JPS6133712B2 - - Google Patents

Info

Publication number
JPS6133712B2
JPS6133712B2 JP53144495A JP14449578A JPS6133712B2 JP S6133712 B2 JPS6133712 B2 JP S6133712B2 JP 53144495 A JP53144495 A JP 53144495A JP 14449578 A JP14449578 A JP 14449578A JP S6133712 B2 JPS6133712 B2 JP S6133712B2
Authority
JP
Japan
Prior art keywords
recording
control
voltage
pulse voltage
electrostatic recording
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53144495A
Other languages
Japanese (ja)
Other versions
JPS5570855A (en
Inventor
Masaru Oonishi
Shuji Iwata
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP14449578A priority Critical patent/JPS5570855A/en
Priority to US06/081,488 priority patent/US4366491A/en
Publication of JPS5570855A publication Critical patent/JPS5570855A/en
Publication of JPS6133712B2 publication Critical patent/JPS6133712B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 この発明は、片面制御用の静電記録ヘツドを使
つた静電記録方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an electrostatic recording method using an electrostatic recording head for single-sided control.

第1図は、従来より公知の片面制御用静電記録
ヘツド(以下単に記録ヘツドと称す)を用いた静
電記録装置の印字部の基本的な構成を示す概念図
で、1は記録針であり、この例では多数本の針が
紙面に垂直方向に配置されており、その両側には
記録針1の所定本数毎に分割された制御電極2が
設けられている。この様な構成を有する記録ヘツ
ド3のヘツド面に、導電性基紙4と誘電体層5と
から成る静電記録紙6を図の様にゴムローラ7で
圧接する。この状態のもとに通常、記録針1には
負の記録針電圧VN、制御電極2には正の制御電
圧VC、が同時に印加され、静電記録紙6の誘電
体層5の面上に電荷像が形成される。この静電記
録紙6上に形成された電荷像は、現像機8により
トナー現象され、加熱定着器9によりトナーが溶
融されて定着される。
FIG. 1 is a conceptual diagram showing the basic configuration of the printing section of an electrostatic recording device using a conventionally known electrostatic recording head for single-sided control (hereinafter simply referred to as a recording head), in which 1 is a recording stylus. In this example, a large number of needles are arranged in a direction perpendicular to the plane of the paper, and control electrodes 2 each divided into a predetermined number of recording needles 1 are provided on both sides of the needles. An electrostatic recording paper 6 consisting of a conductive base paper 4 and a dielectric layer 5 is pressed against the head surface of the recording head 3 having such a structure with a rubber roller 7 as shown in the figure. Under this condition, normally, a negative recording needle voltage V N is applied to the recording needle 1 and a positive control voltage V C is applied to the control electrode 2 at the same time. A charge image is formed thereon. The charge image formed on the electrostatic recording paper 6 is converted into a toner by a developing device 8, and the toner is melted and fixed by a heat fixing device 9.

第2図は、この従来の記録方法に於けるVN
およびVCの波形図で、VPはVCを印加した制御
電極2の直下の静電記録紙4の電位である。第3
図はこの様なVCを印加した時の制御電極の近似
的な等価回路で、CS1はVCを印加した制御電極
2の直下の誘電体層5の静電容量、CS2はこのV
Cを印加した制御電極2の隣の制御電極2に接触
している誘電体層5の静電容量、RGはVCを印加
した制御電極2から接地点までの導電性基紙4の
抵抗値、RSは上記二つの制御電極間の導電性基
紙の抵抗値である。この電位VPは、例えば第2
図に曲線aで示した様な波形となる。即ち、 CS1×R/(R+R)の時定数を持つたV
Cの微分波 形がVPの波形とほぼ一致する。この時定数を支
配するRG及びRSは共に温湿度が上昇すると急激
に減少するので、VPは高温高湿時には第2図に
曲線bとしてモデル化して示した様にVCの立上
りでピークを示した後急速に減衰してしまう。こ
のVPと記録針電圧VNとで誘電体層5の面上に電
荷像が形成されるが、多針電極記録の場合にはグ
ルーピングにより多数本の記録針が並列に接続さ
れているため、記録針間の静電容量は150〜
400pF程度の大きな値となる。このため、記録針
電圧VNの立上りの時定数τNは制御電圧VGの立
上りの時定数τCに比べ長くなり、従つて、VF
減衰時定が小さくなる。VPが第2曲線bのよう
な特性を示す高温高湿度の条件下では、VNが飽
和値に達する以前にVPが小さな値に減衰するの
で記録濃度が著しく低下し、ついには記録不能と
なるという欠点を生じることになる。この様な高
温高湿雰囲気に於ける記録濃度の低下が従来の方
法では避けることができない第1の欠点である。
FIG. 2 shows V N ,
In the waveform diagram of VC and VC , VP is the potential of the electrostatic recording paper 4 directly below the control electrode 2 to which VC is applied. Third
The figure shows an approximate equivalent circuit of the control electrode when such V C is applied, where C S1 is the capacitance of the dielectric layer 5 directly under the control electrode 2 to which V C is applied, and C S2 is this V
The capacitance of the dielectric layer 5 that is in contact with the control electrode 2 next to the control electrode 2 to which C is applied, and R G is the resistance of the conductive base paper 4 from the control electrode 2 to which V C is applied to the ground point. The value R S is the resistance value of the conductive base paper between the two control electrodes. This potential V P is, for example, the second
The waveform becomes as shown by curve a in the figure. That is, V with a time constant of C S1 ×R G R S /(R G +R S )
The differential waveform of C almost matches the waveform of V P . Both R G and R S , which govern this time constant, decrease rapidly as the temperature and humidity rise, so V P changes at the rise of V C at high temperature and high humidity, as shown in the model as curve b in Figure 2. After showing a peak, it rapidly decays. A charge image is formed on the surface of the dielectric layer 5 by this V P and the recording needle voltage V N , but in the case of multi-needle electrode recording, many recording needles are connected in parallel by grouping. , the capacitance between the recording needles is 150~
This is a large value of about 400pF. Therefore, the time constant τ N of the rise of the recording needle voltage V N is longer than the time constant τ C of the rise of the control voltage V G , and therefore the decay time constant of V F becomes smaller. Under high temperature and high humidity conditions where V P exhibits characteristics as shown in the second curve b, V P decays to a small value before V N reaches its saturation value, resulting in a significant decrease in recording density, and eventually recording becomes impossible. This results in the disadvantage that . The first drawback that conventional methods cannot avoid is a decrease in recording density in such a high temperature and high humidity atmosphere.

更に従来の方法では、次に示す様な隣接する制
御電極への電圧の漏洩分によるコースト像の出現
という第2の欠点がある。第4図は従来の方法で
用いられてきた最も基本的な回路構成例を示した
ものである。ここで、101は多数本を一列に並
べた記録針電極であり、201は記録針101の
所定本数を単位として分割され、記録針の両側に
配置された制御電極である。ここでは、説明の便
宜上記録針101の5本おきに分割した例を示し
た。又、総数2n個のブロツクになる様に記録針
101は5本おきに交互にグループA及びBに並
列に接続されている。この様な構成に於て、A1
ブロツクの記録を行う場合には、グループA用の
記録信号源10aからA1での所定の記録パター
ンに従つて記録針電圧VNを印加し、VNと同時に
制御電極201のS1,S2に制御電圧源11から制
御電圧VGが印加される。そしてVNとVCの双方
が同時に印加される部分即ちブロツクA1でのみ
記録が行なわれる。以下、Akを記録する場合に
はS2k-1,S2kに、Boの場合にはS2k,S2k+1
各々VCを印加する様にして、一ライン分の記録
を順次終了する。
Furthermore, the conventional method has a second drawback of appearance of a coast image due to voltage leakage to adjacent control electrodes as described below. FIG. 4 shows an example of the most basic circuit configuration used in the conventional method. Here, 101 is a recording stylus electrode in which a large number of recording stylus electrodes are arranged in a line, and 201 is a control electrode divided into units of a predetermined number of recording stylus 101 and arranged on both sides of the recording stylus. Here, for convenience of explanation, an example is shown in which the recording needles 101 are divided into every five recording needles. Further, the recording needles 101 are alternately connected in parallel to groups A and B every five needles so as to form a total of 2n blocks. In this configuration, A 1
When recording a block, a recording needle voltage VN is applied from the recording signal source 10a for group A according to a predetermined recording pattern in A1 , and at the same time as VN , S1 and S of the control electrodes 201 are applied. A control voltage V G is applied to 2 from the control voltage source 11. Recording is performed only in the portion where both V N and V C are applied simultaneously, that is, block A1 . Below, when recording A k , apply V C to S 2k-1 and S 2k , and when recording B o , apply V C to S 2k and S 2k+1 , and record one line one by one. finish.

今、S2k-1,S2kにパルス電圧VGを印加した状
態を考えると、その両隣りの制御電極S2k-2,S
2k+1の電極直下の静電記録紙の電位Vgは第5図
に曲線a,bで例示した様に、VCの漏れ分によ
り電位が上昇し、ゴースト電圧Vgを生じる。こ
こで、曲線a及びbは低湿度及び高湿度条件での
gにそれぞれ対応している。この様にVgが高湿
度側で急激に上昇するのは、第3図の等価回路で
静電記録紙の導電性基紙の低下によりRSが小さ
くなるので、隣接制御電極の容量CS2への充電時
定数が短かくなり、Vgが上昇するようになるも
のである。このため第4図のAkのみで印字すべ
きところ、Ak+1或はAk-1でも同時に記録が行わ
れることとなる。この余分の記録像をゴースト像
と称し、この像の出現が従来法の第2の欠点であ
つた。この発明はかかる従来法の欠点を完全に除
去可能な静電記録方法を提供するものである。
Now, considering the state where pulse voltage V G is applied to S 2k-1 and S 2k , the control electrodes S 2k-2 and S on both sides
As illustrated by curves a and b in FIG. 5, the potential V g of the electrostatic recording paper directly under the 2k+1 electrode increases due to the leakage of V C , producing a ghost voltage V g . Here, curves a and b correspond to V g under low humidity and high humidity conditions, respectively. The reason why V g increases rapidly on the high humidity side is that in the equivalent circuit shown in Fig. 3, R S becomes smaller due to the decrease in the conductive base paper of the electrostatic recording paper, so the capacitance C S2 of the adjacent control electrode This shortens the charging time constant and increases V g . For this reason, while printing should be performed only with A k in FIG. 4, recording will be performed simultaneously with A k+1 or A k-1 . This extra recorded image is called a ghost image, and the appearance of this image was the second drawback of the conventional method. The present invention provides an electrostatic recording method that can completely eliminate the drawbacks of such conventional methods.

第6図は、この発明における代表的な制御電圧
Cと記録針電圧VNとの関係を示したものであ
る。この方法の特徴は制御電圧VEが正と負の1
対のパルスの組合わせおら成つていることであ
る。即ち、VNと同極性の第1の制御電圧パルス
C1とその次にVNと逆極性の制御電圧パルス
(この側では正極性)VC2を印加し、この第2の
パルスと重畳する時間内(この例では同時に印
加)にVNを印加することにより従来法の前記の
2欠点を除去する様にしたものである。
FIG. 6 shows a typical relationship between the control voltage V C and the recording needle voltage V N in the present invention. The feature of this method is that the control voltage V E is positive and negative.
It consists of a combination of pairs of pulses. That is, a first control voltage pulse V C1 of the same polarity as V N is applied, and then a control voltage pulse V C2 of opposite polarity to V N (positive polarity on this side) is applied and superimposed on this second pulse. By applying V N within a certain period of time (simultaneously in this example), the above-mentioned two drawbacks of the conventional method are removed.

第7図は、この発明の方法による高湿度条件下
での記録濃度の低下の除去効果を説明するため
の、静電記録紙の導電性基紙の電位VPの変化を
モデル化して示したものである。ここで、曲線a
及びbは低湿及び高湿でのVPの時間変化を各々
示している。まず、負極性の第1の制御電圧パル
スVC1をA時点で印加し、B時点でオフするとV
PはAB間の曲線a1またはb1の様に低湿度ではゆつ
くりと、高湿度では急速に各々減衰する。第3図
の等価回路から分かる様に、VC1が切れA点が接
地された状態を考えるとVC1が印加されていた制
御電極直下の静電記録紙の誘電体層の容量CS1
充電された電圧分だけVPは正極性側に反転す
る。この状態を第7図のBC間の曲線で示した。
この反転電圧a2,b2の大きさは、VPの減衰の高
い高湿度側の方が大きくなる。この発明はこの反
転電圧が高湿度側の方や大きくなる性質を利用
し、記録濃度の低下を防止するものである。VC1
のオフ後直ちに或はtd時間だけ遅らせたC時点に
C1と逆極性の第2の制御電圧パルスVC2を印加
L,D時点でオフとする。VC2の印加により、V
PはVC1による反転電圧にVC2による電圧が重畳
されてVPはVC2のみを加えた場合に比べ大きな
値となる。このVPの値はC,D間の曲線a3,b3
で示した様に、ピーク値の高湿側の方が自動的に
大きくなる。なお同図の曲線abは第2図に示し
た従来の方法におけるVC1のない場合の低湿時と
高湿時のVP波形をそれぞれ示したもので、曲線
bの様に高湿側でVPの減衰が大きくなるが、こ
の発明の方法ではかえつて反転電圧でb3の方がa3
より大となるので記録濃度の低下を完全に防ぐこ
とができる。又、この反転電圧の存在により、V
C2だけの場合より記録濃度が全ての雰囲気のもの
で増大するという利点をも併せ持つている。
FIG. 7 shows a model of changes in the potential V P of the conductive base paper of electrostatic recording paper, in order to explain the effect of removing the decrease in recording density under high humidity conditions by the method of the present invention. It is something. Here, the curve a
and b show the temporal changes in V P at low humidity and high humidity, respectively. First, when the first control voltage pulse V C1 of negative polarity is applied at time A and turned off at time B, V
As shown in curves a 1 and b 1 between AB, P decays slowly at low humidity and rapidly at high humidity. As can be seen from the equivalent circuit in Figure 3, when considering the state in which V C1 is cut off and point A is grounded, the capacitance C S1 of the dielectric layer of the electrostatic recording paper directly under the control electrode to which V C1 was applied is charged. V P is reversed to the positive polarity side by the amount of voltage applied. This state is shown by the curve between BC in Figure 7.
The magnitude of the reversal voltages a 2 and b 2 becomes larger on the high humidity side where the attenuation of V P is higher. The present invention utilizes the property that this reversal voltage becomes larger on the high humidity side to prevent a decrease in recording density. V C1
A second control voltage pulse V C2 having a polarity opposite to that of V C1 is applied immediately after turning off, or at time C delayed by td time, and is turned off at times L and D. By applying V C2 , V
As for P , the voltage due to V C2 is superimposed on the inverted voltage due to V C1 , and V P becomes a larger value than when only V C2 is added. The value of this V P is the curve a 3 , b 3 between C and D
As shown in , the peak value on the high humidity side automatically becomes larger. Curve ab in the same figure shows the V P waveform at low humidity and high humidity in the case of no V C1 in the conventional method shown in Figure 2, and as shown in curve b, V P waveform on the high humidity side. Although the attenuation of P increases, in the method of this invention, b 3 becomes more a 3 than a 3 at the inversion voltage.
Since it becomes larger, a decrease in recording density can be completely prevented. Also, due to the presence of this inversion voltage, V
It also has the advantage that the recording density is higher in all atmospheres than in the case of only C2 .

なお、この発明で新たに導入されたVC1は記録
針電圧VNと同極性であるので記録が行われるこ
とがなく、VC1の導入による障害を生じることは
ない。
Note that since the V C1 newly introduced in this invention has the same polarity as the recording needle voltage V N , recording is not performed and no trouble occurs due to the introduction of V C1 .

第8図はこの発明によるゴーストの除去効果を
説明するため、隣接制御電極直下の静電記録紙の
導電性基紙の電位Vgの時間変化を示したもので
ある。負のVC1パルスが印加されると低湿度ある
いは高湿度条件下ではそれぞれ曲線a1,b1の様に
gは負極性側に上昇する。次に、C時点VC2
印加されるとVgは反転を開始するが、VC1とVC
の誘導電圧は互に打消す方向であるので、VC2
と同極性側のVgの値a2,b2は図のように極めて
小さくできる。従来の方法によるVgの波形は低
湿及び高湿に於て曲線a,bの様になるので、曲
線a2b2との比較からその効果が明らかである。な
お、この発明ではVC1とVC2との遅れ時間tdは小
さい程よいがゴーストの軽減効果はtdをVC1また
はVC2のパルス巾の数倍程度にしても認められる
ことが確認できた。
FIG. 8 shows the temporal change in the potential V g of the conductive base paper of the electrostatic recording paper directly under the adjacent control electrode, in order to explain the ghost removal effect according to the present invention. When a negative V C1 pulse is applied, V g rises to the negative polarity side as shown by curves a 1 and b 1 under low humidity or high humidity conditions, respectively. Next, when V C2 is applied at point C, V g starts to reverse, but V C1 and V C
Since the induced voltages of 2 are in the direction of canceling each other, V C2
The values a 2 and b 2 of V g on the same polarity side can be made extremely small as shown in the figure. The waveform of V g obtained by the conventional method becomes curves a and b in low humidity and high humidity, and its effect is clear from comparison with curve a 2 b 2 . In this invention, the smaller the delay time td between V C1 and V C2, the better, but it was confirmed that the ghost reduction effect can be observed even when td is set to several times the pulse width of V C1 or V C2 .

第9図は、tdが存在する場合にもVgを完全に
除去できる一方法を示したものであり、VC1のパ
ルス巾をVC2に比べ長くすることによりVC2パル
ス印加終了時のVgをほぼ0電圧にすることが可
能である。又、同様の効果をVC2に比べVC1のパ
ルスの波高値を大きくとることによつても達成で
きる。又逆に、VC2に比べVC1パルスの電圧又は
パルス幅を小さくしても従来の方法の前記の欠点
の除去は可能であつた。この様に、この発明にお
いては、VC1とVC2とが逆極性のパルスである限
りその波形或はその印加のタイミングを特定の関
係に限定するものではない。
Figure 9 shows a method for completely removing V g even when td exists. By making the pulse width of V C1 longer than V C2 , the V g at the end of V C2 pulse application is reduced. It is possible to make g almost zero voltage. A similar effect can also be achieved by making the peak value of the pulse of V C1 larger than that of V C2 . Conversely, even if the voltage or pulse width of the V C1 pulse was made smaller than that of V C2 , the above-mentioned drawbacks of the conventional method could be eliminated. In this way, in the present invention, as long as V C1 and V C2 are pulses of opposite polarity, their waveforms or the timing of their application are not limited to any particular relationship.

又、この発明では説明の便宜上静電記録紙が最
も簡単な誘電体層と導電性基紙の2層構造を持つ
としたが、この発明は本来高速記録用の導電基紙
自体が2層或は3層の様に多層に形成された静電
記録紙を使つた場合にもその特長を発揮できるも
のであり、静電記録紙の特定の構造に限定するも
のではない。
Furthermore, in this invention, for convenience of explanation, it is assumed that the electrostatic recording paper has the simplest two-layer structure of a dielectric layer and a conductive base paper. This feature can be exhibited even when using an electrostatic recording paper formed in multiple layers such as three layers, and is not limited to a specific structure of the electrostatic recording paper.

又、この発明の方法は誘電体層を介して制御電
極により導電層の電位を制御しようとする全ての
制御方式に適用できるものであり、記録計の構
造、配置或はグルーピング法更には制御電極のグ
ルーピング法、分割法等によらず有効なものであ
る。
Furthermore, the method of the present invention can be applied to all control methods in which the potential of a conductive layer is controlled by a control electrode via a dielectric layer, and it is possible to apply the method to any control method that attempts to control the potential of a conductive layer by using a control electrode through a dielectric layer, and can be applied to any control method that attempts to control the potential of a conductive layer by using a control electrode through a dielectric layer. This is effective regardless of the grouping method, division method, etc.

更に、この発明の方法は記録媒体を静電記録紙
に限定するものでなく、例えばプラスチツクフイ
ルムをベースとする静電記録媒体、同筒状ドラム
上に形成された片面制御可能な静電記録媒体等の
制御方法として全て使用できる。
Furthermore, the method of the present invention does not limit the recording medium to electrostatic recording paper; for example, an electrostatic recording medium based on a plastic film, or an electrostatic recording medium formed on the same cylindrical drum that can be controlled on one side. All can be used as control methods such as

又、以上の説明ではVC1、VC2をそれぞれ1づ
つのパルスとしたが、それぞれ任意のnケのパル
スの組合わせとすることもできる。又、VN及び
C1、VC2の極性は相対的なものであり、記録部
全体に直流或はパルス電圧を印加しても同等の効
果の得られるのは勿論である。
Further, in the above explanation, each of V C1 and V C2 is assumed to be one pulse, but each may be a combination of any n number of pulses. Further, the polarities of V N , V C1 and V C2 are relative, and it goes without saying that the same effect can be obtained even if a direct current or pulse voltage is applied to the entire recording section.

以上詳述した様に、この発明の方法によれば高
湿度時における記録濃度の低下及びゴースト像の
出現を完全に除去することが可能となり、フアク
シミリ、静電記録プリンタ等の広い用途に用い、
記録の安定性、画質の向上等の極めてすぐれた特
徴を発揮するものである。
As detailed above, the method of the present invention makes it possible to completely eliminate the decrease in recording density and the appearance of ghost images at high humidity, and can be used in a wide range of applications such as facsimiles and electrostatic recording printers.
It exhibits extremely excellent features such as recording stability and improved image quality.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、片面制御用静電記録ヘツドを使つた
静電記録装置の印字部の基本的構成例を示す概念
図、第2図は従来の記録方法に於ける記録針電圧
Nと制御電圧VCとの関係を示す波形図、第3図
は制御電極部分の近似的等価回路、第4図は従来
の記録方法で用いられている基本的構成例を示す
回路図、第5図は、従来の記録方法で現われるゴ
ースト電圧の波形図、第6図は、この発明に於け
るVNとVCとの関係を示す波形図、第7図はこの
発明の一実施例における静電記録紙の電位VP
変化を説明するための図、第8図は、この実施例
におけるゴースト電圧Vgの波形図、第9図は、
この発明の他の実施例におけるVC1,VC2および
gの波形図である。 図において、1は記録針、2は制御電極、3は
片面制御用静電記録ヘツド、6は静電記録紙、7
はローラ、8は現像器、9は定着器、10a,1
0bは記録信号源、11は制御電圧源である。
Fig. 1 is a conceptual diagram showing an example of the basic configuration of the printing section of an electrostatic recording device using an electrostatic recording head for single-sided control, and Fig. 2 shows the recording needle voltage V N and control in the conventional recording method. A waveform diagram showing the relationship with the voltage V C , Fig. 3 is an approximate equivalent circuit of the control electrode section, Fig. 4 is a circuit diagram showing a basic configuration example used in the conventional recording method, and Fig. 5 is a diagram showing the basic configuration example used in the conventional recording method. , a waveform diagram of a ghost voltage appearing in the conventional recording method, FIG. 6 is a waveform diagram showing the relationship between V N and V C in the present invention, and FIG. 7 is a waveform diagram showing the relationship between V N and V C in the present invention. FIG. 8 is a diagram for explaining changes in paper potential V P , and FIG. 9 is a waveform diagram of ghost voltage V g in this embodiment.
FIG. 5 is a waveform diagram of V C1 , V C2 and V g in another embodiment of the invention. In the figure, 1 is a recording needle, 2 is a control electrode, 3 is an electrostatic recording head for single-sided control, 6 is electrostatic recording paper, and 7
is a roller, 8 is a developing device, 9 is a fixing device, 10a, 1
0b is a recording signal source, and 11 is a control voltage source.

Claims (1)

【特許請求の範囲】 1 記録針電極とこれに並設された制御電極とを
有する片面制御用静電記録ヘツドを駆動して当該
記録ヘツドに当接された記録媒体の誘電体層に電
荷潜像を形成させるに際し、上記制御電極に第1
の制御パルス電圧を印加し、ついで反対極性の第
2の制御パルス電圧を印加すると同時に上記記録
針電極に、上記第2の制御パルス電圧とは逆極性
の記録パルス電圧を印加するようにしたことを特
徴とする静電記録方法。 2 第1の制御パルス電圧の接地に対する電位差
を第2のパルス電圧のそれよりも大きくしたこと
を特徴とする特許請求の範囲第1項記載の静電記
録方法。 3 第1の制御パルス電圧の印加時間を第2の制
御パルス電圧よりも長くしたことを特徴とする特
許請求の範囲第1項記載の静電記録方法。
[Scope of Claims] 1. A single-sided control electrostatic recording head having a recording needle electrode and a control electrode arranged in parallel with the recording needle electrode is driven to cause a charge in the dielectric layer of a recording medium that is in contact with the recording head. When forming an image, a first
A control pulse voltage is applied, and then a second control pulse voltage of opposite polarity is applied, and at the same time, a recording pulse voltage of opposite polarity to the second control pulse voltage is applied to the recording needle electrode. An electrostatic recording method characterized by: 2. The electrostatic recording method according to claim 1, wherein the potential difference of the first control pulse voltage with respect to ground is made larger than that of the second pulse voltage. 3. The electrostatic recording method according to claim 1, wherein the application time of the first control pulse voltage is longer than that of the second control pulse voltage.
JP14449578A 1978-11-21 1978-11-21 Electrostatic recording method Granted JPS5570855A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP14449578A JPS5570855A (en) 1978-11-21 1978-11-21 Electrostatic recording method
US06/081,488 US4366491A (en) 1978-11-21 1979-10-03 Electrographic imaging system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14449578A JPS5570855A (en) 1978-11-21 1978-11-21 Electrostatic recording method

Publications (2)

Publication Number Publication Date
JPS5570855A JPS5570855A (en) 1980-05-28
JPS6133712B2 true JPS6133712B2 (en) 1986-08-04

Family

ID=15363666

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14449578A Granted JPS5570855A (en) 1978-11-21 1978-11-21 Electrostatic recording method

Country Status (1)

Country Link
JP (1) JPS5570855A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57133085A (en) * 1981-02-12 1982-08-17 Matsushita Electric Ind Co Ltd Magnetic fluid recording device

Also Published As

Publication number Publication date
JPS5570855A (en) 1980-05-28

Similar Documents

Publication Publication Date Title
KR870011481A (en) Time Division Driving Method of Optical Switch Device Using Ferroelectric Liquid Crystal
GB893845A (en) Electrographic recording apparatus
EP0342967A3 (en) Electrostatic information recording medium and electrostatic information recording and reproducing method
JPS6226219B2 (en)
JPS6133712B2 (en)
US4366491A (en) Electrographic imaging system
EP0341668A1 (en) Apparatus for recording and reproducing charge latent image
JPS6012944B2 (en) Driving method of electrostatic recording device
JPH0632365Y2 (en) Switching device
EP0450895B1 (en) Apparatus for recording and reproducing information
JPS6332633B2 (en)
JPS601196B2 (en) Electrostatic recording device using multi-stylus head
WO1983003468A1 (en) Electrostatic printer of video pictures with grey tones
US4554563A (en) Drive system in a multi-pin-electrode electrostatic recording apparatus
US3711860A (en) Arc discharge recording apparatus with pigment carrier
JPS6228907B2 (en)
JPS626382B2 (en)
JPH0225311B2 (en)
JPS6321894B2 (en)
SU1037301A1 (en) Indicator
JPS5833112B2 (en) Kiroku house
JPS58107375A (en) Electrostatic recorder
JPS60235576A (en) Transfer type electrostatic recording method
JPS59209891A (en) Electrostatic recording method
US3335423A (en) Medium for treating information