JPS6134276B2 - - Google Patents

Info

Publication number
JPS6134276B2
JPS6134276B2 JP16374680A JP16374680A JPS6134276B2 JP S6134276 B2 JPS6134276 B2 JP S6134276B2 JP 16374680 A JP16374680 A JP 16374680A JP 16374680 A JP16374680 A JP 16374680A JP S6134276 B2 JPS6134276 B2 JP S6134276B2
Authority
JP
Japan
Prior art keywords
gan
layer
doped layer
emitting device
blue light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP16374680A
Other languages
Japanese (ja)
Other versions
JPS5787184A (en
Inventor
Kazuo Tabuchi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP16374680A priority Critical patent/JPS5787184A/en
Publication of JPS5787184A publication Critical patent/JPS5787184A/en
Publication of JPS6134276B2 publication Critical patent/JPS6134276B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0062Processes for devices with an active region comprising only III-V compounds
    • H01L33/0066Processes for devices with an active region comprising only III-V compounds with a substrate not being a III-V compound
    • H01L33/007Processes for devices with an active region comprising only III-V compounds with a substrate not being a III-V compound comprising nitride compounds

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Led Devices (AREA)

Description

【発明の詳細な説明】 本発明はGaN(窒化ガリウム)青色発光素子に
関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a GaN (gallium nitride) blue light emitting device.

GaNは室温で3.5eVと広いバンドギヤツプを有
する直接遷移型の−族化合物半導体であるた
め青色発光ダイオードとして有望視されている。
GaN is a direct transition type - group compound semiconductor with a wide bandgap of 3.5 eV at room temperature, and is therefore considered to be promising as a blue light-emitting diode.

Si(シリコン)単結晶製造に用いるチヨクラル
スキ法やフローテイングゾーン法等ではGaNの大
型の単結晶を得ることは非常に困難であり、従つ
てGaNの大型の単結晶を得るためにはGaCl−
NH3系反応つまりGaCl(塩化ガリウム)とNH3
(アンモニア)との直接反応を用いた気相成長方
法が広く採用されている。
It is very difficult to obtain large single crystals of GaN using the Czyochralski method, floating zone method, etc. used to produce Si (silicon) single crystals.
NH3 -based reaction, that is, GaCl (gallium chloride) and NH3
A vapor phase growth method using a direct reaction with (ammonia) is widely used.

また上記気相成長に用いる基板にはGaNの結晶
構造、格子定数及び結晶成長時の温度変化に対す
る基板の安定度等の観点から一主面が(0001)C
面であるサフアイヤ(Al2O3)単結晶基板が一般
に使用されている。
In addition, the substrate used for the above vapor phase growth has one principal surface with (0001) C
A single-crystal sapphire (Al 2 O 3 ) substrate is commonly used.

第1図は従来のGaN青色発光素子を示し、1は
一主面2が(0001)C面であるサフアイヤ単結晶
基板、3は該基板1の一主面2上にエピタキシヤ
ル成長させたGaN層である。
FIG. 1 shows a conventional GaN blue light-emitting device, in which 1 is a sapphire single crystal substrate whose one principal surface 2 is the (0001) C plane, and 3 is a GaN substrate epitaxially grown on one principal surface 2 of the substrate 1. It is a layer.

該GaN層3は960℃〜1000℃に保持された上記
基板1の一主面2上にGaCl(塩化ガリウム)−
NH3(アンモニア)系反応により成長させたもの
である。
The GaN layer 3 is formed by depositing GaCl (gallium chloride) on one main surface 2 of the substrate 1 maintained at 960°C to 1000°C.
It is grown by NH 3 (ammonia) based reaction.

4は上記GaN層3表面にZn(亜鉛)をドープ
してなる絶縁性のZnドープ層、5は該Znドープ
層4表面に金等を蒸着してなる金属層であり、上
記GaN層3、Znドープ層4、金属層5の3層に
より青色発光をなすMIS型接合が形成される。
4 is an insulating Zn-doped layer formed by doping Zn (zinc) on the surface of the GaN layer 3; 5 is a metal layer formed by vapor-depositing gold or the like on the surface of the Zn-doped layer 4; The three layers of the Zn-doped layer 4 and the metal layer 5 form an MIS type junction that emits blue light.

上記素子はZnドープ層4形成後室温まで徐冷
されるが、このとき上記基板1とGaN層3との熱
膨張係数が異なるため第1図に示す如くGaN層3
内にクラツク6が生じる。
After forming the Zn-doped layer 4, the device is slowly cooled to room temperature. At this time, the GaN layer 3
A crack 6 occurs within the frame.

上記クラツク6はGaNの成長層表面つまりZn
ドープ層4表面に達しない限り問題はない。しか
し、クラツク6がZnドープ層4表面に到達する
と、上記MIS型接合に順方向バイアスを印加した
ときクラツク6にリーク電流が発生し、発光素子
としての発光及び電気的特性が低下する。
The crack 6 above is the surface of the GaN growth layer, that is, Zn.
There is no problem as long as it does not reach the surface of the doped layer 4. However, when the crack 6 reaches the surface of the Zn-doped layer 4, a leakage current is generated in the crack 6 when a forward bias is applied to the MIS type junction, and the light emission and electrical characteristics of the light emitting device are deteriorated.

上記クラツク6がZnドープ層4表面に達しな
いためにはGaNを30μm厚以上成長させればよい
ことが知られている。しかしGaNの成長に気相成
長法を採用しているため成長時間がかかり過ぎる
欠点がある。一例をあげると第1図に示したGaN
層3は約15〜20μm程度でその成長時間は約2時
間である。従つてGaN層3を30μm以上成長させ
るには少なくとも3時間はかかるため生産性が低
下する。
It is known that in order to prevent the cracks 6 from reaching the surface of the Zn-doped layer 4, it is sufficient to grow GaN to a thickness of 30 μm or more. However, since the vapor phase growth method is used to grow GaN, there is a drawback that the growth time is too long. For example, the GaN shown in Figure 1
Layer 3 has a thickness of about 15 to 20 μm and the growth time is about 2 hours. Therefore, it takes at least 3 hours to grow the GaN layer 3 to a thickness of 30 μm or more, which reduces productivity.

本発明は上記の点に鑑みてなされたものであ
る。
The present invention has been made in view of the above points.

第2図は本発明によるGaN青色発光素子の一実
施例を示し、11は一主面12が(0001)C面で
あるサフアイヤ単結晶基板、13は上記主面12
上にGaCl−NH3系反応により気相成長させた第
1GaN層であり、15μm厚以上とするのが望まし
い。14は該第1GaN層13表面に例えばZnのよ
うなGaNに対してアクセプタとなる不純物をドー
プした不純物ドープ層であり、該ドープ層14は
5000Å厚程度である。尚、不純物ドープ層14の
層厚は第1GaN層13の層厚が15μm以下となる
とき5000Å以上必要となる。15は上記不純物ド
ープ層14表面に上記第1GaN層13と同様にし
て形成された約5μm厚の第2GaN層、16は該
第2GaN層15表面にZnを約2000Åの深さにドー
プしてなる絶縁性のZnドープ層、17は該Znド
ープ層16表面に金等を蒸着させた金属層であ
る。
FIG. 2 shows an embodiment of the GaN blue light emitting device according to the present invention, where 11 is a sapphire single crystal substrate whose main surface 12 is (0001) C plane, and 13 is the main surface 12.
On top of the
It is preferably a 1GaN layer with a thickness of 15 μm or more. 14 is an impurity doped layer in which the surface of the first GaN layer 13 is doped with an impurity, such as Zn, which becomes an acceptor for GaN;
The thickness is approximately 5000 Å. The thickness of the impurity-doped layer 14 is required to be 5000 Å or more when the thickness of the first GaN layer 13 is 15 μm or less. Reference numeral 15 indicates a second GaN layer having a thickness of approximately 5 μm, which is formed on the surface of the impurity doped layer 14 in the same manner as the first GaN layer 13, and reference numeral 16 is a second GaN layer formed by doping the surface of the second GaN layer 15 with Zn to a depth of approximately 2000 Å. The insulating Zn-doped layer 17 is a metal layer in which gold or the like is deposited on the surface of the Zn-doped layer 16.

上記GaN青色発光素子において不純物ドープ層
14の存在が本発明の特徴であり、不純物ドープ
層14により第2GaN層15にクラツク18が到
達しない。
The presence of the impurity doped layer 14 in the GaN blue light emitting device is a feature of the present invention, and the impurity doped layer 14 prevents the cracks 18 from reaching the second GaN layer 15.

この理由は、960℃〜1000℃の高温中で形成さ
れた第1GaN層13では成長中にNが抜けるため
原子間の結合力が弱まり、反面不純物をドープさ
れた不純物ドープ層14では不純物がN位置に入
り込み結合力が強くなり、クラツクを発生させる
内部応力に対しても不純物ドープ層14の方が強
固であるため、第1GaN層13で弱められた内部
応力が不純物ドープ層14において略消滅するた
めだと考察される。
The reason for this is that in the first GaN layer 13 formed at a high temperature of 960°C to 1000°C, the bonding force between atoms weakens as N escapes during growth.On the other hand, in the impurity-doped layer 14 doped with impurities, the impurity is Since the impurity-doped layer 14 is stronger against the internal stress that penetrates into the position and becomes stronger and causes cracks, the internal stress weakened by the first GaN layer 13 almost disappears in the impurity-doped layer 14. It is considered that this is for the sake of this.

従つて本実施例におけるGaN青色発光素子では
第2GaN層15、Znドープ層16、金属層17の
3層からなるMIS型接合部内には全くクラツク1
8が発生しないため発光素子として完全なものと
なる。
Therefore, in the GaN blue light emitting device of this example, there is no crack 1 in the MIS type junction consisting of the three layers, the second GaN layer 15, the Zn doped layer 16, and the metal layer 17.
Since 8 is not generated, the light emitting element becomes perfect.

またGaNの成長層の厚さも第1図に示した従来
のGaN青色発光素子のGaNの成長層の厚さと略同
程度の20μmとなるので生産性の低下という問題
もない。
Further, the thickness of the GaN growth layer is 20 μm, which is approximately the same as the thickness of the GaN growth layer of the conventional GaN blue light emitting device shown in FIG. 1, so there is no problem of reduced productivity.

第3図は本発明における他の実施例を示し、2
1は一主面が(0001)C面であるサフアイヤ単結
晶基板、22は該基板21の一主面上にGaNを成
長させると共にZnの不純物をドープしてなる不
純物ドープ層、23は該不純物ドープ層22表面
にGaNを成長させたGaN層、24は該GaN層23
表面にZnをドープしたZnドープ層、25は該ド
ープ層24表面に金を蒸着した金属層である。
FIG. 3 shows another embodiment of the present invention, 2
Reference numeral 1 denotes an impurity doped layer formed by growing GaN on one principal surface of the substrate 21 and doping it with Zn impurities; 23 indicates the impurity; A GaN layer in which GaN is grown on the surface of the doped layer 22, 24 is the GaN layer 23
A Zn-doped layer 25 whose surface is doped with Zn is a metal layer in which gold is vapor-deposited on the surface of the doped layer 24.

上記第3図に示した発光素子では不純物ドープ
層22を適当な厚さにすることによりクラツク2
6に対して第2図に示した発光素子の第1GaN層
13及び不純物ドープ層14と同様の効果を得る
ことができる。
In the light emitting device shown in FIG.
6, the same effect as the first GaN layer 13 and impurity doped layer 14 of the light emitting device shown in FIG. 2 can be obtained.

以上の説明から明らかな如く本発明によれば生
産性が低下することなく発光素子として完全な
GaN青色発光素子を得ることができる。
As is clear from the above explanation, according to the present invention, it can be used as a perfect light emitting device without reducing productivity.
A GaN blue light emitting device can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来のGaN青色発光素子を示す断面
図、第2図は本発明によるGaN青色発光素子の一
実施例を示す断面図、第3図は本発明によるGaN
青色発光素子の他の実施例を示す断面図である。 11,21……サフアイヤ単結晶基板、13,
15,23……GaN層、14,22……不純物ド
ープ層、16,24……Znドープ層。
FIG. 1 is a cross-sectional view showing a conventional GaN blue light-emitting device, FIG. 2 is a cross-sectional view showing an embodiment of a GaN blue light-emitting device according to the present invention, and FIG. 3 is a cross-sectional view showing a GaN blue light-emitting device according to the present invention.
FIG. 7 is a cross-sectional view showing another example of a blue light emitting element. 11, 21...Saphire single crystal substrate, 13,
15, 23... GaN layer, 14, 22... impurity doped layer, 16, 24... Zn doped layer.

Claims (1)

【特許請求の範囲】[Claims] 1 サフアイヤ単結晶基板上にGaN層、Znドー
プ層をエピタキシヤル成長により順次積層させた
GaN青色発光素子において、上記GaN層内に上記
Znドープ層と隣接しないように不純物ドープ層
を設けたことを特徴とするGaN青色発光素子。
1 A GaN layer and a Zn-doped layer were sequentially stacked on a Saphire single crystal substrate by epitaxial growth.
In the GaN blue light emitting device, the above-mentioned
A GaN blue light emitting device characterized in that an impurity doped layer is provided so as not to be adjacent to a Zn doped layer.
JP16374680A 1980-11-19 1980-11-19 Gan blue light emitting element Granted JPS5787184A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16374680A JPS5787184A (en) 1980-11-19 1980-11-19 Gan blue light emitting element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16374680A JPS5787184A (en) 1980-11-19 1980-11-19 Gan blue light emitting element

Publications (2)

Publication Number Publication Date
JPS5787184A JPS5787184A (en) 1982-05-31
JPS6134276B2 true JPS6134276B2 (en) 1986-08-06

Family

ID=15779890

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16374680A Granted JPS5787184A (en) 1980-11-19 1980-11-19 Gan blue light emitting element

Country Status (1)

Country Link
JP (1) JPS5787184A (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69126152T2 (en) 1990-02-28 1997-11-13 Toyoda Gosei Kk Gallium nitride compound semiconductor light emitting device
US6830992B1 (en) 1990-02-28 2004-12-14 Toyoda Gosei Co., Ltd. Method for manufacturing a gallium nitride group compound semiconductor
US6362017B1 (en) 1990-02-28 2002-03-26 Toyoda Gosei Co., Ltd. Light-emitting semiconductor device using gallium nitride group compound
US5278433A (en) * 1990-02-28 1994-01-11 Toyoda Gosei Co., Ltd. Light-emitting semiconductor device using gallium nitride group compound with double layer structures for the n-layer and/or the i-layer
DE69333250T2 (en) * 1992-07-23 2004-09-16 Toyoda Gosei Co., Ltd. Light emitting device made of a compound of the gallium nitride group
DE60038381D1 (en) 1999-06-18 2008-04-30 Nidec Sankyo Corp ROTATION PISTON DEVICE
KR20030001566A (en) * 2001-06-25 2003-01-08 대한민국 (한밭대학총장) ELD using GaN powder and manufacturing method of GaN powder and its equipment

Also Published As

Publication number Publication date
JPS5787184A (en) 1982-05-31

Similar Documents

Publication Publication Date Title
US5239188A (en) Gallium nitride base semiconductor device
US8835988B2 (en) Hybrid monolithic integration
US6380051B1 (en) Layered structure including a nitride compound semiconductor film and method for making the same
JP3963068B2 (en) Method for producing group III nitride compound semiconductor device
JP3812368B2 (en) Group III nitride compound semiconductor device and method for manufacturing the same
KR920015514A (en) Crystal Growth Method of Gallium Nitride Compound Semiconductor
US20050118752A1 (en) Method of making substrates for nitride semiconductor devices
WO2004051707A2 (en) Gallium nitride-based devices and manufacturing process
TW200306019A (en) Process for producing group III nitride compound semiconductor, group III nitride compound semiconductor component, and method for producing group III nitride compound semiconductor substrate
US20040077166A1 (en) Semiconductor crystal growing method and semiconductor light-emitting device
US6471770B2 (en) Method of manufacturing semiconductor substrate
JPH03203388A (en) Semiconductor light emitting element and its manufacture
JPH06105797B2 (en) Semiconductor substrate and manufacturing method thereof
CN104518062A (en) Method of manufacturing semiconductor light emitting device
US20060141753A1 (en) Epitaxial structure of gallium nitride series semiconductor device and process of manufacturing the same
JP2829319B2 (en) Gallium nitride based compound semiconductor light emitting device
JP4749583B2 (en) Manufacturing method of semiconductor substrate
JP4345626B2 (en) Semiconductor element and manufacturing method thereof.
JPH11135889A (en) Substrate for crystal growth and light-emitting device using the same
JP2002299253A5 (en)
JPS6134276B2 (en)
JP3353527B2 (en) Manufacturing method of gallium nitride based semiconductor
JP3758537B2 (en) Method for producing group III nitride compound semiconductor
JPH08250802A (en) Semiconductor laser and its manufacture
JPH05206519A (en) Growing method for gallium nitride compound semiconductor