JPS6134343A - Intake manifold for three-cylinder engine - Google Patents

Intake manifold for three-cylinder engine

Info

Publication number
JPS6134343A
JPS6134343A JP15508584A JP15508584A JPS6134343A JP S6134343 A JPS6134343 A JP S6134343A JP 15508584 A JP15508584 A JP 15508584A JP 15508584 A JP15508584 A JP 15508584A JP S6134343 A JPS6134343 A JP S6134343A
Authority
JP
Japan
Prior art keywords
pipe
branch
sub
pipes
collecting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15508584A
Other languages
Japanese (ja)
Inventor
Shinichi Tanba
丹波 晨一
Noboru Fukui
昇 福井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawasaki Heavy Industries Ltd
Original Assignee
Kawasaki Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Heavy Industries Ltd filed Critical Kawasaki Heavy Industries Ltd
Priority to JP15508584A priority Critical patent/JPS6134343A/en
Publication of JPS6134343A publication Critical patent/JPS6134343A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M35/00Combustion-air cleaners, air intakes, intake silencers, or induction systems specially adapted for, or arranged on, internal-combustion engines
    • F02M35/10Air intakes; Induction systems
    • F02M35/10006Air intakes; Induction systems characterised by the position of elements of the air intake system in direction of the air intake flow, i.e. between ambient air inlet and supply to the combustion chamber
    • F02M35/10072Intake runners
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M35/00Combustion-air cleaners, air intakes, intake silencers, or induction systems specially adapted for, or arranged on, internal-combustion engines
    • F02M35/10Air intakes; Induction systems
    • F02M35/10091Air intakes; Induction systems characterised by details of intake ducts: shapes; connections; arrangements
    • F02M35/10131Ducts situated in more than one plane; Ducts of one plane crossing ducts of another plane
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M35/00Combustion-air cleaners, air intakes, intake silencers, or induction systems specially adapted for, or arranged on, internal-combustion engines
    • F02M35/10Air intakes; Induction systems
    • F02M35/104Intake manifolds
    • F02M35/112Intake manifolds for engines with cylinders all in one line
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/16Engines characterised by number of cylinders, e.g. single-cylinder engines
    • F02B75/18Multi-cylinder engines
    • F02B2075/1804Number of cylinders
    • F02B2075/1812Number of cylinders three
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M35/00Combustion-air cleaners, air intakes, intake silencers, or induction systems specially adapted for, or arranged on, internal-combustion engines
    • F02M35/10Air intakes; Induction systems
    • F02M35/104Intake manifolds
    • F02M35/1045Intake manifolds characterised by the charge distribution between the cylinders/combustion chambers or its homogenisation

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Characterised By The Charging Evacuation (AREA)

Abstract

PURPOSE:To stabilize the performance of an engine, by making the lengths of intake passages from a carburetor to cylinders equal to each other. CONSTITUTION:An intake manifold 9 comprises a single main confluence pipe 10 connected to a carburetor 7, and a first, a second and a third branch pipes 11-13 connected to intake ports 1-3. The main confluence pipe 10 is placed above the branch pipes 11-13. The main confluence pipe 10 is connected to the branch pipes 11-13 through a first and a second auxiliary confluence pipes 21, 22 and a communication pipe 23 in such a manner that the main confluence pipe extends at an upper level and the branch pipes extend at a lower level.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は3気筒エンジンの吸気マニホールドに−する。[Detailed description of the invention] (Industrial application field) The present invention is applied to an intake manifold of a three-cylinder engine.

(従来技術及びその問題点) 3気筒エンジンの従来の吸気マニホールドは、第5図に
示すようにキャブレター7から第1、第3気筒4.6へ
の吸気−総長と第2気筒5までの吸気通路長が異なって
いる。即ち第2気n5までの吸気通路長が短くなってい
る。従って各気筒4.5.6への混合気の分配速廉が異
なり、エンジン性能が不安定になるという不具合がある
(Prior art and its problems) The conventional intake manifold of a three-cylinder engine has a structure in which air is taken from the carburetor 7 to the first and third cylinders 4.6 to the total and the second cylinder 5, as shown in Fig. 5. The aisle lengths are different. That is, the length of the intake passage up to the second air n5 is shortened. Therefore, the distribution speed of the air-fuel mixture to each cylinder 4, 5, 6 is different, resulting in a problem that the engine performance becomes unstable.

また吸気マニホールド全体が概ね平面型に形成されてい
るので、充分な通路長を確保しようとすると、第5図の
矢印六方向へ吸気マニホールド及びキャブレター7が大
きく突出してしまい、エンジンの寸法が大ぎくなるとい
う不具合も生じる。
In addition, since the entire intake manifold is formed in a generally flat shape, if an attempt was made to ensure a sufficient passage length, the intake manifold and carburetor 7 would protrude significantly in the six directions of the arrows in Fig. 5, making the engine dimensions too large. There is also a problem that this happens.

なお先行文献としては実開昭58−172013がある
In addition, as a prior document, there is Utility Model Application Publication No. 58-172013.

(発明の目的) 本願の第1発明は、キャブレターから各気筒への吸気通
路長が等しくなるようにすることにより、エンジン性能
を安定化させようとするものである。
(Object of the Invention) The first invention of the present application attempts to stabilize engine performance by making the length of the intake passage from the carburetor to each cylinder equal.

また第2発明はエンジン性能、の安定化と共に、エンジ
ンのコンパクト化を図ろうとするものである。
Further, the second invention aims to stabilize the engine performance and make the engine more compact.

(目的を達成するための手段) 上記目的を達成するために本願の第1発明は、主11ブ
レターに接続する1本の集合元管と、第1、第2、第3
気筒にそれぞれ接続する第1、第2、第3枝管を備え、
第1、第3枝管を連絡管の両端部に接続すると共に第2
枝管を連絡管の中央部に接続し、集合元管を第1、第2
副集合管に分岐し、第1副集合管を第1、第2枝管間の
連絡管の中央部に、第2副集合管を第2、第3枝管間の
連絡管の中央部にそれぞれ接続して、キャブレターから
各気筒までの吸気通路長が等しくなるようにしている。
(Means for Achieving the Object) In order to achieve the above object, the first invention of the present application provides one collection source pipe connected to the main 11 blator, and a first, second, third
comprising first, second, and third branch pipes connected to the cylinders, respectively;
The first and third branch pipes are connected to both ends of the connecting pipe, and the second
Connect the branch pipe to the center of the connecting pipe, and connect the collecting pipe to the first and second pipes.
Branching into sub-collecting pipes, placing the first sub-collecting pipe at the center of the connecting pipe between the first and second branch pipes, and placing the second sub-collecting pipe at the center of the communicating pipe between the second and third branch pipes. They are connected to each other so that the length of the intake passage from the carburetor to each cylinder is equal.

また第2発明は、上記第1発明の構成に加え、集合元管
を各枝管よりも上方に配置し、各副集合管を枝管に対し
て概ね直角に配置して吸気マニホールド全体を2段重ね
型にしている。
In addition to the configuration of the first invention, the second invention further provides a configuration in which the source pipe is arranged above each branch pipe, and each sub-collection pipe is arranged approximately at right angles to the branch pipe, so that the entire intake manifold is divided into two parts. It is stacked in tiers.

(実施例)− 第1図は第1、第2発明を両り兼ね備えた3気筒エンジ
ン用吸気マニホールドの概略斜視図であり、この第1図
において、1.2.3は第1、第2、第3吸気口であっ
て、シリンダヘッド8の側面に形成されると共に、第1
、第2、第3気m4.5.6にそれぞれ連通している。
(Example) - Fig. 1 is a schematic perspective view of an intake manifold for a three-cylinder engine that has both the first and second aspects of the invention. , a third intake port formed on the side surface of the cylinder head 8, and a third intake port formed on the side surface of the cylinder head 8;
, 2nd and 3rd air m4.5.6 respectively.

吸気マニホールド9は、キャブレター7に接続する一本
の集合元管10と、各吸気口1.2.3にそれぞれ接続
する第1、第2、第3枝管11.12.13を備えてい
る。集合元管10は枝管11.12.13より上方に配
置されており、集合元管10と枝管11.12.13は
2本の第1、第2副集合管21.22及び連絡管23に
よって上下2段重ね型に接続されている。
The intake manifold 9 includes one main pipe 10 connected to the carburetor 7, and first, second, and third branch pipes 11.12.13 connected to each intake port 1.2.3, respectively. . The main collecting pipe 10 is arranged above the branch pipes 11.12.13, and the main collecting pipe 10 and the branch pipes 11.12.13 are connected to two first and second sub-collecting pipes 21.22 and a connecting pipe. 23, they are connected in a two-tier stacked manner.

即ち連絡管23は枝管11.12.13に対して直角で
水平に配置されており、連絡管23の両端部に第1枝管
11と第3枝管13の入口部がそれぞれ接続し、連絡管
23の中央部(両端から等距離の部分)に第2枝管12
の入口部が接続している。第1、第2副集合管21.2
2は集合元管10から水平に左右に分岐すると共に、そ
れぞれ途中で下方に折れ曲がっており、第1副集合管2
1は第1、第2枝管11.12間の連絡管23の中央部
に接続し、−第2副集合管22は第2、第3枝管12.
13間の連絡管23の中央部に接続している。第1、第
2副集合管21.22は第1、第2、第3枝管11.1
2.13に対して直角な垂直面内に配置されていること
になる。従ってこの吸気マニホールド9は第2枝管12
及び集合元管10を通る垂直面に対して左右対称な形状
に形成されており、またキャブレター7から各吸気口1
.2.3までのそれぞれの吸気通路長は互いに等しくな
っている。いわゆる変形トーナメント方式の構造になっ
ている。
That is, the communication pipe 23 is arranged horizontally at right angles to the branch pipes 11, 12, 13, and the inlets of the first branch pipe 11 and the third branch pipe 13 are connected to both ends of the communication pipe 23, respectively. A second branch pipe 12 is installed in the center of the communication pipe 23 (a part equidistant from both ends).
The inlet part of is connected. First and second sub-collecting pipes 21.2
2 branches horizontally from the main collecting pipe 10 to the left and right, and each bends downward in the middle, and the first sub collecting pipe 2
1 is connected to the center of the communication pipe 23 between the first and second branch pipes 11.12, and - the second sub-collecting pipe 22 is connected to the second and third branch pipes 12.
It is connected to the center of the communication pipe 23 between the pipes 13 and 13. The first and second sub-collecting pipes 21.22 are the first, second and third branch pipes 11.1.
2.13. Therefore, this intake manifold 9 is connected to the second branch pipe 12.
It is formed in a shape that is symmetrical with respect to the vertical plane passing through the collecting source pipe 10, and from the carburetor 7 to each intake port 1.
.. The respective intake passage lengths up to 2.3 are equal to each other. The structure is a so-called modified tournament format.

第2、第3、門4図、よ第1図。吸気、ユ、−1゜ド9
の具体化例を示しており、平面図を示す第2図において
、集合元管10、枝管11.12.13、副集合管21
.22及び連絡管23は一体物として形成されており、
また集合元管10及び各枝管11.12.13はそれら
の管長さ方向(矢印A7)向)に短く形成されている。
2nd, 3rd, gate 4 diagrams, and 1st diagram. Intake, Yu, -1°do9
In FIG. 2 showing a plan view, a main collecting pipe 10, branch pipes 11, 12, 13, and a sub collecting pipe 21 are shown.
.. 22 and the communication pipe 23 are formed as one piece,
Further, the collecting source pipe 10 and each branch pipe 11, 12, 13 are formed short in the length direction (direction of arrow A7) thereof.

第3、第4図において、各枝管11.12.13の出口
端部にはそれぞれ取付7ランジ30.31.32が形成
されてており、該7ランジ30,31.32を介なお第
2〜第4図においては連絡管23の内径を概ね一様な径
として示しているが、第2枝管1′2には左右両方から
混合気が流入するため、第2枝管12の吸入量を第1、
第3枝管11.13の吸入−と揃えるために、両側集合
管21.22間の連絡管23の部分く第1図の幅り部分
)の内径を連絡管23の両端部分の内径よりも小さくし
ている。
3 and 4, the outlet end of each branch pipe 11, 12, 13 is formed with a mounting 7 flange 30, 31, 32. 2 to 4, the inner diameter of the connecting pipe 23 is shown as a generally uniform diameter, but since the air-fuel mixture flows into the second branch pipe 1'2 from both the left and right sides, the suction of the second branch pipe 12 is Quantity first,
In order to align with the suction of the third branch pipe 11.13, the inner diameter of the portion of the connecting pipe 23 between the collecting pipes 21, 22 on both sides (width portion in Fig. 1) is set to be smaller than the inner diameter of both ends of the connecting pipe 23. I'm keeping it small.

(作用) キャブレター7から集合元管10へ供給される混合気は
まず両側集合管21.22へ均等に同時分配される。第
1副集合管21からは第1枝管11と第2枝管12の間
の連絡管23の中央部分に混合気が供給される。第2副
集合管22からは第3枝萱13と第2枝管12の間の連
絡管23の中央部分へと混合気が供給される。そして連
絡管23から各枝管11.12.13へと同時分配され
、各気筒4.5.6へと供給されていく。即ちキャブレ
ター7から各吸気口1.2.3への吸気通路長は互いに
等しいので、各気筒4.5.6への混合気の分配速度は
等しくなって同時分配になり、それにより各気筒4.5
.6の動力性能が安定する。
(Function) The air-fuel mixture supplied from the carburetor 7 to the main collecting pipe 10 is first equally and simultaneously distributed to the collecting pipes 21 and 22 on both sides. The air-fuel mixture is supplied from the first sub-collecting pipe 21 to the central portion of the communication pipe 23 between the first branch pipe 11 and the second branch pipe 12. The air-fuel mixture is supplied from the second sub-collecting pipe 22 to the central portion of the communication pipe 23 between the third branch 13 and the second branch pipe 12. Then, it is simultaneously distributed from the communication pipe 23 to each branch pipe 11, 12, 13, and supplied to each cylinder 4, 5, 6. That is, since the lengths of the intake passages from the carburetor 7 to each intake port 1.2.3 are equal, the distribution speed of the mixture to each cylinder 4.5.6 becomes equal, resulting in simultaneous distribution. .5
.. 6's power performance is stable.

また3気筒エンジンでは一般に第1気筒4、第3気筒6
及び第2気筒5の順序で燃焼するようになっているが、
第1気筒4に導入されつつある混合気を一気に次の燃焼
順番の第3気筒6へと変化させる場合に、従来のように
混合気がキャブレタ=7に一旦戻ることはなく、連絡管
23を介して直接第3枝管13及び第3吸気口3へと供
給され、従来のものより分配速度が速くなる。
In addition, in a 3-cylinder engine, the first cylinder generally has 4 cylinders and the third cylinder has 6 cylinders.
and the second cylinder 5 are set to burn in this order,
When the air-fuel mixture that is being introduced into the first cylinder 4 is suddenly changed to the third cylinder 6, which is the next combustion order, the air-fuel mixture does not return to the carburetor = 7 as in the conventional case, but the connecting pipe 23 is The air is directly supplied to the third branch pipe 13 and the third intake port 3 through the air, and the distribution speed is faster than that of the conventional system.

より詳しく説明すると、第1気筒4の吸気行程中には、
集合元管10から第1副集合管21゛を介して第1枝管
11へ流れる混合気が主流となるが、第2副集合管22
及び連絡管23を介して第1枝管11へ流れる副流もあ
る。−力筒3気筒6の吸気行程中には、集合元管10か
ら第2副集合管22を介して第3枝管13へ流れる混合
気が主流となり、第1副集合管21から連絡管23を介
して第3枝管13へと流れる混合気が副流となる。従っ
て第1気筒4から第3気筒6への吸気行程の変化時、集
合元管10から第2 !1ill集合管22への脱@え
(1)、わ、よ、11ケ。いい。。。6(7)    
 ’で、第3気筒6の立上がり時の抵抗は少なく、スム
ーズに第3枝管13及び第3気筒6へと混合気が供給さ
れ始める。また第1気筒4の吸気閉動作により、第1副
集合管21、連絡管23及び第1枝管11内の圧力上昇
が第3枝管13に導かれ、混合気の圧力が高められる。
To explain in more detail, during the intake stroke of the first cylinder 4,
The air-fuel mixture that flows from the source pipe 10 to the first branch pipe 11 via the first sub-manifest pipe 21' becomes the mainstream, but
There is also a side stream flowing to the first branch pipe 11 via the connecting pipe 23. - During the intake stroke of the three power cylinders 6, the air-fuel mixture that flows from the source pipe 10 to the third branch pipe 13 via the second sub-collection pipe 22 becomes the mainstream, and from the first sub-collection pipe 21 to the connecting pipe 23. The air-fuel mixture that flows into the third branch pipe 13 via the substream becomes a side stream. Therefore, when the intake stroke changes from the first cylinder 4 to the third cylinder 6, from the main collecting pipe 10 to the second! 1ill Evacuation to collecting pipe 22 @e (1), Wow, 11 cases. good. . . 6(7)
', there is little resistance when the third cylinder 6 starts up, and the air-fuel mixture starts to be smoothly supplied to the third branch pipe 13 and the third cylinder 6. Further, due to the intake closing operation of the first cylinder 4, the pressure increase in the first sub-collecting pipe 21, the communication pipe 23, and the first branch pipe 11 is guided to the third branch pipe 13, and the pressure of the air-fuel mixture is increased.

(発明の効果) (1)第1、第2発明において、集合元管から分岐する
第1、第2副集合管等を設けることにより、キャブレタ
ーから各吸気口への吸気通路長が等しくなるように吸気
マニホールドを構成しているので、各気筒への混合気の
分配速度が等しくなって同時分配を行なうことができ、
それにより各気筒の動力性能が安定し、エンジン性能全
体も安定する。
(Effects of the Invention) (1) In the first and second inventions, by providing the first and second sub-collecting pipes branching from the main collecting pipe, the length of the intake passage from the carburetor to each intake port is made equal. Since the intake manifold is configured as follows, the air-fuel mixture is distributed at the same speed to each cylinder, allowing simultaneous distribution.
This stabilizes the power performance of each cylinder and the overall engine performance.

(2)連絡管により第1、第2、第3枝管を互いに連通
し、第1副集合管を第1、第2枝管の間の連絡管の中央
部分に連通し、第2副集合管を第2、第3枝管の間の中
央部分連通しているので、例えば第1気筒の吸気行程か
ら第3気筒の吸気行程に変化するとき、第1、第2副□
集合管内及び連絡管内の混合気は、キャブレター側へ戻
ることはなく、直接連絡管を介して第3枝管へと供給さ
れる。従って第5図の従来例に比べて分配速度が速くな
り、エンジンの性能が、向上する。
(2) The first, second, and third branch pipes are communicated with each other by a communication pipe, the first sub-collection pipe is communicated with the central part of the communication pipe between the first and second branch pipes, and the second sub-collection pipe is connected to the middle part of the communication pipe between the first and second branch pipes. Since the central part of the pipe between the second and third branch pipes communicates with each other, for example, when changing from the intake stroke of the first cylinder to the intake stroke of the third cylinder, the first and second branch pipes communicate with each other.
The air-fuel mixture in the collecting pipe and the communication pipe does not return to the carburetor side, but is directly supplied to the third branch pipe via the communication pipe. Therefore, compared to the conventional example shown in FIG. 5, the distribution speed becomes faster and the performance of the engine is improved.

(3)第2発明においては、集合元管を枝管よりも上方
に配置し、各副集合管を枝管に対し−C概ね直角に配置
して吸気マニホールド全体を2段重ね型としているので
、吸気通路長を従来と同じぐらい長く取った場合でも、
マニホールド及びキャブレターのエンジンからの突出量
を短くすることができ、それによりエンジンの寸法がコ
ンパクトになる。
(3) In the second invention, the source pipe is arranged above the branch pipe, and each sub-collection pipe is arranged at approximately right angles to the branch pipe, so that the entire intake manifold is of a two-tiered type. , even if the intake passage length is made as long as before,
The amount of protrusion of the manifold and carburetor from the engine can be shortened, thereby reducing the size of the engine.

またシリンダヘッドの側面からキャブレターまでの距離
を短くできることにより、キトプレターの振動(揺動)
も少なくなり、それによりキャブレターのフロートチャ
ンバー内の油面は安定し、エンジン性能も安定する。
In addition, by shortening the distance from the side of the cylinder head to the carburetor, the vibration (oscillation) of the chitopreter can be reduced.
As a result, the oil level in the float chamber of the carburetor becomes stable, and engine performance becomes stable.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本願の第1、第2発明を適用した吸気マニホー
ルドの概略斜視図、第2図は第1図の具体化例を示す平
面図、第3図は第2図の■矢祝図、第4図は第3図のr
V−rV断面図、第5図は従来例の平面図である。4.
5.6・・・気筒、7・・・キャブレター、10・・・
集合元管、11.12.13・・・枝管、21.22・
・・副集合管、23・・・連絡管 ・第1図 第2図 第3図 」W 第4図 第5図
FIG. 1 is a schematic perspective view of an intake manifold to which the first and second inventions of the present application are applied, FIG. 2 is a plan view showing an embodiment of FIG. 1, and FIG. , Figure 4 shows r in Figure 3.
The V-rV sectional view and FIG. 5 are plan views of the conventional example. 4.
5.6...Cylinder, 7...Carburetor, 10...
Collection source pipe, 11.12.13... Branch pipe, 21.22.
...Sub-collecting pipe, 23...Connecting pipe ・Figure 1 Figure 2 Figure 3 W Figure 4 Figure 5

Claims (2)

【特許請求の範囲】[Claims] (1)キャブレターに接続する1本の集合元管と、第1
、第2、第3気筒にそれぞれ接続する第1、第2、第3
枝管を備え、第1、第3枝管を連絡管の両端部に接続す
ると共に第2枝管を連絡管の中央部に接続し、集合元管
を第1、第2副集合管に分岐し、第1副集合管を第1、
第2枝管間の連絡管の中央部に、第2副集合管を第2、
第3枝管間の連絡管の中央部にそれぞれ接続して、キャ
ブレターから各気筒までの吸気通路長が等しくなるよう
にしたことを特徴とする3気筒エンジンの吸気マニホー
ルド。
(1) One collecting pipe connected to the carburetor and the first
, the first, second, and third cylinders connected to the second and third cylinders, respectively.
A branch pipe is provided, the first and third branch pipes are connected to both ends of the communication pipe, the second branch pipe is connected to the center of the communication pipe, and the source pipe is branched into the first and second sub-collection pipes. and connect the first sub-collecting pipe to the first,
In the center of the communication pipe between the second branch pipes, connect the second sub-collecting pipe to the second branch pipe.
An intake manifold for a three-cylinder engine, characterized in that the intake manifold is connected to the central part of the communication pipe between the third branch pipes so that the length of the intake passage from the carburetor to each cylinder is equal.
(2)キャブレターに接続する1本の集合元管と、第1
、第2、第3気筒にそれぞれ接続する第1、第2、第3
枝管を備え、第1、第3枝管を連絡管の両端部に接続す
ると共に第2枝管を連絡管の中央部に接続し、集合元管
を第1、第2副集合管に分岐し、第1副集合管を第1、
第2枝管間の連絡管の中央部に、第2副集合管を第2、
第3枝管間の連絡管の中央部にそれぞれ接続し、集合元
管を各枝管よりも上方に配置し、各副集合管を枝管に対
して概ね直角に配置してマニホールド全体を2段重ね型
としたことを特徴とする3気筒エンジンの吸気マニホー
ルド。
(2) One collecting pipe connected to the carburetor and the first
, the first, second, and third cylinders connected to the second and third cylinders, respectively.
A branch pipe is provided, the first and third branch pipes are connected to both ends of the communication pipe, the second branch pipe is connected to the center of the communication pipe, and the source pipe is branched into the first and second sub-collection pipes. and connect the first sub-collecting pipe to the first,
In the center of the communication pipe between the second branch pipes, connect the second sub-collecting pipe to the second branch pipe.
The connecting pipes between the third branch pipes are connected to each other in the center, the collecting source pipe is placed above each branch pipe, and each sub collecting pipe is arranged approximately at right angles to the branch pipes, so that the entire manifold is divided into two parts. The intake manifold for a three-cylinder engine is characterized by its stacked structure.
JP15508584A 1984-07-25 1984-07-25 Intake manifold for three-cylinder engine Pending JPS6134343A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15508584A JPS6134343A (en) 1984-07-25 1984-07-25 Intake manifold for three-cylinder engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15508584A JPS6134343A (en) 1984-07-25 1984-07-25 Intake manifold for three-cylinder engine

Publications (1)

Publication Number Publication Date
JPS6134343A true JPS6134343A (en) 1986-02-18

Family

ID=15598321

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15508584A Pending JPS6134343A (en) 1984-07-25 1984-07-25 Intake manifold for three-cylinder engine

Country Status (1)

Country Link
JP (1) JPS6134343A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5718761B2 (en) * 1978-02-13 1982-04-19

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5718761B2 (en) * 1978-02-13 1982-04-19

Similar Documents

Publication Publication Date Title
US4763612A (en) Intake system for internal combustion engine
US4766853A (en) Intake passage for multi-cylinder engine
JPH02146221A (en) Suction device for multi-cylinder v-engine
JPS6314062Y2 (en)
JPS6134343A (en) Intake manifold for three-cylinder engine
JPS57148028A (en) Exhaust manifold of internal combustion engine with turbosupercharger
JPH0523823Y2 (en)
JPH075249Y2 (en) Air intake system for internal combustion engine
JPH0322514Y2 (en)
JPH0648111Y2 (en) Engine intake system
JPH0437254Y2 (en)
JPH0234459Y2 (en)
JPH0429078Y2 (en)
JP2583526B2 (en) Engine intake system
JPH01117921A (en) Intake device of v-shaped engine
JPS5918147Y2 (en) Internal combustion engine intake air introduction device
JPH0614061Y2 (en) Multi-cylinder engine intake pipe
JPH07253062A (en) Intake manifold structure for engine
JP2528171B2 (en) Intake Manifold
JPH0139898Y2 (en)
JPH0645605Y2 (en) Blow-by gas treatment device for multi-cylinder internal combustion engine
JP2552478B2 (en) V-type engine exhaust system
JPS6088062U (en) Internal combustion engine intake manifold
JP2501520Y2 (en) Engine intake inertia supercharger
JPS5840286Y2 (en) Engine idle fuel supply system