各イオン感応部を構成する
イオンセンサーのソース・ドレイン間にそれぞれ
所定の電流が流れるように制御するよう構成す
る。このため、本例では、点の電圧を差動増幅
器32の一方の入力端子に供給し、他方の入力端
子には切換スイツチ33を経て、各イオン感応部
を構成するイオンセンサーに対応して基準電圧源
34,35および36を接続してそれぞれ所定の
電圧を切り換えて供給するようにし、この差動増
幅器32の出力によつて駆動回路37を介して点
の電位が所定の電位となるようにバイアス電圧
源31を制御するよう構成した。このときのバイ
アス電圧値は、出力端子38,39において図示
しない測定手段、例えば電圧計あるいは増幅器等
を介してレコーダ・デジタルボルトメータ等によ
り測定する。なお、切換スイツチ28および33
は、制御装置40により各イオン感応部を構成す
るイオンセンサーの作動に対応して同期して切り
換えるよう構成する。
FIG. 2 is a diagram showing the configuration of an example of a detection device that implements the method of the present invention. This detection device
The ion concentrations and activities of three items in the test liquid 21 contained in the test liquid 21 are measured. Inside the container 20, in this example, each ion sensing part 23, 24, and 25 of an ion sensor 22 of an insulated gate transistor structure, which is formed on the same semiconductor substrate and selectively senses three different desired types of ions, are installed. The reference electrode 2 is placed in contact with the test liquid 21 and
6 is placed immersed in the test liquid 21. A common power source 27 is connected to the drain terminal D of the ion sensor constituting each ion sensing section to apply a constant DC voltage, and the source terminal S and the semiconductor substrate K
is grounded via the changeover switch 28 and the reference resistor 29. On the other hand, a potential control circuit 30 is connected to the reference electrode 26, and the bias voltage value applied to the reference electrode 26 is controlled by the potential control circuit 30 so that the potential at the point of the reference resistor 29 is applied to the ion sensor constituting each ion sensing section. In other words, control is performed so that a predetermined potential is applied to the ion sensor, that is, a predetermined current flows between the source and drain of the ion sensor constituting each ion sensing section. Therefore, in this example, the voltage at the point is supplied to one input terminal of the differential amplifier 32, and the voltage at the other input terminal is supplied to the other input terminal via the changeover switch 33, and is applied to the reference voltage corresponding to the ion sensor constituting each ion sensing section. Voltage sources 34, 35, and 36 are connected to each switch to supply a predetermined voltage, and the output of the differential amplifier 32 is used to bring the potential at a point to a predetermined potential via a drive circuit 37. The bias voltage source 31 was configured to be controlled. The bias voltage value at this time is measured at the output terminals 38 and 39 by a recorder, digital voltmeter, etc. via a measuring means (not shown) such as a voltmeter or an amplifier. In addition, the changeover switches 28 and 33
are configured to be switched synchronously by the control device 40 in accordance with the operation of the ion sensors constituting each ion sensing section.

第2図に示す検出装置においては、制御装置4
0により切換スイツチ28,33を同期して順次
に切り換えれば、それぞれについて参照電極26
には、点の電位が予じめ定めた所定の電位とな
るバイアス電圧が印加される。したがつて、測定
すべき各オンに対して濃度が既知の異なる2種類
の液について、予じめ第2図と同じ構成の検出装
置において、点の電位が予じめ定めた所定の電
位、すなわちソース・ドレイン間に所定の電流が
流れたときのバイアス電圧値をそれぞれ測定して
おけば、これらバイアス電圧値と、イオン濃度が
未知の被検液21に対して測定したバイアス電圧
値とから、被検液21中の特定イオン濃度や活量
を求めることができる。
In the detection device shown in FIG.
If the changeover switches 28 and 33 are switched synchronously and sequentially with 0, the reference electrode 26
A bias voltage is applied so that the potential at the point becomes a predetermined potential. Therefore, for two types of liquids whose concentrations are known for each of the liquids to be measured, in a detection device having the same configuration as that shown in FIG. In other words, by measuring the bias voltage values when a predetermined current flows between the source and drain, the bias voltage value can be calculated from these bias voltage values and the bias voltage value measured for the test liquid 21 with unknown ion concentration. , the specific ion concentration and activity in the test liquid 21 can be determined.

なお、出力端子38,39におけるバイアス電
圧値の測定は、制御装置40により切換スイツチ
28,33を所望回数繰り返し制御したのち行な
うこともできる。この場合、出力端子38,39
において各イオン感応部を構成するイオンセンサ
ーに対するバイアス電圧値が順次繰り返し測定さ
れることになるから、各イオン感応部の応答速度
に応じて、切換スイツチ28,33を繰り返し制
御した後、各イオン感応部に対するバイアス電圧
値を読み取る。このようにすれば、各イオン感応
部が平衡状態に達する時間を短縮することができ
ると共に、繰り返し制御の所望回数目において各
イオンセンサーに対するバイアス電圧値をほぼぼ
同時に測定することができる。
The bias voltage values at the output terminals 38 and 39 can also be measured after the control device 40 repeatedly controls the changeover switches 28 and 33 a desired number of times. In this case, output terminals 38, 39
Since the bias voltage values for the ion sensors constituting each ion sensing section are repeatedly measured in sequence, the changeover switches 28 and 33 are repeatedly controlled according to the response speed of each ion sensing section, and then each ion sensing section is Read the bias voltage value for the section. In this way, the time required for each ion sensing section to reach an equilibrium state can be shortened, and the bias voltage values for each ion sensor can be measured almost simultaneously at the desired number of repeated controls.

第3図および第4図はそれぞれ本発明方法を実
施する検出装置の他の2つの例の構成を示す線図
であり、第3図に示す検出装置は、切換スイツチ
28を各イオン感応部を構成するイオンセンサー
のドレイン端子Dと電源27との間に設けた点の
みが第2図に示す検出装置と異なるものである。
また第4図に示す検出装置は、各イオン感応部を
構成するイオンセンサーをそのインピーダンスに
応じて所望のソース・ドレイン電流で作動させる
ようにしたものであり、このため各センサーのソ
ース端子Sを切換スイツチ28およびインピーダ
ンスに応じた基準抵抗29A,29B,29Cを
経て接地したものである。この場合には、各基準
抵抗における電圧降下、すなわち点の電位を互
いに等しくすることができ、したがつて電位制御
回路30の差動増幅器32の他方の入力端子には
1つの基準電圧源41を接続すればよい。
FIGS. 3 and 4 are diagrams showing the configurations of two other examples of the detection apparatus for carrying out the method of the present invention, and the detection apparatus shown in FIG. The only difference from the detection device shown in FIG. 2 is that it is provided between the drain terminal D of the ion sensor and the power source 27.
Furthermore, the detection device shown in FIG. 4 is designed to operate the ion sensors constituting each ion sensing section with a desired source/drain current according to its impedance, and for this purpose, the source terminal S of each sensor is It is grounded via a changeover switch 28 and reference resistors 29A, 29B, and 29C depending on the impedance. In this case, the voltage drops in each reference resistor, that is, the potentials at the points, can be made equal to each other, and therefore one reference voltage source 41 is connected to the other input terminal of the differential amplifier 32 of the potential control circuit 30. All you have to do is connect.

上述したように本発明によれば、同一セル内に
収容した被検液中にそれぞれ異なるイオンに選択
的に感応する複数のイオンセンサーと共通の1つ
の参照電極とを同時に浸漬し、各イオンセンサー
を定電流で作動させるように、参照電極に印加す
るバイアス電圧を選択的に制御するものであるか
ら、簡単な操作により高精度の検出ができると共
に、被検液の量も少量で済む。
As described above, according to the present invention, a plurality of ion sensors selectively sensitive to different ions and a common reference electrode are simultaneously immersed in a test liquid housed in the same cell, and each ion sensor is Since the bias voltage applied to the reference electrode is selectively controlled so as to operate the reference electrode with a constant current, highly accurate detection can be performed with simple operations, and the amount of sample liquid required is small.

なお、本発明は上述した例にのみ限定されるも
のではなく、幾多の変更または変形が可能であ
る。例えば、上述した検出装置においては、いず
れも同一半導体基板にそれぞれ異なるイオンに選
択的に感応する複数のイオン感応部を形成したイ
オンセンサーを用いたが、各イオン感応部をそれ
ぞれ独立した半導体基板に形成したイオンセンサ
ーを用いることもできる。また、被検液をフロー
セルに導いて測定する場合でも本発明を有効に適
用することができる。更に、電位制御回路30は
上述した構成にのみ限定されるものではなく、
種々の変形が可能である。更にまた、本発明は上
述した各種イオン濃度や活量の検出の他、化学感
応素子としてガスセンサー、酵素センサー、免疫
センサー等を用いることにより、それぞれ所望の
化学物質を有効に検出することができる。
Note that the present invention is not limited to the above-mentioned example, and can be modified or modified in many ways. For example, the above-mentioned detection devices all use ion sensors in which multiple ion-sensing parts that are selectively sensitive to different ions are formed on the same semiconductor substrate, but each ion-sensing part is formed on an independent semiconductor substrate. A formed ion sensor can also be used. Furthermore, the present invention can be effectively applied even when a test liquid is introduced into a flow cell for measurement. Furthermore, the potential control circuit 30 is not limited to the above-described configuration;
Various modifications are possible. Furthermore, in addition to detecting the various ion concentrations and activities described above, the present invention can effectively detect desired chemical substances by using gas sensors, enzyme sensors, immunosensors, etc. as chemically sensitive elements. .

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本願人が先に提案したイオン濃度測定
回路の一例の構成を示す線図、第2図は本発明方
法を実施する検出装置の一例の構成を示す線図、
第3図は同じく他の例の構成を示す線図、第4図
は同じく更に他の例の構成を示す線図である。 20…容器、21…被検液、22…イオンセン
サー、23,24,25…イオン感応部、26…
参照電極、27…電源、28…切換スイツチ、2
9,29A,29B,29C…基準抵抗、30…
電位制御回路、31…バイアス電圧源、32…差
動増幅器、33…切換スイツチ、34,35,3
6,41…基準電圧源、37…駆動回路、38,
39…出力端子、40…制御装置。
FIG. 1 is a diagram showing the configuration of an example of an ion concentration measuring circuit previously proposed by the applicant, FIG. 2 is a diagram showing the configuration of an example of a detection device implementing the method of the present invention,
FIG. 3 is a diagram showing the configuration of another example, and FIG. 4 is a diagram showing the configuration of still another example. 20... Container, 21... Test liquid, 22... Ion sensor, 23, 24, 25... Ion sensing section, 26...
Reference electrode, 27... Power supply, 28... Changeover switch, 2
9, 29A, 29B, 29C...Reference resistance, 30...
Potential control circuit, 31... Bias voltage source, 32... Differential amplifier, 33... Changeover switch, 34, 35, 3
6, 41... Reference voltage source, 37... Drive circuit, 38,
39...Output terminal, 40...Control device.

Claims (1)

【特許請求の範囲】 1 同一または異なる基板上に形成され、それぞ
れ異なる特定物質に選択的に感応する化学感応部
を有する複数の絶縁ゲート形トランジスタ構造の
化学感応素子を、少く共その化学感応部を1個の
参照電極と共に同一被検物質に接触させて、該被
検物質中の種々の特定物質を検出するにあたり、 前記各化学感応素子のソース・ドレイン間に所
定の電流が流れるように、前記参照電極に印加す
るバイアス電圧を選択的に制御し、そのバイアス
電圧値に基いて前記被検物質中の種々の特定物質
を選択的に検出することを特徴とする絶縁ゲート
形トランジスタ構造の化学感応素子を用いた化学
物質の検出方法。
[Scope of Claims] 1 A plurality of chemically sensitive elements each having a chemically sensitive portion having a chemically sensitive portion selectively sensitive to different specific substances formed on the same or different substrates, each having a plurality of chemically sensitive elements each having a chemically sensitive portion selectively sensitive to different specific substances. in contact with the same test substance together with one reference electrode to detect various specific substances in the test substance, so that a predetermined current flows between the source and drain of each of the chemically sensitive elements, Chemistry of an insulated gate transistor structure, characterized in that a bias voltage applied to the reference electrode is selectively controlled, and various specific substances in the test substance are selectively detected based on the bias voltage value. A method for detecting chemical substances using a sensing element.
JP10596279A 1979-08-22 1979-08-22 Detecting method of chemical substance by chemically sensitive element of insulated-gate transistor structure Granted JPS5630640A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10596279A JPS5630640A (en) 1979-08-22 1979-08-22 Detecting method of chemical substance by chemically sensitive element of insulated-gate transistor structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10596279A JPS5630640A (en) 1979-08-22 1979-08-22 Detecting method of chemical substance by chemically sensitive element of insulated-gate transistor structure

Publications (2)

Publication Number Publication Date
JPS5630640A JPS5630640A (en) 1981-03-27
JPS6134619B2 true JPS6134619B2 (en) 1986-08-08

Family

ID=14421415

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10596279A Granted JPS5630640A (en) 1979-08-22 1979-08-22 Detecting method of chemical substance by chemically sensitive element of insulated-gate transistor structure

Country Status (1)

Country Link
JP (1) JPS5630640A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6039547A (en) * 1983-08-12 1985-03-01 Mitsubishi Electric Corp Multi-enzyme sensor
JPS60120240A (en) * 1983-12-03 1985-06-27 Horiba Ltd Isfet sensor
US5466616A (en) * 1994-04-06 1995-11-14 United Microelectronics Corp. Method of producing an LDMOS transistor having reduced dimensions, reduced leakage, and a reduced propensity to latch-up

Also Published As

Publication number Publication date
JPS5630640A (en) 1981-03-27

Similar Documents

Publication Publication Date Title
US4641084A (en) Ion concentration measuring apparatus
Kukla et al. Multienzyme electrochemical sensor array for determination of heavy metal ions
CA2087720C (en) Method for analytically utilizing microfabricated sensors during wet-up
US4072576A (en) Method for studying enzymatic and other biochemical reactions
Poghossian et al. Detecting both physical and (bio‐) chemical parameters by means of ISFET devices
Desmond et al. An environmental monitoring system for trace metals using stripping voltammetry
Skládal et al. A multichannel immunochemical sensor for determination of 2, 4-dichlorophenoxyacetic acid
JPH11503316A (en) measuring device
EP0096095B1 (en) Semiconductor device, sensor and method for determining the concentration of an analyte in a medium
US8143908B2 (en) Biosensor and a method of measuring a concentration of an analyte within a medium
Schöning et al. Development of a handheld 16 channel pen-type LAPS for electrochemical sensing
US4332658A (en) Chemical substance detection apparatus
US4839000A (en) Buffer compensation in enzyme-modified ion sensitive devices
US3635681A (en) Differential conductivity-measuring apparatus
Poghossian et al. Multi-parameter detection of (bio-) chemical and physical quantities using an identical transducer principle
RU2564516C2 (en) Capacitance measurement method and its application
US6922081B2 (en) Electronic circuit, sensor arrangement and method for processing a sensor signal
JPS6134619B2 (en)
Hirst et al. Electrodes in clinical chemistry
KR890013480A (en) Method and apparatus for measuring analog materials
US4798655A (en) Multiparameter analytical electrode structure and method of measurement
Sujatha et al. Advances in electronic-nose technologies
US4111776A (en) Analytical apparatus and processes
US4066528A (en) Analytical apparatus
EP0241991A2 (en) Field effect transistor having a membrane overlying the gate insulator