JPS6134321A - Engine with turbo-charger - Google Patents

Engine with turbo-charger

Info

Publication number
JPS6134321A
JPS6134321A JP15398284A JP15398284A JPS6134321A JP S6134321 A JPS6134321 A JP S6134321A JP 15398284 A JP15398284 A JP 15398284A JP 15398284 A JP15398284 A JP 15398284A JP S6134321 A JPS6134321 A JP S6134321A
Authority
JP
Japan
Prior art keywords
air
pressure
catalyst
turbine
engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15398284A
Other languages
Japanese (ja)
Inventor
Osatoshi Handa
半田 統敏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP15398284A priority Critical patent/JPS6134321A/en
Publication of JPS6134321A publication Critical patent/JPS6134321A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/22Control of additional air supply only, e.g. using by-passes or variable air pump drives
    • F01N3/227Control of additional air supply only, e.g. using by-passes or variable air pump drives using pneumatically operated valves, e.g. membrane valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/22Control of additional air supply only, e.g. using by-passes or variable air pump drives
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/12Control of the pumps
    • F02B37/20Control of the pumps by increasing exhaust energy, e.g. using combustion chamber by after-burning
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2390/00Arrangements for controlling or regulating exhaust apparatus
    • F01N2390/06Arrangements for controlling or regulating exhaust apparatus using pneumatic components only
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Toxicology (AREA)
  • Supercharger (AREA)
  • Exhaust Gas After Treatment (AREA)

Abstract

PURPOSE:To improve the accelerating performance of an engine which is provided with a turbo-charger and has a turbine disposed at the lower side of the catalyst in an exhaust passage by feeding air into the upstream exhaust passage of the catalyst. CONSTITUTION:When a car which is running at a low speed is acceleratted, an air pump 9 is driven by an engine. A discharge pressure PA from an air pump 9 is low and another discharge pressure PB therefrom becomes the atmosphere pressure, since a throttle valve 8 is kept open, so that a regulation valve 23 is opened. Compressed air is then sent into an exhaust passage 2 and CO which is a chief composition of exhaust gas reacts to a catalyst 3 and oxidized, whereby increasing temperature at the inlet 7 of a turbine 4. Revolution of the turbine 4 will then be boosted so that the problem of turbo lag may be dissolved. This operation is completed within a short period (a few minutes) before completion of acceleration. Revolution of the air pump 9 is increased in accordance with increase in engine speed. The resultant increase in discharged pressure PA will act on pressure in a pressure chamber 17. A regulation valve 14 is then closed to interrupt supply of air, whereby restraining increase in pressure at the inlet of the turbine.

Description

【発明の詳細な説明】 (産業上の利用分野〕 この発明は、ターボチャージャ付きエンジンに関し、特
に、該エンジンのターボラグを改善する−  装置に関
する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) This invention relates to a turbocharged engine, and more particularly to a device for improving turbo lag in the engine.

ターボチャージャ付エンジンは、エンジンの排気エネル
ギを利用して吸気を加圧し使用するのでエンジントルク
を上昇できる利点があるが、一方において低速からの全
開加速時には回転の立上りが遅い、いわゆる、ターボラ
グの間・題がある。
Turbocharged engines have the advantage of being able to increase engine torque by using the engine's exhaust energy to pressurize the intake air, but on the other hand, when accelerating from low speeds at full speed, the engine speed rises slowly, which is called turbo lag.・There is a problem.

ところで、ターボチャージャ付エンジンの別の問題とし
て、タービンによる排温−低下のため排気エミッション
悪化の問題があり、これに対処するものとし□て、従来
、実願昭5”7−12909’9が提1.1 案されている。
By the way, another problem with turbocharged engines is that the exhaust temperature is lowered by the turbine, which worsens exhaust emissions. Proposition 1.1 has been proposed.

これは、エンジンの排気通路に触媒、タービンの順に備
え、このタービンによって駆動されるコンプレッサで空
気を圧□縮し、これをエンジンに過給気とじて供給する
ものである。
This system is equipped with a catalyst and a turbine in that order in the exhaust passage of the engine, and a compressor driven by the turbine compresses air, which is then supplied to the engine as supercharging air.

この従来のものは触媒の後に区タービンがあるので、排
−が低下せず従って排気中の酸素センサにより酸素濃度
を検出し空燃比をフィードバック制御するなどにより、
′排気を清浄にできるものである。
In this conventional type, there is a turbine after the catalyst, so the exhaust gas does not drop. Therefore, an oxygen sensor in the exhaust gas detects the oxygen concentration and the air-fuel ratio is feedback-controlled.
'It can clean the exhaust air.

/ fitIQJJ wa l  1− λし+ 1 
’R+ ’MR占)しかしながら、このような従来のタ
ーボチャージャ付エンジンにあっては、後者の排気エミ
ッションの悪化の問題は解消するものの、前者の加速時
のターボラグの問題は解消することができない。
/ fitIQJJ wa l 1- λshi+ 1
However, although such a conventional turbocharged engine solves the latter problem of worsening exhaust emissions, it cannot solve the former problem of turbo lag during acceleration.

即ち、従来のものは、エンジンの排気をそのまま触媒に
通す構造となっていたため、ターどン入口の温度はエン
ジンの排気に含まれる酸素(02)の量に相当する分だ
け触媒反応により上昇するが加速時にあっては、排気中
には、はとγんど02成分は含まれておらず、−その温
度上昇は僅かであり全開加速時には、時間に対する温度
上昇の勾配もゆるやなものとなり、とても短時間での加
速には応ぜられず、ターボラグの改善を期待できるもの
で°はなかった。
In other words, the conventional structure was such that the engine exhaust gas passed through the catalyst as it was, so the temperature at the turbine inlet rose due to the catalytic reaction by an amount corresponding to the amount of oxygen (02) contained in the engine exhaust gas. When the engine is accelerating, the exhaust gas does not contain the 02 component, and the temperature rise is small, and when accelerating at full throttle, the gradient of temperature rise with respect to time becomes gentle. However, the engine could not respond to acceleration in a very short period of time, and there was no hope for improvement in turbo lag.

この発明は、このような従来の問題点に着目してなされ
たもので、タービン上流の触媒の更にその上流の排気通
路に空気を供給し、排気中のCO及びHCの燃焼による
温度上昇を利用することにより前記問題点を解決するこ
とを目的としている。
This invention was made in view of these conventional problems. Air is supplied to the exhaust passage further upstream of the catalyst upstream of the turbine, and the temperature increase due to combustion of CO and HC in the exhaust gas is utilized. The purpose is to solve the above problems by doing so.

〔解決手段〕[Solution]

この発明は前記目的を達成するため、吸気通路に介装し
たコンプレッサを排気通路の触媒の下流−に介装したタ
ービンによって駆動してなるターボチャージャ付きエン
ジンにおいて、触媒の上流の排気通路に空気を供給する
空気供給装置を設けたものである。
To achieve the above object, the present invention provides a turbocharged engine in which a compressor installed in an intake passage is driven by a turbine installed downstream of a catalyst in the exhaust passage, in which air is supplied to the exhaust passage upstream of the catalyst. It is equipped with an air supply device.

〔作用〕[Effect]

加速時にはエンジンに燃料が多く供給され、従って排気
中の未燃焼物質CO及びHCも多くなる。
During acceleration, more fuel is supplied to the engine, and therefore more unburned substances CO and HC are present in the exhaust.

かかる時期に、触媒上流に空気が供給されるので、未燃
焼物質は触媒でその反応により酸化し排気温度を上昇さ
せタービン入口温度を上げる。
At this time, air is supplied upstream of the catalyst, so that unburned substances are oxidized by the reaction in the catalyst, raising the exhaust temperature and the turbine inlet temperature.

このため、タービンは排気エネルギ増加により高速回転
し、同軸のコンプレッサをも高速回転せしめるので、吸
気の過給圧が速やかに上り、加速〜をスピーディに行な
う。即ち、ターボラグが解消される。勿論、従来同様、
排気エミッションも良1″″iit、a・      
        、:。
Therefore, the turbine rotates at high speed due to the increase in exhaust energy, and the coaxial compressor is also rotated at high speed, so that the supercharging pressure of the intake air increases quickly, and acceleration is performed quickly. That is, turbo lag is eliminated. Of course, as before,
Exhaust emissions are also good 1″″iit, a・
, :.

以下、この発明の実施例について説明する。Examples of the present invention will be described below.

〔実施例〕〔Example〕

第1図はこの発明の一実施例を示す。 FIG. 1 shows an embodiment of the invention.

まず構成を説明すると、エンジン1は右側に排気通路2
を接続し、この下流に触媒3を設け、更にその下流にタ
ービン4を介装する。
First, to explain the configuration, the engine 1 has an exhaust passage 2 on the right side.
A catalyst 3 is provided downstream of the catalyst 3, and a turbine 4 is further provided downstream of the catalyst 3.

タービン4は左側に同軸のコンプレッサ5を具備し、こ
れによりターボチャージiν20を構成する。コンプレ
ッサ5は吸気通路6に介装され、吸気通路6は上流に1
アクリ、二す10と1アフ0−メータ11を備え、また
下流に吸気量を制御するアクセルペダル連動の絞弁8を
備える。
The turbine 4 is equipped with a coaxial compressor 5 on the left side, thereby forming a turbocharger iν20. The compressor 5 is interposed in an intake passage 6, and the intake passage 6 has a
It is equipped with an accelerator, a second 10, and a first 0-meter 11, and a throttle valve 8 linked to an accelerator pedal for controlling the amount of intake air downstream.

エアポンプ9はエンジン1によりベルト等の手段で駆動
され、空気をエアクリーナ10の下流から吸入管21で
抽気し、吐出管12で調節弁13を介して触媒3上流の
排気通路2に噴射口31より噴射供給する。
The air pump 9 is driven by the engine 1 using a means such as a belt, and bleeds air from downstream of the air cleaner 10 through an intake pipe 21 , and injects air from an injection port 31 into the exhaust passage 2 upstream of the catalyst 3 through a control valve 13 through a discharge pipe 12 . Supply injection.

調節弁13は弁体22と弁座(空気供給口)23を弁室
内に具備し、アクチュエータ14のダイヤフラム18に
弁棒24で弁体22を連結し供給口23の開閉を行う。
The control valve 13 includes a valve body 22 and a valve seat (air supply port) 23 in a valve chamber, and the valve body 22 is connected to a diaphragm 18 of an actuator 14 with a valve rod 24 to open and close the supply port 23.

アクチュエータ14は右側の圧力型16に絞弁8の下流
の吸気圧PBを導入し、左側の圧力室17にエアポンプ
9の吐出圧PAを導入するように構成し、戻り用スプリ
ング15を圧ツノ室16側に設置する。
The actuator 14 is configured to introduce the intake pressure PB downstream of the throttle valve 8 into the pressure type 16 on the right side, introduce the discharge pressure PA of the air pump 9 into the pressure chamber 17 on the left side, and connect the return spring 15 to the pressure horn chamber. Install it on the 16 side.

触媒3はpt又はpd等の金属成分を持つ酸化   ゛
触媒であり、噴射供給される空気中の酸素と未燃CO及
びHCの燃焼反応をするので触媒燃焼器とも称される。
The catalyst 3 is an oxidation catalyst having a metal component such as PT or PD, and is also called a catalytic combustor because it performs a combustion reaction between oxygen in the injected air and unburned CO and HC.

タービン4の入ロアには排気バイパス弁25が設けられ
、そのアクチュエータ26にはコンプレッサの過給圧が
通路30により導かれる。過給圧が規定値以上のときは
アクチュエータ26の作動によりバイパス弁25が開弁
し、バイパス通路27より排気をバイパスする。排気は
タービン4の下流から排気管28、排気浄化用の触12
9を経て大気に放出する。
An exhaust bypass valve 25 is provided at the lower inlet of the turbine 4, and the supercharging pressure of the compressor is guided to the actuator 26 of the valve 25 through a passage 30. When the supercharging pressure is equal to or higher than a specified value, the actuator 26 operates to open the bypass valve 25 and bypass the exhaust gas through the bypass passage 27. Exhaust is routed from the downstream side of the turbine 4 to an exhaust pipe 28 and an exhaust purifying contact 12.
9 and then released into the atmosphere.

なお、触媒3の下流に熱電対又はサーミスタ等の温度セ
ンサ19を挿入しておき、これにより温度をモニタして
運転者にランプ又はブザー等で触媒系の過熱を警告する
。運転者はこの警告により負萄を軽減し、触媒の溶融又
はタービンの熱破損を未然に防止する。或いは、前記セ
ンサ19の信号で、エアポンプの吐出管12の仕切弁(
図ちず)を自動的に閉じ空気の噴射を停止するようにし
てもよい。
Note that a temperature sensor 19 such as a thermocouple or a thermistor is inserted downstream of the catalyst 3 to monitor the temperature and warn the driver of overheating of the catalyst system with a lamp or buzzer. This warning reduces the burden on the driver and prevents melting of the catalyst or thermal damage to the turbine. Alternatively, the gate valve (
(Figure 1) may be automatically closed to stop air injection.

次に作用を説明する 比較的低速運転から全開加速をした場合ターボチャージ
レは回転数の立上りが遅く、急速に絞弁開度に追従せず
、いわゆるターボラグを生ずるが、この実施例では、エ
ンジン低速回転時、即ち、インタセプト点(第5図IC
)付近より低速時における全開加速状態を検出し、調整
弁の空気供給口を開【プて加圧空気を排気通路に供給し
排気中のCO及び)−10(実際には殆どCO)を触媒
燃焼器3で反応させ、タービン人ロアの温度を上昇させ
、加速時のタービン4の回転上昇を速めるものである。
Next, we will explain the operation.When accelerating at full throttle from relatively low speed operation, the turbocharger's rotation speed rises slowly and does not rapidly follow the throttle valve opening, resulting in so-called turbo lag.In this example, the engine At low speed rotation, that is, at the intercept point (Fig. 5 IC
Detects full-open acceleration at low speed near ), opens the air supply port of the regulating valve and supplies pressurized air to the exhaust passage, converting CO and )-10 (actually mostly CO) in the exhaust gas to the catalyst. The reaction occurs in the combustor 3, increases the temperature of the turbine lower, and accelerates the rise in rotation of the turbine 4 during acceleration.

■エンジンの低速低負荷時:この場合は、絞弁8の閉に
より吸気圧Paが負圧大のため、アクチュエータ14は
、圧力室16が負圧となりスプリング15に抗してダイ
ヤフラム18を右へ移行し、弁棒24、弁体22を右方
向へ動かすので、調節弁13は空気供給口23を閉じる
。つまり、空気は排気通路2には供給されない。
■When the engine is running at low speed and with low load: In this case, the intake pressure Pa is a large negative pressure due to the closing of the throttle valve 8, so the actuator 14 moves the diaphragm 18 to the right against the spring 15 due to negative pressure in the pressure chamber 16. The control valve 13 closes the air supply port 23 because the valve rod 24 and the valve body 22 are moved to the right. In other words, air is not supplied to the exhaust passage 2.

この場合、エアポンプ9の吐出圧は、低回転時のため低
く、この小さい圧力がダイヤフラム18の左側に作用す
るが、これも右側の負圧値とあいまって、調節弁13は
閉作動するのである。
In this case, the discharge pressure of the air pump 9 is low due to low rotation, and this small pressure acts on the left side of the diaphragm 18, but this, together with the negative pressure value on the right side, closes the control valve 13. .

■ 低速高負荷時: この場合は加速を必要と−する絞
弁全開の場合である。即ち、エアポンプ9の吐出圧PA
は低速の為低く、他方、絞弁8が全開く又はほぼ全開)
の為吸気圧Psが大気圧付近となるため、ダイヤフラム
18はスプリング15の力で左方に押され弁棒24、弁
体22を左方に移動する。
■ At low speed and high load: In this case, the throttle valve is fully open, which requires acceleration. That is, the discharge pressure PA of the air pump 9
is low due to low speed, and on the other hand, throttle valve 8 is fully open or almost fully open)
Therefore, the intake pressure Ps becomes near atmospheric pressure, so the diaphragm 18 is pushed to the left by the force of the spring 15, and the valve rod 24 and the valve body 22 are moved to the left.

従って調節弁13は空気供給口23を開ぎ、加圧空気を
排気通路2に供給し、排気中の主としてCOを触媒3で
反応酸化しタービン人ロアの温度を上昇させる。
Therefore, the control valve 13 opens the air supply port 23, supplies pressurized air to the exhaust passage 2, reacts and oxidizes mainly CO in the exhaust gas with the catalyst 3, and raises the temperature of the turbine lower.

加速時は通常余分に燃料を供給し、その分排気中の未燃
COも数%と増加するので、酸化による昇温は数100
度℃に達し、タービン入口にエンタルピ上昇によりター
ビン従ってコンプレッサの回転上昇速度が大となって過
給圧をすばやく上げ、′エンジントルクの増大及び迅速
な加速を完了する。
During acceleration, extra fuel is normally supplied, and unburned CO in the exhaust gas increases by several percent, so the temperature rise due to oxidation is several hundred percent.
degree Celsius, the increase in enthalpy at the turbine inlet increases the rotational speed of the turbine and therefore the compressor, quickly increasing the supercharging pressure and completing an increase in engine torque and rapid acceleration.

ちなみに、COが1%存在すれば、その燃焼により排温
は約100℃上昇することが確認されている。
Incidentally, it has been confirmed that if 1% of CO is present, the exhaust temperature will rise by approximately 100°C due to its combustion.

これにより、ターボラグが解消される。この加速状態は
加速完了までの僅かの時間(数秒間)であり、エンジン
従って、エアポンプ9の回転が上昇すれば増加した吐出
圧PAが圧力室17に作用し、ダイヤフラム18の右方
向への移動で調節弁14が閉作動し、空気の供給が停止
されタービン入口の昇温を抑制する。
This eliminates turbo lag. This acceleration state takes a short time (several seconds) until the acceleration is completed, and as the rotation of the engine and therefore the air pump 9 increases, the increased discharge pressure PA acts on the pressure chamber 17, causing the diaphragm 18 to move to the right. The control valve 14 is closed, the supply of air is stopped, and the temperature rise at the turbine inlet is suppressed.

即ち、タービン入口温度はターボヂャージャ全体の温度
上昇及びタービンロータの耐熱強度に影響を与えるため
、最高温度を95C)℃位に抑えるようにするわけであ
る。但し、昇温時間は前述のように数秒間と短かいので
、排気管や酸化触媒の熱容1などを考慮すれば、95’
O℃より更に高い湿度としてもよい。
That is, since the turbine inlet temperature affects the temperature rise of the entire turbo charger and the heat resistance strength of the turbine rotor, the maximum temperature is suppressed to about 95C). However, as mentioned above, the temperature rise time is short, only a few seconds, so if we take into account the heat capacity of the exhaust pipe and oxidation catalyst, the temperature is 95'.
The humidity may be higher than 0°C.

■ 高速高負荷時′:この場合は■の加速完了の状態で
ある。即ちシ加速によりエンジンが高速回転側になると
エアポン190回転も上昇し、吐出圧pAの増加でダイ
ヤフラム18は右へ移動し、スプリング15を圧縮して
調節弁13を閉じるものである。
■ At high speed and high load': In this case, the acceleration in ■ is completed. That is, when the engine rotates at a high speed due to acceleration, the air pump 190 rotations also increase, and the diaphragm 18 moves to the right due to the increase in the discharge pressure pA, compressing the spring 15 and closing the control valve 13.

■ 高速低負荷時:この場合は、エンジン加速後較弁を
閉じた場合で、吸気圧Paは負圧大となるので、調節弁
13はアクチュエータ14のダイヤフラム18の右への
移動で閉じる方向であり、また、■の状態で閉じた弁体
22には、エアポンプ9の吐出圧PAをその表面に受け
るので、弁の閉じ状態は継続される。
■ At high speed and low load: In this case, the comparison valve is closed after the engine accelerates, and the intake pressure Pa becomes a large negative pressure, so the control valve 13 is closed by moving the diaphragm 18 of the actuator 14 to the right. In addition, since the valve body 22 which is closed in the state (3) receives the discharge pressure PA of the air pump 9 on its surface, the closed state of the valve continues.

なお、タービン入口温度の昇温を更に効果的にするため
には、排気通路内部の断熱及び外部管系の保温を併用す
るとよく、また、排気と空気との混合が良くなるよう空
気の噴射口31を上流側即ち排気弁に近いところに設け
るとよい。
In addition, in order to increase the temperature at the turbine inlet more effectively, it is recommended to use heat insulation inside the exhaust passage and heat insulation of the external pipe system, and to improve the mixing of the exhaust gas and air, 31 is preferably provided on the upstream side, that is, near the exhaust valve.

第2図には、他の実施例を示す。この実施例は空気供給
装置として、予めエアポンプでタンクに蓄圧しておき、
所用時に瞬時に空気を供給りるようにしたものである。
FIG. 2 shows another embodiment. In this embodiment, as an air supply device, pressure is accumulated in a tank using an air pump in advance.
It is designed to instantly supply air when needed.

以下、第1図に示す実施例と同一部位には同一符号を付
し重複する説明を避ける、。
Hereinafter, the same parts as in the embodiment shown in FIG. 1 will be given the same reference numerals to avoid redundant explanation.

即ち、エアポンプ9は電動ポンプで吸入管21から抽気
し工゛アタンク40に蓄圧し、吐出管41で制御弁42
を介して触媒3上流の排気通路2に噴射口より噴射供給
する。
That is, the air pump 9 is an electric pump that bleeds air from the suction pipe 21, stores the pressure in the factory tank 40, and pumps the control valve 42 through the discharge pipe 41.
The fuel is injected and supplied from an injection port to the exhaust passage 2 upstream of the catalyst 3 via.

電動エアポンプ9は、エアタンク40に設けた圧力スイ
ッチ43にてオン−オフし常に所定の圧力(例えば5k
a/am2)に保つようにセットされている。尚、吐出
管41には絞り44を設け、最高空気圧時、必要以上の
空気を排気通路2に供給しないよう流量設定する。
The electric air pump 9 is turned on and off by a pressure switch 43 provided in the air tank 40, and is always maintained at a predetermined pressure (for example, 5k).
a/am2). Note that the discharge pipe 41 is provided with a throttle 44, and the flow rate is set so as not to supply more air than necessary to the exhaust passage 2 at the maximum air pressure.

制御弁42は、コントローラ45に接続され、温度セン
サ19及びアクセルスイッチ46の信号がコントローラ
45に入力されている。
The control valve 42 is connected to a controller 45 , and signals from the temperature sensor 19 and the accelerator switch 46 are input to the controller 45 .

しかして、加速する為にアクセルペダルが踏込まれると
、所定踏込み量でオン−作動するアクセルスイッチ46
の信号がコントローラ45に入力され、温度センサ19
からの信号で、排気湿度が低い(例えば600℃以下)
のときには空気の供給が必要と判断し、制御弁42を開
く。これによって、エアタンク40に蓄圧されていた空
気がすばやく噴射供給され、排気中のCO及びHCと酸
化反応することにより排気温を急上昇させるのである。
When the accelerator pedal is depressed to accelerate, the accelerator switch 46 is turned on and activated by a predetermined depression amount.
The signal is input to the controller 45, and the temperature sensor 19
The signal from the exhaust air is low (for example, below 600℃)
When this happens, it is determined that air supply is necessary, and the control valve 42 is opened. As a result, the air stored in the air tank 40 is quickly injected and supplied, causing an oxidation reaction with CO and HC in the exhaust gas, thereby rapidly raising the exhaust temperature.

給気によって温度センサ19が触媒出口温度が上り過ぎ
(例えば950℃以上)を感知すると制御弁42は閉じ
られ空気の供給を停止する。
When the temperature sensor 19 detects that the catalyst outlet temperature has risen too much (for example, 950° C. or higher) due to air supply, the control valve 42 is closed and the supply of air is stopped.

本実施例にあっては、タンク蓄圧式であるため、給気流
量の立上りが速く、加速初期に排湿を急上昇させること
ができ、またエアポンプ9を常時駆動する必要がないの
で駆動損失を少くすることが可能である。
In this embodiment, since the tank pressure accumulation type is used, the supply air flow rate rises quickly, and the exhaust moisture can be rapidly increased at the beginning of acceleration, and the air pump 9 does not need to be constantly driven, so driving loss is reduced. It is possible to do so.

更に、本実施例ではエアポンプを用0て蓄圧させる例を
示したが、他に、図示はしないがコンプレッサ5下決の
過給圧を分岐通路を介してエアタンク40に導きエアポ
ンプに代えてもよい。この場合は分岐通路に逆止弁を介
挿する。
Furthermore, although this embodiment shows an example in which the air pump is used to accumulate pressure, the air pump may also be used in place of the air pump by directing the supercharging pressure of the compressor 5 to the air tank 40 via a branch passage, although not shown. . In this case, a check valve is inserted in the branch passage.

第3図には、他の実施例を示す。この実施例は6気筒エ
ンジンのように排気通路が2グループに分かれている場
合、或いは大容岱エンジン又はCO排出偶の多いエンジ
ンの場合、触媒燃焼器の小゛型化及び排気圧力損失の低
減を実現せんとするものである。
FIG. 3 shows another embodiment. This embodiment is useful for reducing the size of the catalytic combustor and reducing exhaust pressure loss when the exhaust passage is divided into two groups, such as in a 6-cylinder engine, or in the case of a large-capacity engine or an engine with many CO2 emissions. This is what we aim to achieve.

即ち、V型6気筒エンジン1の2グループの排気通路2
及び2−のうち、3気筒分の排気通路2の下流にのみ触
媒を設け、その上流にエアポンプ9との調節弁13によ
る空気吐出管12を設け、下流を他の3気筒分の排気通
路2′を介してタービン4に接続したもので、触媒3は
小型で足りる。
That is, two groups of exhaust passages 2 of a V-type six-cylinder engine 1
and 2-, a catalyst is provided only downstream of the exhaust passage 2 for three cylinders, an air discharge pipe 12 connected to the air pump 9 and a control valve 13 is provided upstream of the catalyst, and the exhaust passage 2 for the other three cylinders is provided downstream. Since the catalyst 3 is connected to the turbine 4 through the catalyst 1, a small catalyst 3 is sufficient.

なお、この場合、タービン4の下流に別の触媒を設け、
特に排気通路2′の未燃焼物質を処理するようにしても
よ(。
Note that in this case, another catalyst is provided downstream of the turbine 4,
In particular, unburned substances in the exhaust passage 2' may be treated.

第4図には、他の実施例を示す。この実施例はターボラ
グを更に良く改善するため、各気筒毎に触媒3を設け、
夫々の上流の排気通路に空気噴射口31もを開口したも
のである。特に小型エンジンの場合好適である。
FIG. 4 shows another embodiment. In this embodiment, in order to further improve turbo lag, a catalyst 3 is provided for each cylinder.
An air injection port 31 is also opened in each upstream exhaust passage. This is particularly suitable for small engines.

第5図は横軸にエンジン回転数をとり、縦軸にエンジン
トルクをとった絞弁全開のトルク性能図で、低速低負荷
の■から加速して低速高負荷■になるまでの全開加速の
場合、Aの範囲が空気を供給したい範囲であ、す、その
他の■低速参負荷■高速高負荷及び■高速低負荷では空
気を供給しない範囲である。
Figure 5 is a torque performance diagram with the throttle valve fully open, with engine speed on the horizontal axis and engine torque on the vertical axis. In this case, the range A is the range to which air is to be supplied, and the other ranges are (1) low speed reference load, (2) high speed high load, and (2) high speed low load, in which air is not supplied.

なお、図においてIはアイドル回転数、lcは、インタ
セプト回転数、X線より上方が過給圧(正圧)、下方が
負圧の状態を示す。
In the figure, I indicates the idle rotation speed, lc indicates the intercept rotation speed, the state above the X-ray indicates the supercharging pressure (positive pressure), and the state below the X-ray indicates the negative pressure.

〔発明の効果〕〔Effect of the invention〕

以上説明してきたように、この発明によればその構成を
コンプレッサ駆動用タービンの上流に設けた触媒の上流
に、空気を供給する空気供給装置を設ける構成としたた
め、エンジンの低負荷から絞弁をほぼ全開するまでの加
速時に、排気中の未燃焼物質の燃焼によるタービン入口
温度の上昇を計ることができ、これにより、ターボチャ
ージャ回転数、エンジン吸入空気量、シリンダ充填効率
、及び過給圧を増大することができ、もって、エンジン
加速性能の向上を計ることができるという効果が得られ
る。
As explained above, according to the present invention, the configuration is such that an air supply device that supplies air is provided upstream of a catalyst provided upstream of a turbine for driving a compressor. During acceleration to almost full throttle, it is possible to measure the rise in turbine inlet temperature due to the combustion of unburned substances in the exhaust gas, and this allows the turbocharger rotation speed, engine intake air volume, cylinder filling efficiency, and boost pressure to be adjusted. This results in the effect that engine acceleration performance can be improved.

また、従来、タービン下流で処理していた排気中の未燃
焼物質、例えばCOをタービン上流で熱に変えターボチ
ャージャの過給仕事として有効活用できるので、燃費が
向上できるという効果が得られる。
Further, unburned substances in the exhaust gas, such as CO, which were conventionally treated downstream of the turbine, can be converted into heat upstream of the turbine and can be effectively utilized as supercharging work for the turbocharger, resulting in the effect of improving fuel efficiency.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の一実施例の全体図、第2図乃至第4
図は他の実施例の要部平面図、第5図は性能曲線図であ
る。 図面に現わした符号の説明 1:エンジン、2:排気通路、3:触媒(燃焼器ン、4
:タービン、5:コンプレッサ、8:絞弁、9:エアポ
ンプ、12:吐出管、13:調節弁、14:アクチュエ
ータ、20:ターボチャージャ、23:空気供給口、3
1:空気噴射口、PBニブ−スト圧(吸気圧)、PA:
エアポンプ吐出圧
FIG. 1 is an overall view of one embodiment of the present invention, and FIGS.
The figure is a plan view of the main part of another embodiment, and FIG. 5 is a performance curve diagram. Explanation of the symbols shown in the drawings 1: Engine, 2: Exhaust passage, 3: Catalyst (combustor), 4
: Turbine, 5: Compressor, 8: Throttle valve, 9: Air pump, 12: Discharge pipe, 13: Control valve, 14: Actuator, 20: Turbocharger, 23: Air supply port, 3
1: Air injection port, PB nibost pressure (intake pressure), PA:
Air pump discharge pressure

Claims (2)

【特許請求の範囲】[Claims] (1)吸気通路に介装したコンプレッサを排気通路の触
媒の下流に介装したタービンによって駆動してなるター
ボチャージャ付エンジンにおいて、触媒の上流の排気通
路に空気を供給する空気供給装置を設けたことを特徴と
するターボチャージャ付エンジン。
(1) In a turbocharged engine in which a compressor installed in the intake passage is driven by a turbine installed downstream of the catalyst in the exhaust passage, an air supply device is provided to supply air to the exhaust passage upstream of the catalyst. A turbocharged engine characterized by:
(2)空気供給装置はエンジンの低負荷から絞弁をほぼ
全開するまでの加速時に空気供給口を開く調節弁を備え
ることを特徴とする特許請求の範囲第1項記載のターボ
チャージャ付エンジン。
(2) The turbocharged engine according to claim 1, wherein the air supply device includes a control valve that opens the air supply port when the engine accelerates from a low load to when the throttle valve is almost fully opened.
JP15398284A 1984-07-26 1984-07-26 Engine with turbo-charger Pending JPS6134321A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15398284A JPS6134321A (en) 1984-07-26 1984-07-26 Engine with turbo-charger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15398284A JPS6134321A (en) 1984-07-26 1984-07-26 Engine with turbo-charger

Publications (1)

Publication Number Publication Date
JPS6134321A true JPS6134321A (en) 1986-02-18

Family

ID=15574319

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15398284A Pending JPS6134321A (en) 1984-07-26 1984-07-26 Engine with turbo-charger

Country Status (1)

Country Link
JP (1) JPS6134321A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2880655A1 (en) * 2005-01-10 2006-07-14 Renault Sas Vehicle`s engine block controlling method, involves regulating temperature of exhaust gas before entering into turbine of turbocharger, where regulation is implemented in catalytic converter by post-injection in combustion chamber
FR2892981A1 (en) * 2005-11-09 2007-05-11 Renault Sas Exhaust device for e.g. spark ignition engine, has exhaust gas treating assembly arranged between cylinder head and turbine whose inlet is connected to outlet of assembly, where assembly has gas post-treatment system and particle filter

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2880655A1 (en) * 2005-01-10 2006-07-14 Renault Sas Vehicle`s engine block controlling method, involves regulating temperature of exhaust gas before entering into turbine of turbocharger, where regulation is implemented in catalytic converter by post-injection in combustion chamber
FR2892981A1 (en) * 2005-11-09 2007-05-11 Renault Sas Exhaust device for e.g. spark ignition engine, has exhaust gas treating assembly arranged between cylinder head and turbine whose inlet is connected to outlet of assembly, where assembly has gas post-treatment system and particle filter

Similar Documents

Publication Publication Date Title
US6637204B2 (en) Device and method for the heating of a catalytic converter for a supercharged internal combustion engine
US7155899B2 (en) Method for heating an exhaust gas catalyst for an internal combustion engine operating with direct fuel injection
CN107762591B (en) Device and method for regenerating a particle filter
US5996347A (en) Variable-nozzle type turbo charger
JPS6214345Y2 (en)
JP2017172476A (en) Electric waste gate valve control device
JP2020002783A (en) engine
JP6484314B1 (en) Engine control device
US20180266344A1 (en) Internal combustion engine
JPS6134321A (en) Engine with turbo-charger
JP6535246B2 (en) Engine control unit
JP4501761B2 (en) Control device for internal combustion engine
JPH0192532A (en) Engine provided with exhaust turbocharger
JP6641405B2 (en) Engine control device
JPH0125883B2 (en)
JPS6067732A (en) Internal-combustion engine controlled for operation of divided group of cylinders
JP2011214419A (en) Start control device of engine with turbo supercharger
JPH0210281Y2 (en)
JP6677585B2 (en) Fuel supply device
JPS6134311A (en) Engine with turbocharger
JP2024048813A (en) Diagnostic Equipment
JPH0513966Y2 (en)
JPS58170827A (en) Supercharging device for internal-combustion engine
JPS6224014Y2 (en)
JP2023136717A (en) Control device for internal combustion engine with supercharger