JPS6133447B2 - - Google Patents

Info

Publication number
JPS6133447B2
JPS6133447B2 JP55066184A JP6618480A JPS6133447B2 JP S6133447 B2 JPS6133447 B2 JP S6133447B2 JP 55066184 A JP55066184 A JP 55066184A JP 6618480 A JP6618480 A JP 6618480A JP S6133447 B2 JPS6133447 B2 JP S6133447B2
Authority
JP
Japan
Prior art keywords
shape
strip
signal
displacement
fluctuation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55066184A
Other languages
Japanese (ja)
Other versions
JPS56162006A (en
Inventor
Yoichi Naganuma
Harutoshi Oomi
Satoru Nakamura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP6618480A priority Critical patent/JPS56162006A/en
Publication of JPS56162006A publication Critical patent/JPS56162006A/en
Publication of JPS6133447B2 publication Critical patent/JPS6133447B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Indication And Recording Devices For Special Purposes And Tariff Metering Devices (AREA)
  • Control Of Metal Rolling (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)

Description

【発明の詳細な説明】 この発明は、熱間圧延等のストリツプ圧延にお
ける形状検出方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a shape detection method in strip rolling such as hot rolling.

ストリツプ圧延において、幅方向ののび率の差
からくる形状不良(以下形状とはこの意味であ
る)は操業の上でも品質の面でも重要な制御、管
理項目であることはいうまでもない。これまで多
くのラインで形状に関する検出方法の研究開発が
なされ、一部のラインでは実用化がなされさらに
形状を自動的に制御するシステムも開発されてい
る。例えば、冷間圧延ライン等においては、形状
はストリツプに加えられる張力のために、弾性変
形して潜在化して表に現われなくなるため、幅方
向の張力分布を何らかの形で測定する方式で形状
検出が実用化されている。
In strip rolling, it goes without saying that shape defects (hereinafter referred to as "shape") caused by differences in elongation rates in the width direction are important control and management items in terms of operation and quality. Research and development of shape detection methods has been carried out on many lines, and some lines have put them into practical use, and systems that automatically control the shape have also been developed. For example, in cold rolling lines, etc., the shape is elastically deformed due to the tension applied to the strip, becoming latent and not appearing on the surface. Therefore, shape detection is possible by measuring the tension distribution in the width direction in some way. It has been put into practical use.

しかし熱間圧延ライン等の場合には、上記の場
合と異なり形状は潜在化して波として表に現われ
て観測される。このことから棒状光源、レーザ光
源あるいは水柱抵抗法等を用いてストリツプの通
過位置を測定して、その時間的動きから形状不良
波の大きさを把握する試みがなされてきている。
However, in the case of a hot rolling line, etc., unlike the above case, the shape becomes latent and is observed as a wave that appears on the surface. For this reason, attempts have been made to measure the passing position of the strip using a rod light source, laser light source, water column resistance method, etc., and to grasp the size of the irregularly shaped wave from the temporal movement thereof.

しかし現実には、熱間圧延ラインにおいてスト
リツプがコイラに巻きつくまでに見られるよう
に、バタツキ等による大きな外乱が実際の測定デ
ータに加わつている場合が殆んどである。
However, in reality, in most cases, large disturbances such as flapping are added to the actual measurement data, as seen before the strip wraps around the coiler in a hot rolling line.

このように実際圧延において、ストリツプの動
きは形状不良波による信号以外の外乱をも含んで
観測されるが、従来はこれらの外乱に対する処理
が十分でなく、形状検出方法としては問題があ
り、外乱の少ない場合にのみ有効なものであつ
た。
In this way, during actual rolling, the movement of the strip is observed to include disturbances other than the signals caused by waves with defective shapes, but in the past, processing for these disturbances was insufficient, and there were problems as a shape detection method. It was effective only in cases where there was a small number of cases.

本発明は、上記問題点に対し、板のバタツキ等
の外乱がある状況においても、測定信号から形状
不良による信号のみを抽出して形状検出を行なわ
せる方法を提供することを目的とする。本発明の
ストリツプの形状検出方法は、ストリツプ圧延に
おいて、幅方向に配置された複数個の観測点にお
いてストリツプの通過位置を少くとも板波の一周
期以上にわたり複数回測定して記憶せしめ、各観
測点毎に測定信号から異常値を除去し、残された
測定値から各観測点毎に最大値と最小値の差(変
動幅)を求め、該各観測点毎の変動幅のうち最小
なる変動幅を求め、各観測点の変動幅と該最小変
動幅の差から各観測点における板波の波高値を求
めることを特徴とするものである。
SUMMARY OF THE INVENTION An object of the present invention is to provide a method for detecting a shape by extracting only a signal due to a shape defect from a measurement signal even in a situation where there is a disturbance such as fluttering of a plate. In the strip shape detection method of the present invention, during strip rolling, the passing position of the strip is measured multiple times over at least one period of the plate wave at a plurality of observation points arranged in the width direction, and is memorized. Abnormal values are removed from the measurement signal for each point, and the difference between the maximum and minimum values (fluctuation range) for each observation point is determined from the remaining measurement values, and the smallest fluctuation among the fluctuation widths for each observation point is calculated. The method is characterized in that the width is determined, and the wave height value of the plate wave at each observation point is determined from the difference between the fluctuation width of each observation point and the minimum fluctuation width.

以下本発明の実施例にもとづいて詳細な説明を
行なう。第1図は全体の装置構成を示すもので、
1は形状検出対象のストリツプ、2(添字−
……は各々を区別するもの)はストリツプの
通過位置を測定する装置で、幅方向に複数台設置
(又はスキヤンニングして複数個のサンプリング
を行なうとしてもよい)され、ストリツプの幅方
向各点でのストリツプの通過位置(高さ方向にお
ける通過位置。一定位置からの変位と考えてよい
ので以下変位と表記する)を検出する。3は該検
出器が検出した変位信号であり、4は該検出信号
をマイクロコンピユータにとり込むためのインタ
ーフエイスであり、5は信号処理を行なうマイク
ロコンピユータ、6はマイクロコンピユータで信
号処理された結果得られる形状信号であり、出力
信号となるものである。
A detailed explanation will be given below based on embodiments of the present invention. Figure 1 shows the overall device configuration.
1 is the strip whose shape is to be detected, 2 (subscript -1 ,
- 2 ... is a device that measures the passing position of the strip, and multiple units are installed in the width direction (or scanning may be performed to perform multiple samplings). The passing position of the strip at each point (passing position in the height direction; hereinafter referred to as displacement as it can be considered as displacement from a fixed position) is detected. 3 is a displacement signal detected by the detector, 4 is an interface for inputting the detection signal into a microcomputer, 5 is a microcomputer that performs signal processing, and 6 is a signal obtained as a result of signal processing by the microcomputer. This is the shape signal that is generated and becomes the output signal.

第2図は、検出器信号の実際的な一例を示すも
のであつて横軸に時刻、縦軸は変位の大きさを表
わし、6―1〜6―7は各測定点での装置2―
〜2―の検出信号を表わす。該検出信号Hi
(t)は各点での形状不良による波hi(t)の他
にストリツプのバタツキ等による変位の変動Ni
(t)および測定ノイズεi(t)を含み、一般
に式(1)で表わされる。
FIG. 2 shows a practical example of a detector signal, in which the horizontal axis represents time, the vertical axis represents the magnitude of displacement, and 6-1 to 6-7 represent the device 2- 1
~ 2--7 represents the detection signal. The detection signal Hi
(t) is the wave hi(t) due to shape defects at each point, as well as the fluctuation Ni of displacement due to strip flapping, etc.
(t) and measurement noise εi(t), and is generally expressed by equation (1).

Hi(t)=Ni(t)+hi(t)+εi(t) (1) ここで望まれる信号はhi(t)であり、Hi
(t)をもつて形状信号とすることは誤まつた結
果を生じる。
Hi(t)=Ni(t)+hi(t)+εi(t) (1) Here the desired signal is hi(t) and Hi
(t) as a shape signal produces erroneous results.

第3図はHi(t)を形状信号とした場合に生
じる誤まつた結果の一例を示すものであつて、曲
線7―1〜7―3で示すようにW.S(ワークサイ
ド)片のびのストリツプが、逆位相の曲線8―1
〜8―3のような外乱(点線)をうける場合に
は、変位として曲線9―1〜9―3で示すように
他方のD.S(ドライブサイド)に大きな波が生
じ、この信号を形状として用いるとD.S片のびと
いう反対の結果を示すことになる。なおCはセン
ターである。以上のことから正しく形状検出を行
なうためには変位信号から形状信号のみを抽出す
る方法が不可欠となる。
Figure 3 shows an example of erroneous results that occur when Hi(t) is used as a shape signal. However, the antiphase curve 8-1
~ When receiving a disturbance (dotted line) as shown in 8-3, a large wave is generated on the other DS (drive side) as a displacement as shown by curves 9-1 to 9-3, and this signal is used as the shape. This shows the opposite result of DS kananobi. Note that C is the center. From the above, in order to correctly detect the shape, a method of extracting only the shape signal from the displacement signal is essential.

本発明の主たる目的は、未知の振動等による外
乱を含んで観測される信号より板の振動外乱によ
る成分および測定ノイズによる成分を除去し、形
状信号のみを抽出する方法を提供するにある。発
明者等の実データおよび物理的考察による検討に
よれば 幅方向に測定点の数がある程度以上あれば少
なくとも1点以上は形状不良波の生じていない
点(以下基準点と呼ぶ)がある ストリツプの波の一周期以上の時間区間で変
動幅の該基準点で最小となる ストリツプのバタツキは板幅方向にほぼ一様
と見なせる 板の形状はある程度短い観測期間内では変ら
ない ことが明らかとなり、これが実用上充分な精度
で保障されることを知見した。従つてかかる特性
を用いれば、形状信号は幅方向各点において上で
のべた時間区間での変位変動幅を求め、それから
最小変動幅をさし引くことにより得られる。
The main object of the present invention is to provide a method for extracting only a shape signal by removing components due to plate vibration disturbance and measurement noise from a signal observed including disturbance due to unknown vibrations. According to the inventors' study based on actual data and physical considerations, if the number of measurement points in the width direction exceeds a certain level, there is at least one point where no irregular shaped wave occurs (hereinafter referred to as a reference point). It is clear that the fluctuation width is minimum at the reference point in the time interval of one wave period or more.The fluctuation of the strip can be considered to be almost uniform in the width direction of the plate.It is clear that the shape of the plate does not change within a fairly short observation period. We have found that this is guaranteed with sufficient accuracy for practical use. Therefore, if such characteristics are used, the shape signal can be obtained by finding the displacement fluctuation range in the time interval described above at each point in the width direction, and then subtracting the minimum fluctuation width from it.

本発明の実施例においては幅方向に7点の測定
点をもち、未知の形状不良に伴なう変動が1秒間
に数回あると、観測されるので、測定期間を1秒
としている。この時間内で200回の変位測定を行
ない、その中から異常値を除いて、変位の変動幅
を求めている。第4図は、その実施例(結果)を
示したものである。縦軸は変位x、横軸は確率P
(x)を表わす。
In the embodiment of the present invention, there are seven measurement points in the width direction, and since fluctuations due to unknown shape defects are observed several times per second, the measurement period is set to 1 second. Displacement measurements were performed 200 times within this time, and abnormal values were removed to determine the variation range of displacement. FIG. 4 shows the example (results). The vertical axis is displacement x, and the horizontal axis is probability P.
(x).

変位測定ごとに変位信号をマイクロコンピユー
タ5に入力して、1秒間の変位の分布を、その変
位値より大きい値をとる確率(各値毎の、その値
より大きい変位値の個数の測定回数200に対する
率)として求めたものである。測定データの中か
ら正常データの最大変位値xnaxを第4図aのP
(x)=0.1となるxをもつて、また最大変位値xn
axをbのP(x)=0.9となるxをもつて求め、x
naxより大きい測定データ、xnioより小さい測定
データは異常値として除去する。この処理によ
り、瞬時的なバタツキ等による外乱は除去され
る。これより、その間の変位変動幅Δxは Δx=xnax−xnio (2) で求める。異常値の除去は特に上記方法に限定
される必要はない。
A displacement signal is input to the microcomputer 5 for each displacement measurement, and the distribution of displacement for one second is calculated by calculating the probability of taking a value larger than that displacement value (the number of measurements of the number of displacement values larger than that value for each value 200 It is calculated as a ratio of The maximum displacement value x nax of normal data from the measured data is P in Figure 4 a.
With x such that (x)=0.1, and the maximum displacement value x n
Find ax with x such that P(x) = 0.9 of b, and x
Measured data larger than nax and measured data smaller than x nio are removed as abnormal values. Through this processing, disturbances such as instantaneous fluctuations are removed. From this, the displacement fluctuation range Δx during that time is determined by Δx=x nax −x nio (2). The removal of abnormal values does not need to be limited to the above method.

各点での変位の変動幅がΔx(i)、(iは測定点
番号)と求まれば、この中で最小の変動幅Δxo
を求めれば、これが外乱による変動幅となる。ゆ
えに各点での形状波高値S(i)は S(i)=Δx(i)−Δxo (3) で求まる。ここで形状波高値というのは、形状
検出時間内の形状不良波の平均的な波高値という
意味をもつ。
If the fluctuation range of displacement at each point is found as Δx(i), (i is the measurement point number), then the minimum fluctuation range Δx o
This is the fluctuation range due to disturbance. Therefore, the shape wave height value S(i) at each point is determined by S(i)=Δx(i)−Δx o (3). Here, the shape wave height value has the meaning of the average wave height value of the wave with a defective shape within the shape detection time.

第5図は、上記の形状検出方法を行なつて得ら
れた結果の一例を示す。横軸はストリツプの幅方
向の測定点位置を表わし、縦軸は各点でのストリ
ツプの変位値と、得られた形状波高値を表わす。
折れ線11と14は変位の最大値と最小値、折れ
線12と13は変位xnaxとxnioを表わし、折れ
線15が最終的に求められた形状波高値を表わし
ている。
FIG. 5 shows an example of the results obtained by performing the above shape detection method. The horizontal axis represents the measurement point position in the width direction of the strip, and the vertical axis represents the displacement value of the strip at each point and the obtained shape peak value.
Polygonal lines 11 and 14 represent the maximum and minimum values of displacement, polygonal lines 12 and 13 represent displacements x nax and x nio , and polygonal line 15 represents the finally determined shape peak value.

形状波高値は、形状制御のための形状信号値と
してあるいは、管理用として監視に用いられる。
なお上記実施例では、マイクロコンピユータを用
いて形状信号(形状波高値)を抽出しているが、
その他の信号処理装置でも実施可能であり、マイ
クロコンピユータに限るものではない。
The shape wave height value is used for monitoring as a shape signal value for shape control or for management purposes.
In the above embodiment, the shape signal (shape peak value) is extracted using a microcomputer.
The present invention can also be implemented with other signal processing devices, and is not limited to microcomputers.

本発明により、熱延ラインのようにストリツプ
のバタツキ等の外乱がある場合にも、板の形状測
定が可能となり、形状波高値が一定時間ごとに求
まるようになつた。また、本方法は変位の変動幅
を求めて、それにより形状を求めているので板の
そりや傾きには影響なく顕在化形状を測定でき
る。本形状検出法によつて、熱延ライン等におい
ても圧延中に形状が測定され、それにより形状検
出が可能となり、そのことにより操業の自動化、
品質の向上に大きく貢献するものである。
According to the present invention, it is now possible to measure the shape of a plate even when there are disturbances such as fluttering of the strip, such as on a hot rolling line, and the shape peak value can now be determined at regular intervals. In addition, this method determines the variation range of displacement and determines the shape based on this, so the actual shape can be measured without affecting the warp or inclination of the plate. With this shape detection method, the shape can be measured during rolling even in hot rolling lines, etc., making it possible to detect the shape, thereby automating operations,
This greatly contributes to improving quality.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の全体装置構成図、
第2図は検出器信号の実際的な一例を示す波形
図、第3図はHi(t)を形状信号とした時の誤
まつた結果の例を示す波形図、第4図は、異常値
除去方法例を示すグラフ、第5図は形状検出結果
例を示すグラフである。 1…ストリツプ、2…通過位置測定装置、3…
変位信号、4…インターフエイス、5…マイクロ
コンピユータ、6…出力信号。
FIG. 1 is an overall device configuration diagram of an embodiment of the present invention;
Figure 2 is a waveform diagram showing a practical example of a detector signal, Figure 3 is a waveform diagram showing an example of erroneous results when Hi(t) is used as a shape signal, and Figure 4 is an abnormal value. A graph showing an example of a removal method, and FIG. 5 is a graph showing an example of a shape detection result. 1... Strip, 2... Passing position measuring device, 3...
displacement signal, 4...interface, 5...microcomputer, 6...output signal.

Claims (1)

【特許請求の範囲】[Claims] 1 ストリツプ圧延において、幅方向に配置され
た複数個の観測点においてストリツプの通過位置
を少くとも板波の一周期以上にわたり複数回測定
して記憶せしめ、各観測点毎に測定信号から異常
値を除去し、残された測定値から各観測点毎に最
大値と最小値の差(変動幅)を求め、該各観測点
毎の変動幅のうち最小なる変動幅を求め、各観測
点の変動幅と該最小変動幅の差から各観測点にお
ける板波の波高値を求めることを特徴とするスト
リツプの形状検出方法。
1. In strip rolling, the passing position of the strip is measured multiple times over at least one period of the plate wave at multiple observation points arranged in the width direction and stored, and abnormal values are detected from the measurement signal at each observation point. The difference between the maximum value and the minimum value (fluctuation range) for each observation point is determined from the remaining measured values, and the minimum fluctuation range is determined from among the fluctuation ranges for each observation point. A method for detecting the shape of a strip, characterized in that the peak value of a plate wave at each observation point is determined from the difference between the width and the minimum fluctuation width.
JP6618480A 1980-05-19 1980-05-19 Detection for shape of strip Granted JPS56162006A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6618480A JPS56162006A (en) 1980-05-19 1980-05-19 Detection for shape of strip

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6618480A JPS56162006A (en) 1980-05-19 1980-05-19 Detection for shape of strip

Publications (2)

Publication Number Publication Date
JPS56162006A JPS56162006A (en) 1981-12-12
JPS6133447B2 true JPS6133447B2 (en) 1986-08-02

Family

ID=13308496

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6618480A Granted JPS56162006A (en) 1980-05-19 1980-05-19 Detection for shape of strip

Country Status (1)

Country Link
JP (1) JPS56162006A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5288364A (en) * 1976-01-20 1977-07-23 Nippon Steel Corp Shape detector for running plate materials

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5288364A (en) * 1976-01-20 1977-07-23 Nippon Steel Corp Shape detector for running plate materials

Also Published As

Publication number Publication date
JPS56162006A (en) 1981-12-12

Similar Documents

Publication Publication Date Title
RU2470280C2 (en) Method for detection and automatic identification of rolling bearing damage
US8640544B2 (en) Method for analyzing structure safety
Capecchi et al. Monitoring of structural systems by using frequency data
US4046536A (en) Monitoring and control of optical fiber diameters
KR880700386A (en) Pitch detector system and pitch detector and pitch detection method
JP6844552B2 (en) Abnormal vibration detection method for rolling mill
CN108573224A (en) A kind of Bridge Structural Damage localization method of mobile reconstruct principal component using single-sensor information
CN117889945B (en) Highway bridge construction vibration testing method
US11835670B2 (en) Seismic observation device, seismic observation method, and recording medium in which seismic observation program is recorded
CN110780128A (en) Sensitive equipment voltage sag fault probability evaluation method
US20210131930A1 (en) Damage detection apparatus, method, and program
JP7216359B2 (en) Seismic Observation Device, Seismic Observation Method and Seismic Observation Program
CN108896274A (en) A kind of distributive fiber optic strain demodulation method based on subset window length optimization algorithm
US20200125653A1 (en) Robust fault detection and diagnosison dynamic sensor network
CN112781556A (en) Well lid transaction monitoring method and device based on multi-data fusion filtering
JPS6133447B2 (en)
KR20200137295A (en) Apparatus for detecting combustor instability and method thereof
JP2020131819A (en) System, method and program for transversal wave cycle prediction
CN115541109A (en) Method for monitoring unbalance of impeller based on machine vision
CN115307939A (en) Method, device, equipment and storage medium for detecting wheel circumferential surface of rail vehicle
JP2022186575A (en) Detection device, detection method, and program
JP2018200217A (en) Rattling sound inspection device and rattling sound inspection method
CN114090949A (en) Robust vibration signal characteristic value calculation method
CN106908169B (en) Data processing method of distributed optical fiber temperature sensor
CN118549780B (en) Transformer partial discharge sensing system