JPS6134438A - Testing method of structure - Google Patents

Testing method of structure

Info

Publication number
JPS6134438A
JPS6134438A JP15503784A JP15503784A JPS6134438A JP S6134438 A JPS6134438 A JP S6134438A JP 15503784 A JP15503784 A JP 15503784A JP 15503784 A JP15503784 A JP 15503784A JP S6134438 A JPS6134438 A JP S6134438A
Authority
JP
Japan
Prior art keywords
response
displacement
experiment
behavior
force
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15503784A
Other languages
Japanese (ja)
Inventor
Nobuyuki Sasaki
佐々木 伸幸
Manabu Fujishiro
藤城 学
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP15503784A priority Critical patent/JPS6134438A/en
Publication of JPS6134438A publication Critical patent/JPS6134438A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M5/00Investigating the elasticity of structures, e.g. deflection of bridges or air-craft wings
    • G01M5/0041Investigating the elasticity of structures, e.g. deflection of bridges or air-craft wings by determining deflection or stress
    • G01M5/005Investigating the elasticity of structures, e.g. deflection of bridges or air-craft wings by determining deflection or stress by means of external apparatus, e.g. test benches or portable test systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)

Abstract

PURPOSE:To provide a strength testing method of a structure, by which the total behavior of the structure can be grasped highly precisely and correctly, by using the local structural models having the actual sizes of various kinds of structures, and utilizing the advantages of simulated experiment. CONSTITUTION:A structure 1 is divided into a part 1a, which can be theoretically analyzed, and a part 1b, in which prediction of elastic and plastic deformation and broken parts is difficult and theoretical analysis is also hard. With respect to a part 1a, the behavior of an internal force R against an external force P2 is obtained by using a well known method. Meanwhile, with respect to the part 1b, an experiment using the model of a local structural part is conducted, and the behavior R against an external force P1 is obtained. One result is fed back to the other. In consideration of the mass of the part 1b, the effect of the inertial force of the part 1b is evaluated. the theoretical analysis and the experiment are repeated until the continous condition of the boundary part of both parts is satisfied. Thus the total behavior is obtained.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は各種構造物の外力に対する強度を高精度に測定
することのできる構造物試験方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a structure testing method capable of measuring the strength of various structures against external forces with high precision.

〔従来の技術〕[Conventional technology]

地震等の外力に対する各種構造物の応答を実験的に調べ
、その実験結果から上記構造物の強度を確める新しい構
造実験方法として、仮動的実験法が提唱されている。
A pseudodynamic experiment method has been proposed as a new structural experiment method for experimentally investigating the response of various structures to external forces such as earthquakes, and confirming the strength of the structures based on the experimental results.

この実験法は、複雑な非線形性を有する構造物の荷重・
変形関標である復元力特性を、構造物全体の模型供試体
に対する加力実験によって直接求め、その復元力特性を
計算機にフィードバックする。そして、その復元力の情
報を用いて前記構造物の次の時刻における応答を求めな
がら、時々刻々変化する上記構−物の非線形応答をオン
ライン的にトレースしtいく手法である。従ってこの実
験法にあっては、□時間に対して連続的に推移する実際
の振動現象を、成る微小時間Δtを仮定して、そのΔを
毎の応答としそ再現することになる。□また実際の載荷
に際しては、短時間の振動現象を実時間に対してその時
間軸を数百倍から数千倍に拡大して、準静的に前記模型
供試体に対する加力を行うことになる。
This experimental method applies the load and
The restoring force characteristics, which are indicators of deformation, are directly determined through a force experiment on a model specimen of the entire structure, and the restoring force characteristics are fed back to the computer. This is a method in which the nonlinear response of the structure, which changes from moment to moment, is traced online while determining the response of the structure at the next time using information on the restoring force. Therefore, in this experimental method, an actual vibration phenomenon that changes continuously with respect to time is assumed to be a minute time Δt, and that Δ is used as a response for each time to reproduce the actual vibration phenomenon. □In addition, during actual loading, the time axis of the short-time vibration phenomenon is magnified several hundred to several thousand times compared to real time, and the force is applied quasi-statically to the model specimen. Become.

第3図および第4図はこのような従来の機動的実験の概
要を示すものである。この実験は、第4 ′図に示す如
き構造物1に対して外力Pが作用している場合の上記構
造物1の応力を求めるものであり・、第3図に示すよう
に計算機システム2と上記構造物の実物大の全体模型供
試体3を含む実験システム4とを相互にオンライン的に
結んで行われる。
FIGS. 3 and 4 show an overview of such conventional maneuverability experiments. This experiment is to find the stress in the structure 1 when an external force P is acting on the structure 1 as shown in Fig. 4'. The experiment is carried out by interconnecting an experimental system 4 including a full-scale full-scale model specimen 3 of the above-mentioned structure online.

そしてこの実験は、例えば次のような手順で行われる。This experiment is conducted, for example, in the following manner.

■ 今、計算機システム2において、成る、時刻(nス
テップ)の上記模型供試体3の応答変位  。
■ Now, in the computer system 2, the response displacement of the model specimen 3 at the time (n steps).

(Xn )が、その前の時刻(n−1ステツプ)の応答
変位(Xn−1)、応答加速度(Xn−1)、微小 □
時間間隔(ΔT)、および更にもう1つ前の時刻(n−
2ステツプ)の応答変位(Xn−2)から計算されると
、 ■ この応答変位(Xn )は前記実験システム4の制
御器5に伝えられ、前記模型供試体5に対する指令変位
(Xn )として与えられる。
(Xn) is the response displacement (Xn-1), response acceleration (Xn-1), and minute □ of the previous time (n-1 steps).
time interval (ΔT), and one more previous time (n-
(1) This response displacement (Xn) is transmitted to the controller 5 of the experimental system 4 and given as a command displacement (Xn) to the model specimen 5. It will be done.

■ アクチュエータ6はこの指令変位(Xn )を模型
供試体3に印加し、これによって上記模型供試体3に実
際に発生する変位(xn )が変位計7にて計測される
。この測定を行ないつつ、上記指令変位(Xn )と実
際に計測される変位(xn )との誤差が許容範囲内に
納められる。
(2) The actuator 6 applies this command displacement (Xn) to the model specimen 3, and the displacement (xn) actually generated in the model specimen 3 is measured by the displacement meter 7. While performing this measurement, the error between the commanded displacement (Xn) and the actually measured displacement (xn) is kept within an allowable range.

■ このとき、前記模型供試体3に発生している復元力
(Fn)をロードセル8にて計測し、その計測結果を前
記計算機システム2にフィードバックする。
(2) At this time, the restoring force (Fn) generated in the model specimen 3 is measured by the load cell 8, and the measurement result is fed back to the computer system 2.

■ 計算機システム2では、上記模型供試体3の質量(
m)と上記の如く求められた復元力(Fn )、および
前記外力、(P )の時刻歴から求まるこのステップ(
nステップ)の外力(Pn)とから、このステップにお
ける応答加速度(Xn )を運動方程式から計算する。
■ In the computer system 2, the mass of the model specimen 3 (
m), the restoring force (Fn) obtained as above, and the time history of the external force (P).
From the external force (Pn) of n steps), the response acceleration (Xn) at this step is calculated from the equation of motion.

                ′[■ その後、次
の時刻(n+1ステップ)に対する応答変位(X n+
1 )の計算を行う。この計算は、上記0項で求めた応
答加速度(X’n)、前記0項で求めた応答変位(Xn
)、またこの時点で既知となっているn−1ステツプの
応答変位(Xn−1)を用いて行われる。
′[■ After that, the response displacement (X n+
1) Perform the calculation. This calculation consists of the response acceleration (X'n) found in the 0 term above, the response displacement (X'n) found in the 0 term above,
), and the n-1 step response displacement (Xn-1), which is known at this point, is used.

このような手順を繰返して、各時刻における前記構造物
(模型供試体3)の非線形応答を順にすめて、その強度
の計測が行われる。    、〔発明が解決しようとす
る問題点〕 ところがこのような従来の機動的実験にあっては、次の
ような問題があった。
By repeating such a procedure, the nonlinear response of the structure (model specimen 3) at each time is sequentially progressed, and its strength is measured. , [Problems to be solved by the invention] However, such conventional mobile experiments have had the following problems.

即ち、この場合には構造物の全体の応答を模型供試体3
で再現することが必要であり、模型供試体3の製作費が
極めて高角になることが否めない。
In other words, in this case, the overall response of the structure is determined by model specimen 3.
It is undeniable that the manufacturing cost of the model specimen 3 would be extremely high.

また実構造物が非常に大規模な構造の場合、模型供試体
3も大規模化し、実大規模の模型供試外3を用いた実験
が事実1殆んど不可能となる。従って、所定の比率で縮
小した模型供試体3を用いざるを得ず、復元力特性の再
現が不完全となり、且 ′つその測定精度の低下を招来
した。この為、外力作用時に構造物に発生する複雑な復
元力特性を正確に把握することが困難となり、機動的実
験の利点を十分に生かすことができなかった。
Furthermore, if the actual structure is a very large-scale structure, the model specimen 3 will also be large-scale, making it virtually impossible to conduct experiments using the actual large-scale model specimen 3. Therefore, it was necessary to use a model specimen 3 that was reduced in size at a predetermined ratio, resulting in incomplete reproduction of the restoring force characteristics and a decrease in measurement accuracy. This made it difficult to accurately grasp the complex restoring force characteristics that occur in structures when external forces are applied, and it was not possible to fully utilize the advantages of mobile experiments.

また上記機動的実験は、構造物の構造が比較的単純で、
しかも外力の印加方向が一方向として定まっている場合
にはその高精度な実験が可能であるが、前記実験に供せ
られる構造物が大型の塔状構造物であったり、各種鉄骨
建屋やボイラ支持鉄骨等の複雑な構造を有する場合には
、地震等の外力に対する挙動も複雑化し、外力の入力方
向の変位を計測するだけでは、その挙動を正確に再現す
ることができないと云う不具合があった。つまり構造物
が複雑化すると、精度の高い実験ができなかった。
In addition, in the above-mentioned maneuver experiments, the structure of the structure was relatively simple;
Moreover, if the direction in which the external force is applied is fixed as one direction, highly accurate experiments are possible; When a device has a complex structure such as a supporting steel frame, its behavior in response to external forces such as earthquakes becomes complicated, and there is a problem in that it is not possible to accurately reproduce that behavior just by measuring the displacement in the input direction of the external force. Ta. In other words, as structures became more complex, highly accurate experiments were not possible.

本発明はこのような問題点を鑑みてなされたもので、そ
の目的とするところは、各種構造物の実大規模の局部的
構造模型を用いて、機動的実験の利点を生かしながら、
その構造物の全体的な挙動を高精度に、且つ正確に把握
することのできる実用性の高い構造物強度試験方法を提
供することにある。
The present invention was created in view of these problems, and its purpose is to utilize full-scale local structural models of various structures while taking advantage of mobile experiments.
It is an object of the present invention to provide a highly practical structural strength testing method that can accurately and accurately grasp the overall behavior of the structure.

(問題点を解決するための手段) 本発明は、基本的には、例えば第5図に示すように構造
物1を理論的に解析可能な部分1aと、弾塑性変形や破
断箇所等の予測困難な複雑な非線形特性を呈すると予想
される理論的に解析できない部分1bとに分け、第6図
に示すように上記解析可能な部分1aについては公知の
有限要素法の手法を用いる等して理論解析を行って外力
P2に対する内力Rの挙動を求める共に、上記解析でき
ない部分1bについてはその局部構造部分の模型による
実験を行って外力P1に対する内力Rの挙動を求めるよ
うにし、その一方の結果を他方にフィードバックして両
者の境界における連続条件(内力R)が満足するまで前
記理論解析と実験を繰返し実行して前記構造物の全体の
挙動を求めるようにしたものである。この際、特に前記
局部構造部分1bの質量を考慮して該局部構造部分の応
答に伴う慣性力の効果を評価しながら、前記境界部分の
変位および上記局部構造部分の内部の節点の変位をそれ
ぞれ計測制御して前記理論解析と実験とを繰返し実行す
るようにしたものである。
(Means for Solving the Problems) The present invention basically consists of a portion 1a of a structure 1 that can be analyzed theoretically, as shown in FIG. The analyzable portion 1a is divided into a theoretically unanalyzable portion 1b that is expected to exhibit difficult and complex nonlinear characteristics, and the analyzable portion 1a is analyzed using a known finite element method, etc., as shown in Figure 6. A theoretical analysis is performed to determine the behavior of the internal force R with respect to the external force P2, and for the portion 1b that cannot be analyzed, an experiment is performed using a model of the local structure to determine the behavior of the internal force R with respect to the external force P1. is fed back to the other, and the theoretical analysis and experiment are repeated until the continuity condition (internal force R) at the boundary between the two is satisfied, thereby determining the overall behavior of the structure. At this time, while evaluating the effect of the inertial force accompanying the response of the local structure part, taking into account the mass of the local structure part 1b, the displacement of the boundary part and the displacement of the nodes inside the local structure part are respectively calculated. The above-mentioned theoretical analysis and experiment are repeatedly executed through measurement control.

〔発明の作用とその効果〕[Function of the invention and its effects]

かくして本発明によれば、例えば煙突、送電鉄塔、長大
吊橋主塔、プラントタワー、固定式海上プラットフォー
ム塩の塔状構造物や、ボイラ支持鉄骨、各種架台、各種
鉄骨建屋等の大型鉄骨構造物の外力に対す′る強度を、
理論的に解析可能な部分と理論的に解析できない部分と
に分け、この理論的に解析できない部分についてはその
局部構造模型を用いて実験して、その実験結果と理論的
解析結果との境界条件を満すように上述した処理(実験
と解析)を繰返すことによって前記構造物全体の外力に
対する挙動を把握するので、非線形な挙動を示す前述し
た構造物の外力に対する強度等を高精度に実験測定する
ことが可能となる。
Thus, according to the present invention, large steel structures such as chimneys, power transmission towers, long suspension bridge main towers, plant towers, fixed offshore platform salt tower structures, boiler support steel frames, various frames, and various steel frame buildings, etc. The strength against external force is
Divide into parts that can be analyzed theoretically and parts that cannot be analyzed theoretically, and perform experiments on the parts that cannot be analyzed theoretically using a local structure model to determine the boundary conditions between the experimental results and the theoretical analysis results. By repeating the above-mentioned process (experiment and analysis) to satisfy the above-mentioned conditions, the behavior of the entire structure in response to external forces can be ascertained. Therefore, it is possible to accurately measure the strength, etc. of the above-mentioned structure in response to external forces, which exhibits nonlinear behavior. It becomes possible to do so.

しかも、局部構造部分の質量を考慮してその構造物の応
答に伴う債、性力を評価して前記構造物の挙動を求める
ので、縮尺した局部構造部分の模型を用いて実験を行っ
ても、精度の高い実験結果を得ることが可能となる。故
に、簡易に、且つ、経済的に複雑な構造を有する構造物
に対する実験を行ってその強度を計測することが可能と
なる等の実用上絶大なる効果が奏せられる。
Furthermore, since the behavior of the structure is determined by considering the mass of the local structural part and evaluating the force associated with the response of the structure, it is possible to conduct experiments using a scaled model of the local structural part. , it becomes possible to obtain highly accurate experimental results. Therefore, it is possible to easily and economically carry out experiments on structures having complex structures and measure their strength, which has great practical effects.

〔発明の実施例〕[Embodiments of the invention]

以下、図面を参照して本発明の実施例につき説明する。 Embodiments of the present invention will be described below with reference to the drawings.

                 ゛□第1図は実施
例に係る構造物試験方法の実験手順(構造)を模式的に
示したものである。また第2図は実験に供せられる構造
物の外力P(nll)。
゛□ Fig. 1 schematically shows the experimental procedure (structure) of the structure test method according to the example. Also, Figure 2 shows the external force P (nll) of the structure used in the experiment.

ff1P)に対する応答を求める為の構造を模式的に示
したものである。
ff1P) is a schematic diagram showing a structure for obtaining a response to ff1P).

この第2図に示すように本実施例では、構造物の全体構
造を、塑性化やその他の非線形性の発生が予想される非
線形部分Nと、それ以外の線形解析が可能な線形部分り
と、これらの境界をなす境界部分Bとに分けて実験シス
テムを構築し、特に上記非線形部分Nの局部構造模型を
作製して、これを模型供試体11とする。この模型供試
体11を用いて第1図に示すように模型実験システム1
2と、前記線形部分りの理論的な構造解析等を実行する
計算機システム13とをオンライン的に相互に結んで実
験システム全体が構成される。このとき、上記各部分N
、Lの境界部分Bにおける対応位置での内力Rは、それ
ぞれその大きさが等しく、且つその力の向きが逆方向に
作用した状態となっている(境界条件)。従って、構造
物の外力Pに対する応答は、第2図に示される線形部分
りの節点℃、非線形部分Nの節点n、および境界部分8
の節点0の各応答として求めることができる。
As shown in Fig. 2, in this example, the entire structure of the structure is divided into a nonlinear part N where plasticization and other nonlinearity are expected to occur, and a linear part where other linear analyzes can be performed. , and a boundary portion B that forms the boundary between them, an experimental system is constructed, and a model of the local structure of the nonlinear portion N is particularly prepared, and this is used as a model specimen 11. Using this model specimen 11, a model experiment system 1 is constructed as shown in FIG.
2 and a computer system 13 that performs theoretical structural analysis of the linear portion, etc., are interconnected online to construct the entire experimental system. At this time, each part N
, L at corresponding positions in the boundary portion B are in a state in which the magnitudes of the internal forces R are equal and the directions of the forces are opposite to each other (boundary condition). Therefore, the response of the structure to the external force P is determined by the nodes ℃ of the linear part, the nodes n of the nonlinear part N, and the boundary part 8 shown in FIG.
It can be obtained as each response of node 0 of .

しかしてこの実験は次のようにして行われる。However, this experiment is performed as follows.

先ず、計算機システム13において、線形部分りの節点
多の応答変位<aX> 、上記非線形部分Nの節点nの
応答変位(nX) 、および前記模型供試体11の内部
の節点(第1図中14)に与える指令変位を、運動方程
式から計算する。尚、上記模型供試体11の境界部分B
の節点b(第1図中15)に与える指令変位は、理論解
析によって一意的に定まらないことから、前記計算機シ
ステム13で求められる線形部分りの境界部分の内力と
、模型実験システム12におけ□る非線形部分Nの境界
部分の内力とがその境界条件を満すべく収束した状態に
達するまで実験を繰返してから定める。そして、上記境
界部分Bの節点15の内力が収束した時点で、該節点1
5の実際の応力変位と内力、および非線形部分Nの節点
14における復元力を、変位計16およびロードセル1
7にてそれぞれ測定し、その測定結果を計算機システム
13に与える。
First, in the computer system 13, the response displacement <aX> of the many nodes of the linear part, the response displacement (nX) of the node n of the nonlinear part N, and the internal node (14 in FIG. 1) of the model specimen 11 are calculated. ) is calculated from the equation of motion. In addition, the boundary part B of the model specimen 11
Since the commanded displacement given to node b (15 in Figure 1) cannot be uniquely determined by theoretical analysis, it is determined by the internal force at the boundary of the linear portion determined by the computer system 13 and by the model experiment system 12. □ is determined after repeating experiments until a state is reached where the internal force at the boundary of the nonlinear portion N converges to satisfy the boundary condition. Then, when the internal force of the node 15 of the boundary portion B converges, the node 1
The actual stress displacement and internal force of 5, and the restoring force at the node 14 of the nonlinear portion N are measured by the displacement meter 16 and the load cell 1.
7, and the measurement results are provided to the computer system 13.

このような情報を得て、計算機システム13はそのステ
ップnにおける外力Pnと上記応答変位、内力、および
復元力とから、次のステップにおける上述した各応答変
位をそれぞれ計算する。このような過程を各時刻(各ス
テップ)毎に繰返して実行して前記構造物の応答特性を
求めていくことになる。即ち、 ■ 先ず、計算機システム13において、成る時刻(n
ステップ)における線形部分りの節点℃の応答変位(ρ
Xn)が、その前の時刻(n−1ステツプ)の応答変位
(nXn−1)、応答加速度(nXn−1)、微小時間
間隔(ΔT)、および更にもう1つ前の時刻(n−2ス
テツプ)の応答変位(j2Xn−2)から計算され、ま
た非線形部分Nの節点nの応答変位(nXn)が、その
前の時刻(n−1ステツプ)の応答変位(nXn−1>
 、応答加速度< nXn−1) 、前記微小時間間隔
(ΔT)、および更にもう1つ前の時刻(n−2ステツ
プ)の応答変位(nXn−2)から計算される。この計
算は、例えば公知の中央差分法により運動方程式を積分
することによって一意的に行ない得る。
Obtaining such information, the computer system 13 calculates each of the above-described response displacements in the next step from the external force Pn in step n, the response displacement, internal force, and restoring force. Such a process is repeated at each time (each step) to obtain the response characteristics of the structure. That is, ■ First, in the computer system 13, the time (n
The response displacement (ρ
Xn) is the response displacement (nXn-1) of the previous time (n-1 step), the response acceleration (nXn-1), the minute time interval (ΔT), and one more previous time (n-2 steps). The response displacement (nXn) of the node n of the nonlinear portion N is calculated from the response displacement (j2Xn-2) of the previous time (n-1 step), and the response displacement (nXn-1>
, response acceleration < nXn-1), the minute time interval (ΔT), and the response displacement (nXn-2) at one more previous time (n-2 steps). This calculation can be uniquely performed, for example, by integrating the equation of motion using the known central difference method.

■ この計算機システム13で一意的に計算することの
できない境界部分Bの節点すに対するnステップの応答
変位(bXn)については、その境界部分Bの内力(b
fn)が不明であることから、前述した模型実験システ
ム12を用いた実験の繰返しによって上記内力を収束さ
せた状態を得てから近似計算を施して、境界部分Bの応
答変位(bXn)、および内力(bfn)を求める。つ
まり、n−1ステツプに゛おける内力(bfn−1)を
、nステップにおける1次近似計算された内力(bfn
)’ として計算する。
■ Regarding the n-step response displacement (b
Since fn) is unknown, the response displacement (bXn) of the boundary portion B is obtained by repeating the experiment using the model test system 12 described above to obtain a state in which the internal force is converged, and then performing an approximate calculation. Find the internal force (bfn). In other words, the internal force (bfn-1) at the n-1 step is converted into the internal force (bfn-1) calculated by the linear approximation at the n-step
)'.

■ 次にこの1次近似計算された内力 (bfn)’ と、前記線形部分りの剛性(K ffi
 )と、前記節点βの応答変位(βXn)とから、境界
部分Bの節点すの応答変位の1次近似値(bXn)を計
算する。
■ Next, this linear approximation calculated internal force (bfn)' and the stiffness of the linear section (K ffi
) and the response displacement (βXn) of the node β, a first-order approximate value (bXn) of the response displacement of the node S in the boundary portion B is calculated.

■ このようにして求められた各節点の応答変位(nX
n )、  (bXn )を前記模型実験システム12
の制御器18.19に伝え、前記模型供試体11に対す
る指令変位として与える。
■ The response displacement of each node obtained in this way (nX
n), (bXn) in the model experiment system 12
controllers 18 and 19, and gives it as a command displacement to the model specimen 11.

■ このような制御器18.19からの指令変位を受け
て、アクチュエータ20は非線形部分Nの節点n(第1
図、中14)に対して上記指令変位(nXn)を印加し
、アクチュエータ21は境界部分Bの節点b(第1図中
15)に対して上記指令変位(bXn)を印加している
。これによって上記模型供試体11に実際に発生する変
位(nxn )、  (bxn )が前記変位計16に
てそれぞれ計測される。この測定を行ないつつその実験
が繰返し実行されて、上記指令変位(nXn)と実際に
計測される変位(nXn)との誤差、および上記指令変
位(bXn)と実際に計測される変位(bxn)との誤
差がそれぞれ許容範囲内に納められる。
■ In response to the command displacement from the controllers 18 and 19, the actuator 20 moves to the node n (first
The commanded displacement (nXn) is applied to the node b (15 in FIG. 1) of the boundary portion B, and the actuator 21 applies the commanded displacement (bXn) to the node b (15 in FIG. 1) of the boundary portion B. As a result, the displacements (nxn) and (bxn) actually generated in the model specimen 11 are measured by the displacement meter 16, respectively. The experiment is repeated while performing this measurement, and the error between the commanded displacement (nXn) and the actually measured displacement (nXn), and the difference between the commanded displacement (bXn) and the actually measured displacement (bxn) Both errors are within the allowable range.

■ このとき、前記模型供試体11の非線形部分Nの節
点nに発生している復元力(nfn)、および境界部分
Bの節gbでの内力(bfn)が前記ロードセル17に
てすれぞれ計測され、その計測結果が前記計算機システ
ム13にフィードバックされる。
■ At this time, the restoring force (nfn) generated at the node n of the nonlinear portion N of the model specimen 11 and the internal force (bfn) at the node gb of the boundary portion B are measured by the load cell 17. The measurement results are fed back to the computer system 13.

■ 計算機システム13では、このようにしてフィード
バックされた内力(bfn)が先に仮定した内力の1次
近似値を改善したものとなっていることから、これをそ
の2次近似値として求めている。
■ In the computer system 13, since the internal force (bfn) fed back in this way is an improved first-order approximation value of the internal force assumed earlier, this is obtained as its second-order approximation value. .

そして、この2次近似値と前記1次近似値とを比較して
前記内力の収束を判定し、上述した処理を繰返して上記
内力が収束した時点の値をnステップにおける境界部分
すの節点すの内力とし、且つこのときに測定される非線
形部分Nの節点nの復元力を模型実験によって得られた
値として抽出している。
Then, the convergence of the internal force is determined by comparing this second-order approximation value with the first-order approximation value, and by repeating the above process, the value at the time when the internal force has converged is determined at the node of the boundary part in n steps. The restoring force at the node n of the nonlinear portion N measured at this time is extracted as a value obtained by a model experiment.

■ しかる後、計算機システム13では、前記線形部分
りの質量(m2)と剛性(Kffi)、および前記外力
(P)の時刻歴から求まるこのステップ(nステップ)
の線形部分りの外力(Pn)、更に前記境界部分Bの節
点すの内力(bfn)とから、このステップにおける線
形部分りの節点βの応答加速度(I2Xn )を運動方
程式から計算する。
■ Thereafter, the computer system 13 calculates this step (n steps), which is determined from the mass (m2) and stiffness (Kffi) of the linear portion, and the time history of the external force (P).
The response acceleration (I 2

また同様に非線形部分Nについても、その非線形部分N
の質量(Mn )と外力(nPn )、非線形部分Nに
対する復元力(nfn)から、nステップにおける非線
形部分Nの節点nの応力加速度(nXn)を計算してい
る。
Similarly, regarding the nonlinear part N, the nonlinear part N
The stress acceleration (nXn) at the node n of the nonlinear portion N in n steps is calculated from the mass (Mn), the external force (nPn), and the restoring force (nfn) for the nonlinear portion N.

■ その後、上記各節点の応答加速度から、次の時刻(
0+1ステツプ)に対する応答変位1!X n+1 )
、、  (nX n+1 )の計算をそれぞれ行う。線
形部分りの節点aに対する応答変位(fiX n+1 
)の計算は、上記0項で求めた応答加速度(βXn)、
前記■項で求めた応答変位(j2Xn)、またこの時点
で既知となっているn−1ステツプの応答変位(nXn
−1)を用いて行われる。同様に非線形部分Nの節点n
に対する応答変位(nX n+i ’)の計算は、上記
0項で求めた応答加速度(nXn)、前記■項で求めた
応答変位(nXn)、またこの時点で既知となっている
n−1ステツプの応答変位(nxn−1)を用いて行わ
れる。
■ Then, from the response acceleration of each node above, the next time (
0+1 step) response displacement 1! Xn+1)
, , (nX n+1) are calculated, respectively. Response displacement (fiX n+1
) is calculated using the response acceleration (βXn) obtained in the 0 term above,
The response displacement (j2Xn) obtained in the above section (■), and the response displacement (nXn
-1). Similarly, node n of nonlinear part N
The calculation of the response displacement (nX n+i') for This is done using response displacements (nxn-1).

以上、■項から0項に亙る手順を繰返して実行して前記
構造物の全体の各時間(各ステップ)における応答を調
べることによって、外力に対する構造物の応答挙動が解
析される。
As described above, the response behavior of the structure to external force is analyzed by repeatedly executing the steps from item (1) to item 0 and examining the response of the entire structure at each time (each step).

尚、ここでは前述した従来の仮初的実験と異なり、一方
向の変位のみならず複数方向および回転に対する制御も
行われる。従って、前記アクチュエータ20.21とし
ては、模型供試体11の節点を押しながら回転を与える
ことができるものが用いられる。また前記変位計16と
しても、同様に回転を計測可能なものが用いられる。
Note that, unlike the above-described conventional preliminary experiment, here, control is performed not only for displacement in one direction but also for multiple directions and rotations. Therefore, as the actuators 20 and 21, those capable of applying rotation while pushing the nodes of the model specimen 11 are used. Further, as the displacement meter 16, one that can similarly measure rotation is used.

かくして本升明に係る実験法によれば、局部構造部分の
質量を考慮しながらその応答に伴う慣性力を評価するの
で、境界部分Bの節点のみならず、非線形部分Nの内部
の節点nについても、その変位制御を行うことが可能と
なる。これ故、本発明者等が先に特願昭58−1212
23号で提唱した実験法よりも更に精度の高い計測が可
能となる。
Thus, according to the experimental method according to this book, since the inertial force associated with the response is evaluated while considering the mass of the local structural part, not only the node in the boundary part B but also the node n inside the nonlinear part N is evaluated. It also becomes possible to perform displacement control. Therefore, the inventors of the present invention first applied for patent application No. 58-1212.
This enables even more accurate measurements than the experimental method proposed in No. 23.

また塑性部分が持つ質量が無視できないような場合であ
っても、その部分の応答に伴う慣性力の効果を考慮した
上で、その局部構造模型を用いて実験が行われるので、
理論解析ができないような構造部分を含む構造物であっ
ても、その全体的な挙動を経済的に、且つ高精度に計測
することが可能となる。
Furthermore, even in cases where the mass of a plastic part cannot be ignored, experiments are conducted using the local structural model after taking into account the effect of inertial force associated with the response of that part.
Even if a structure includes structural parts that cannot be analyzed theoretically, its overall behavior can be measured economically and with high precision.

つまり局部構造模型を効果的に用いるので、複雑な挙動
を示す大型構造物等の復元力等を仮初的実験手法を十分
に生がして高精度に計測可能である。また弾性部分につ
いては、公知の有限要素法等の信頼性の高い理論計算に
よってその応答を求めることができるので、例えば地震
入力方向のみならず、その直角方向や回転の影響を考慮
した応答計算が可能である。従って、従来の仮初的実験
では把握できないような複雑な構造の構造物についても
、その全体に亙る高精度な非線形応答が計算可能となる
等の絶大なる効果が奏せられる。
In other words, by effectively using a local structural model, it is possible to measure the restoring force of large structures exhibiting complex behavior with high precision by making full use of preliminary experimental methods. In addition, the response of elastic parts can be determined by highly reliable theoretical calculations such as the well-known finite element method, so for example, response calculations that take into account not only the earthquake input direction but also the perpendicular direction and rotational effects are possible. It is possible. Therefore, even for structures with complex structures that cannot be grasped by conventional preliminary experiments, tremendous effects such as the ability to calculate highly accurate nonlinear responses over the entire structure can be achieved.

尚、本発明は上述した実施例に限定されるものではない
。例えば構造物の中の非線形部分は複数個であっても良
い。この場合には複数の局部構造模型を用いて実験すれ
ば良い。また非線形構造物の局部模型における節点の数
等も、その構造に応じて設定すれば良い。更に理論解析
で用いられる計算手法は、公知の各種アルゴリズムを適
宜用いれば良い。要するに本発明はその要旨を逸脱しな
い範囲で種々変形し□て実施可能である。
Note that the present invention is not limited to the embodiments described above. For example, there may be a plurality of nonlinear parts in the structure. In this case, experiments may be performed using a plurality of local structure models. Further, the number of nodes in the local model of the nonlinear structure may also be set according to the structure. Furthermore, as the calculation method used in the theoretical analysis, various known algorithms may be used as appropriate. In short, the present invention can be implemented with various modifications without departing from the gist thereof.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す実験モデルの概略構成
を示す図、第2図は構造物の分割区分モデルを示す図、
第3図は従来の実験モデルの構成を示す図、第4図は構
造物の例を示す図、第5図および第6図は本発明に係る
実験法の基本概念を示す図である。 11・・・模型供試体、12・・・模型実験システム、
13・・・計算機システム、14.15・・・節点、1
6・・・変位計、17・・・ロードセル、18.19・
・・制御器、20.21・・・アクチュエータ。
FIG. 1 is a diagram showing a schematic configuration of an experimental model showing an embodiment of the present invention, FIG. 2 is a diagram showing a division model of a structure,
FIG. 3 is a diagram showing the configuration of a conventional experimental model, FIG. 4 is a diagram showing an example of a structure, and FIGS. 5 and 6 are diagrams showing the basic concept of the experimental method according to the present invention. 11... Model specimen, 12... Model experiment system,
13... Computer system, 14.15... Node, 1
6...Displacement meter, 17...Load cell, 18.19.
...Controller, 20.21...Actuator.

Claims (1)

【特許請求の範囲】[Claims] 構造物を理論的に解析可能な部分と理論的に解析できな
い部分とに分け、上記解析可能な部分については理論解
析を行うと共に、上記解析できない部分についてはその
局部構造部分の模型による実験を行ない、一方の結果を
他方にフィードバックして両者の境界における連続条件
が満足するまで前記理論解析と実験を繰返し実行して前
記構造物の挙動を求めるに際し、前記局部構造部分の質
量を考慮して該局部構造部分の応答に伴う慣性力の効果
を評価しながら、前記境界部分の変位および上記局部構
造部分の内部の節点の変位をそれぞれ計測制御して前記
理論解析と実験とを繰返し実行してなることを特徴とす
る構造物試験方法。
Divide the structure into theoretically analyzable parts and theoretically analyzable parts, perform theoretical analysis on the analyzable parts, and conduct experiments using models of local structural parts for the analyzable parts. , when determining the behavior of the structure by feeding back the results of one to the other and repeating the theoretical analysis and experiment until the continuity condition at the boundary between the two is satisfied, the mass of the local structural part is taken into consideration. The theoretical analysis and experiment are repeatedly performed by measuring and controlling the displacement of the boundary portion and the displacement of the nodes inside the local structure portion, while evaluating the effect of inertial force accompanying the response of the local structure portion. A structure testing method characterized by:
JP15503784A 1984-07-25 1984-07-25 Testing method of structure Pending JPS6134438A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15503784A JPS6134438A (en) 1984-07-25 1984-07-25 Testing method of structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15503784A JPS6134438A (en) 1984-07-25 1984-07-25 Testing method of structure

Publications (1)

Publication Number Publication Date
JPS6134438A true JPS6134438A (en) 1986-02-18

Family

ID=15597289

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15503784A Pending JPS6134438A (en) 1984-07-25 1984-07-25 Testing method of structure

Country Status (1)

Country Link
JP (1) JPS6134438A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0510846A (en) * 1991-07-02 1993-01-19 Hitachi Ltd Device and method for performing vibration test on structure and vibration response analyzing device
WO1998041835A1 (en) * 1997-03-17 1998-09-24 Hitachi, Ltd. Vibration exciting apparatus and vibration testing apparatus for structure using same
US6575037B2 (en) 1999-12-02 2003-06-10 Hitachi, Ltd. Multiple degree of freedom vibration exciting apparatus and system

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0510846A (en) * 1991-07-02 1993-01-19 Hitachi Ltd Device and method for performing vibration test on structure and vibration response analyzing device
US5388056A (en) * 1991-07-02 1995-02-07 Hitachi, Ltd. Method and system for vibration test
WO1998041835A1 (en) * 1997-03-17 1998-09-24 Hitachi, Ltd. Vibration exciting apparatus and vibration testing apparatus for structure using same
US6721668B1 (en) 1997-03-17 2004-04-13 Hitachi, Ltd. Vibration exciting apparatus and vibration testing apparatus for structure using same
US6575037B2 (en) 1999-12-02 2003-06-10 Hitachi, Ltd. Multiple degree of freedom vibration exciting apparatus and system

Similar Documents

Publication Publication Date Title
Liu et al. A novel six-component force sensor of good measurement isotropy and sensitivities
CN106294941B (en) A kind of bolt connection combination face stiffness simulation method for considering pretightning force
CN109359427B (en) Multi-actuator real-time hybrid simulation test method for spatial structure
US5388056A (en) Method and system for vibration test
CN110795884B (en) Novel hybrid test method based on multi-scale model updating
Moberg et al. Modeling and parameter estimation of robot manipulators using extended flexible joint models
CN111368466B (en) Mechanical vibration prediction method based on frequency response function parameter correction
CN111546336B (en) Ash box model parameter identification method and system for robot system
CN107092738B (en) Experimental device and method for vibration response frequency domain prediction based on multiple linear regression
Nakashima et al. Instability and complete failure of steel columns subjected to cyclic loading
JP3882014B2 (en) Structure vibration test apparatus and vibration test method therefor
Hou et al. Frequency-domain substructure isolation for local damage identification
CN111339594B (en) DIC technology-based near-field dynamics parameter experiment inversion system and use method
CN117171864B (en) Beam structure linear vibration prediction method
Locke et al. Finite element, large-deflection random response of thermally buckled beams
JPS6134438A (en) Testing method of structure
Kranjc et al. An interface force measurements-based substructure identification and an analysis of the uncertainty propagation
CN114417537B (en) Open type walking framework structure deformation field real-time measurement method, device and system
JP3114358B2 (en) Structure vibration test apparatus and method
CN114396345A (en) Rigidity measurement method, device and system of carrier rocket thrust vector control system
CN110765560B (en) Mechanical mechanism vibration prediction method based on time-varying damping
Wang et al. Concurrent multi-scale modeling of a transmission tower structure and its experimental verification
El Gendy et al. Finite element formulation of Timoshenko tapered beam-column element for large displacement analysis based on the exact shape functions
Lin et al. Damage assessment of seismically excited buildings through incomplete measurements
Robinson et al. An investigation into internal and external force balance configurations for short duration wind tunnels