JPS6133237A - Preparation of isomerization accelerating agent - Google Patents

Preparation of isomerization accelerating agent

Info

Publication number
JPS6133237A
JPS6133237A JP59154253A JP15425384A JPS6133237A JP S6133237 A JPS6133237 A JP S6133237A JP 59154253 A JP59154253 A JP 59154253A JP 15425384 A JP15425384 A JP 15425384A JP S6133237 A JPS6133237 A JP S6133237A
Authority
JP
Japan
Prior art keywords
polyethylene
cross
reaction
molded material
linked polyethylene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59154253A
Other languages
Japanese (ja)
Other versions
JPS6353857B2 (en
Inventor
Kiyoshi Hayakawa
浄 早川
Hiroshi Taoda
博史 垰田
Takaari Yumoto
湯本 高在
Takaari Kawase
川瀬 薫
Hiromi Yamakita
山北 尋巳
Masato Tazawa
真人 田澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP59154253A priority Critical patent/JPS6133237A/en
Publication of JPS6133237A publication Critical patent/JPS6133237A/en
Publication of JPS6353857B2 publication Critical patent/JPS6353857B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers

Landscapes

  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

PURPOSE:To obtain an insoluble reaction accelerating agent which is easily separable by transforming a cross-linked polyethylene molded material into a large- surface area body with a swelling method while keeping the original shape, and grafting chloromethyl styrene onto said body. CONSTITUTION:A cross-linked polyethylene molded material is obtained by treating a polyethylene molded material with gamma-ray irradiation, electron-beam irradiation, or other vulcanization, etc. The cross-linked polyethylene molded material is temporarily immersed into a large amt. of a high-boiling point nonpolar solvent such as toluene and xylene, and heated for several hours while agitating gently to swell the material. Then the swollen polymer is separated by filtration, transferred into a large amt. of methanol, agitated, washed repeatedly with methanol, and then air-dried to obtain the large-surface area cross-linked polyethylene. Chloromethyl styrene is grafted onto said polyethylene, and polymerized.

Description

【発明の詳細な説明】 (a)  発明の技術分野 本発明は、各種の異性化反応に対する不溶性の反応促進
剤の製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (a) Technical Field of the Invention The present invention relates to a method for producing an insoluble reaction accelerator for various isomerization reactions.

(b)  従来の技術 有機異性化反応の多くは、有機系低分子物質のうちのあ
るものによって著しく促進される。たとえば、光異性化
反応に際しては、紫外部に吸収帯を有するケトン化合物
等が、また、逆型異性化反応では、ポルフィン系有機金
属船体などが増感剤または触媒として反応を促進させる
ことが知られているが、これらの反応促進剤としては、
反応物質との接触面積が大きいこと、反応物質と親和性
を持ち局所濃度を高める作用などがあることが望ましい
。その反面、反応物質および生成物質等から容易に分離
され得ることが、工程の連続化などのために必要な要件
となる。
(b) Prior Art Many organic isomerization reactions are significantly accelerated by certain organic low-molecular substances. For example, it is known that in photoisomerization reactions, ketone compounds with absorption bands in the ultraviolet region promote the reaction, and in reverse isomerization reactions, porphine-based organometallic carriers act as sensitizers or catalysts to accelerate the reaction. However, these reaction accelerators include:
It is desirable that the contact area with the reactant be large, that it has an affinity for the reactant, and that it has the effect of increasing the local concentration. On the other hand, it is a necessary requirement for process continuity that it can be easily separated from reactants, product substances, and the like.

具体例として、太陽光エネルギーの化学的変換に用いら
れる代表的な物質であるノルボルナジェン暗時における
発熱逆反応を挙げる。
As a specific example, we will discuss the exothermic back reaction of norbornadiene, a typical substance used in the chemical conversion of solar energy, in the dark.

ノルボルナジェンは、そのクオドリシクレンへの光異性
化に対し、多量のエンタルピー増を示す有用な液体光化
学蓄熱剤であシ、その太陽光による光異性化反応と、そ
の逆の発熱反応を組み合せ循環サイクルとして繰り返し
使用可能な光エネルギー−熱エネルギー変換貯蔵システ
ムを形成できる。しかし、ノIレボルナジエン自身は、
適当な吸収帯を持たないため直接には太陽光を利用でき
ない。従って光増感剤全必要とするが、その増感剤は、
生成したクオドリシクレンの逆反応触媒eM染するよう
なものであってはならないし、また逆反応触U+−が、
光反応室へ混入するようなことが起こるならば、生成し
たクオドリンクレンはたタチニ発熱してノルボルナジェ
ンに戻b、システム全1肪成することができない。従っ
てこの場合、光増FE、剤、及び逆反応触媒は、反応液
からの分画が容易且つ完全であることが必要であるため
、従来不溶性の高分子光増感剤、及び不溶性の高分子触
媒が用いられてきた。しかし、従来それら反応促進剤の
高分子担体は粉末か細かいビーズ状多孔性ポリスチレン
がほとんどすべてであるため膨潤度が低く、反応物質の
局所濃度を高める効果が少なく、反応促進効果が低い。
Norbornagene is a useful liquid photochemical heat storage agent that exhibits a large increase in enthalpy when photoisomerized to quadricyclene.The photoisomerization reaction caused by sunlight and its opposite exothermic reaction are combined and repeated as a circular cycle. A usable light energy to thermal energy conversion storage system can be formed. However, Noi Rebornadien himself,
Since it does not have a suitable absorption band, it cannot directly utilize sunlight. Therefore, all photosensitizers are required, and the sensitizers are
It must not be such that the reverse reaction catalyst eM of the produced quadricyclene is dyed, and the reverse reaction catalyst U + - must not be
If contamination with the photoreaction chamber occurs, the generated quadrindrene will generate heat and return to norbornadiene, making it impossible to synthesize the entire system. Therefore, in this case, the photosensitizer, the agent, and the reverse reaction catalyst need to be easily and completely fractionated from the reaction solution. Catalysts have been used. However, conventional polymeric carriers for these reaction accelerators have been almost entirely composed of powder or fine bead-like porous polystyrene, which has a low degree of swelling, has little effect on increasing the local concentration of reactants, and has a low reaction accelerating effect.

また、反応液の流通を妨げるような形態のものが多く、
実用化には程遠い現状?6る。(たとえば、A、Ake
lah 、 D 、 C、sherringtonCh
em、Rev、 、g/5jj7 (/り、f/)、D
 、 C、Baj−1ey 。
In addition, many of them are in a form that obstructs the flow of the reaction solution.
Is the current situation far from practical use? 6ru. (For example, A, Ake
lah, D, C, sherringtonCh
em, Rev, , g/5jj7 (/ri, f/), D
, C.Baj-1ey.

S、H,Langer、 Chem、Rev、 、K1
1/ 09 (/タサ/)、Y、Chauvin、 D
、CommereucSF、Dawans、 Prog
、Poエル。
S, H, Langer, Chem, Rev, ,K1
1/09 (/Tasa/), Y, Chauvin, D
, CommereucSF, Dawans, Prog.
, Poel.

sci、、s、95(/り77)) 本発明は、上記の欠点を克服した工業的に利用+TJ能
な不溶性異性化反応促進剤の製造方法に関するものであ
シ、無極性高分子物質の選択吸着性を高度に利用したマ
クロな形態を持つ、分離容易な不溶性反応促進剤を製造
するためのものである。
sci, s, 95 (/ri 77)) The present invention relates to a method for producing an industrially applicable and TJ-capable insoluble isomerization reaction accelerator that overcomes the above-mentioned drawbacks. The objective is to produce an easily separable insoluble reaction accelerator that has a macroscopic morphology that utilizes selective adsorption to a high degree.

(d)  発明の構成 まず、触媒基材または担体と゛して架橋ポリエチレンが
用いられる。もとのポリエチレンの形態は、粒状、フィ
ルム状、繊維状、または他の物質、たとえば有機、無機
金属繊維などに接着または混繊された形であってもよい
。架橋処理は、γ線照射、電子線照射、その他の加硫操
作のいずれをも用いうるが、また水架橋用の変性ポリエ
チレンの同様な成形物を、水または水蒸気によって架橋
ポリエチレンとすることもできる。成形品の大きさは、
液体の分離が容易な程度であれば差し支えない。
(d) Structure of the invention First, crosslinked polyethylene is used as a catalyst base material or carrier. The original polyethylene may be in the form of particles, film, fibers, or adhered to or mixed with other materials such as organic or inorganic metal fibers. For the crosslinking treatment, gamma ray irradiation, electron beam irradiation, or other vulcanization operations can be used, but a similar molded product of modified polyethylene for water crosslinking can also be made into crosslinked polyethylene using water or steam. . The size of the molded product is
There is no problem as long as the liquid can be easily separated.

架橋後、一旦多量のトルエン、キシレン等の高#li点
無極性溶媒中に浸し、ゆるやかにかく拌しながら数時間
加熱膨潤させる。膨潤度は架橋度にもよるが、膨潤ポリ
エチレン相互の付碧ヲ妨げるために溶剤は゛10倍量以
上が望ましい。膨潤時にはポリエチレンは全く透明とな
るが、冷却後は不透明塊状ゲルとなり、溶剤景が充分な
場合には溶剤は上澄として分離される。濾過によシ膨潤
ポリマーを分離し、多量のメタノ−μ中に移し、かく拌
後、これを加圧することなくメタノールで洗浄する操作
金繰シ返し高沸点溶剤を置換除去した後、メタノ−/1
/ヲ風乾除去することにより成形体の形Bをそのまま保
った大表面積の架橋ポリエチレンを得ることができる。
After crosslinking, it is immersed in a large amount of a nonpolar solvent with a high #li point such as toluene or xylene, and heated and swelled for several hours while being gently stirred. Although the degree of swelling depends on the degree of crosslinking, the amount of solvent used is preferably 10 times or more in order to prevent the mutual adhesion of the swollen polyethylene. When swollen, the polyethylene is completely transparent, but after cooling it becomes an opaque bulk gel, and if the solvent concentration is sufficient, the solvent is separated as a supernatant. The swollen polymer is separated by filtration, transferred to a large amount of methanol, stirred, and washed with methanol without applying pressure. 1
By removing the mixture by air drying, a crosslinked polyethylene having a large surface area and maintaining the shape B of the molded article can be obtained.

生成物は軟いスポンジ状でちることが多いので、前記の
濾過時に加圧操作等は望ましくない。得られたスポンジ
状ポリエチレンは、約/3;n?/9の表面積を持つこ
とが知られた。次に、このスポンジ状ポリエチレンにク
ロロメチルスチレンをグラフト重合させる。用いられる
クロロ、′メチルスチレンは純粋なものでも、通常市販
のp−lm−混合物でも差し支えないし、また安定剤が
添加された状態や溶媒により稀釈された状態でも使用す
ることができる。グラフト方法としてはこれまで既知の
各種の方法、即ち開始剤を用いる方法、電離性放射線を
用いる方法、紫外線照射法、超音波法など、どの方法を
用いてもよい。実施例にはγ線照射による液相法を用い
た例を示したが、同じγ線を用いても気相法を使用する
ことも可能である。グラフト反応後は、ベンゼン等の溶
剤によって未反応のクロロメチルスチレン、およヒソノ
ホモホリマーを完全に除去した後メタノール等で洗浄、
風乾すれば、前同様の成型体の形態を保ったポリクロロ
メチルスチレンをグラフトしたスポンジ状ポリエチレン
が得られる。最後にグラフトしたポリクロロメチルスチ
レンに対し、所要の反応促進機能を持つ化合物を反応さ
せることにより、反応促進機能を持つポリエチレン成型
体金錫ることができる。
Since the product is often soft and spongy, it is not desirable to apply pressure during the filtration. The obtained sponge-like polyethylene has a thickness of about /3;n? It is known to have a surface area of /9. Next, chloromethylstyrene is graft-polymerized onto this spongy polyethylene. The chloro, 'methylstyrene used may be pure or a commercially available p-lm-mixture, and may also be used with a stabilizer added or diluted with a solvent. As the grafting method, any of the various known methods may be used, including a method using an initiator, a method using ionizing radiation, an ultraviolet irradiation method, and an ultrasonic method. Although the example uses a liquid phase method using γ-ray irradiation, it is also possible to use a gas phase method using the same γ-rays. After the grafting reaction, unreacted chloromethylstyrene and hisono homopolymer are completely removed using a solvent such as benzene, and then washed with methanol etc.
When air-dried, a spongy polyethylene grafted with polychloromethylstyrene that maintains the same molded form as before is obtained. Finally, by reacting the grafted polychloromethylstyrene with a compound having the required reaction accelerating function, a gold-tin polyethylene molded body having a reaction accelerating function can be obtained.

反応促進機能を持つ反応性化合物としては、たとえばg
−アセチル安息香酸(p−アセ1−フェノンカルボン酸
)を挙げることができる。この化合物は、三重順光増感
剤として良く知られたアセトフェノンのベンゼン核にカ
ルボキシルx’を結合t。
Examples of reactive compounds with a reaction promoting function include g
-acetylbenzoic acid (p-ace1-phenonecarboxylic acid). This compound combines carboxyl x' with the benzene nucleus of acetophenone, which is well known as a triple photosensitizer.

た構造である。従って、当該化合物のアセチIv基のカ
ルボニルは光増感剤としての機能に必須で、ポリクロロ
メチルスチレンを介してポリエチレンに結合した後も、
そのままその機能は保持される。
It has a similar structure. Therefore, the carbonyl of the acetyl group of the compound is essential for its function as a photosensitizer, and even after bonding to polyethylene via polychloromethylstyrene,
The functionality will be retained.

また尚該化合物のカルボキシル基はクロロメチルスチレ
ン基の塩素と反応し、塩化水累全失い縮合して光増感基
の構造をポリエチレンに結びつけるだめのものである。
Furthermore, the carboxyl group of the compound reacts with the chlorine of the chloromethylstyrene group and condenses with the loss of all water chloride, thereby linking the photosensitizing group structure to polyethylene.

即ちここで言う反応促進機能を持つ反応性化合物とは、
二つの機能、反応促進機能とそれ自身の反応性または結
合性を併せ持つ化合物である。反応促進機能として芳香
族カルボニル基による光増g機能を例示したが、その他
当然ながら各種の触媒機能を挙げることができる。
In other words, the reactive compound with a reaction promoting function referred to here is:
It is a compound that has two functions: a reaction promoting function and its own reactivity or binding ability. Although the photointensification function by the aromatic carbonyl group has been exemplified as the reaction promoting function, various other catalytic functions can also be mentioned.

例えば実施例3に示した金属ポルフィリン錯体構造ハ、
クオドリシクレンのノルボルナジェンへの逆反応を促進
する触媒機能を有するものである。
For example, the metalloporphyrin complex structure shown in Example 3,
It has a catalytic function that promotes the reverse reaction of quadricyclene to norbornadiene.

これらの機能例に限らず種々の機能を認められている有
機系化合物は多数あυ、これらに適当な反応性基金付与
することによって、その機能を架橋ポリエチレンに結合
することができる。反応性基としては上側においてはカ
ルボキシル基を挙げたが、クロロメチルスチレンの塩素
は反応性に富むため、カルボキシル の存在のもとにアミノ基、水酸基、ナトリウム塩、カリ
ウム塩などと縮合して該化合物と結合することができる
ので、その機能性基と反応性基の組み合せは多種多様と
なる。縮合に際しては、ポリクロロメチlレヌチレング
ラフト架橋ホリエチレンに対して、反応促進機能を有す
る反応性化合物を過剰ik、望ましくは//〜5倍景、
添加し、ベンゼン、ジメチルホルムアミド等適当な溶剤
t 加工、かく拌しながら数時間加熱することによって
達成できる。反応後は、適当な溶剤で洗浄、濾過後、最
後にメタノール等で洗浄、乾燥すれば、同じく成型物の
形態をそのまま保った不溶性異性化反応促進剤が得られ
る。以下実施例により、その実施の態様を示す。
There are many organic compounds that are recognized to have various functions, not limited to these functional examples, and these functions can be bonded to crosslinked polyethylene by providing them with an appropriate reactive group. As the reactive group, the carboxyl group was mentioned above, but since chlorine in chloromethylstyrene is highly reactive, it condenses with amino groups, hydroxyl groups, sodium salts, potassium salts, etc. in the presence of carboxyl. Since they can be bonded to compounds, the combinations of functional groups and reactive groups are diverse. During the condensation, an excess amount of a reactive compound having a reaction promoting function is added to the polychloromethyl-renuthylene-grafted crosslinked polyethylene, preferably //~5x magnification,
This can be achieved by adding a suitable solvent such as benzene, dimethylformamide, etc., and heating for several hours while stirring. After the reaction, the insoluble isomerization reaction accelerator is obtained by washing with an appropriate solvent, filtering, and finally washing with methanol or the like and drying, which also maintains the form of the molded product. The mode of implementation will be shown below with reference to Examples.

<e>  実施例/ 径3〜41 ztnに成型された高密度ポリエチレンベ
レットを真空封管とし、これに常温でコバルト60から
のγ線’e ta i率.2 x / (75R/hr
で50時間照射(縁線ffr,707R)シて、はぼ完
全に架橋させた。溶媒抽出法によるゲlし分率は7り%
でろった。このベレット20ノにキシレン3; 0 0
 mlを加え、はぼ沸点近くまで加熱した状1鵠を5時
間保ち膨潤させた。冷却後軽く一過して上澄液を除き、
次に固化ゲル状物t2I!のメタノール中に投入し、約
7時間かく拌する操作音2度繰シ返し、最後に濾過し、
メタノ−lしで洗浄し、これを風乾して白色スポンジ状
の粒状大表面積化架橋ポリエチレンを得た。次にこのり
6乙タグを径グOMMの封管用試験管に入れ、未精製ク
ロロメチルスチレン10trlとベンゼン、!; O 
me f加えると、混合液はほぼ粒状ポリエチレン全量
を浸す程度になった。
<e> Example/ A high-density polyethylene pellet molded to a diameter of 3 to 41 ztn was used as a vacuum-sealed tube, and γ-rays from cobalt-60 were injected into the tube at room temperature. 2 x / (75R/hr
It was irradiated for 50 hours (edge line ffr, 707R) to achieve almost complete crosslinking. Gel fraction by solvent extraction method is 7%
It turned out. 20 pieces of this pellet and 3 xylene; 0 0
ml was added and the mixture was heated to near the boiling point and kept for 5 hours to swell. After cooling, briefly remove the supernatant liquid,
Next, solidified gel material t2I! of methanol, stirred for about 7 hours, repeated the operation sound twice, and finally filtered.
The product was washed with methanol and air-dried to obtain white spongy granular cross-linked polyethylene with a large surface area. Next, put the glue 6 tag into a sealed OMM test tube, add 10 trl of unpurified chloromethylstyrene and benzene. ; O
When mef was added, the mixture became such that almost all of the granular polyethylene was submerged.

この試験管を液体窒素を用いて凍結排気、溶解脱気操作
を繰り返して、排気後10”IIMHgで封管し、常温
でコバルト60からのγ線を線量率j×IO’R/hr
でりざ時間照射した。照射後、粒状ホリエチレンtfi
別し、これをベンゼンで,+=b返し洗浄後メタノール
に浸し、戸別後風乾して得られたポリクロロメチルヌチ
レングラット架橋ポリエチレンは//./7gグで、塩
素含量3.7j%、、グラフト率/よ乙%であった。次
にポリクロロメチルスチレングラフト架橋ポリエチレン
粒702ざfI(約50粒)を三角フラスコに取り、ク
ーアセチル安息香酸07ざ62(ポリクロロメチルスチ
レンに対して5倍量)、トリエチルアミンO. !; 
yxl 。
This test tube was repeatedly frozen and degassed using liquid nitrogen, and after being evacuated, the tube was sealed with 10" IIMHg, and the gamma rays from cobalt-60 were irradiated at a dose rate of j x IO'R/hr at room temperature.
I irradiated it for an hour. After irradiation, granular polyethylene TFI
This was separated, washed with benzene, +=b, immersed in methanol, and air-dried after each house. /7g, the chlorine content was 3.7j%, and the grafting rate was 3.7j%. Next, polychloromethylstyrene-grafted crosslinked polyethylene particles 702 particles (approximately 50 particles) were placed in an Erlenmeyer flask, and 702 particles of polychloromethylstyrene grafted cross-linked polyethylene were placed in an Erlenmeyer flask. ! ;
yxl.

およびベンゼン!;O mlを加え、還流冷却器をつけ
て沸騰水浴上で2時間かく拌加熱した。冷却後ポリエチ
レン粒tp過し、ベンゼンおよびメタノールで繰り返し
洗浄して減圧乾燥し、アセトフェノン基を結合したスポ
ンジ状のポリクロロメチルスチレングラフト架橋ポリエ
チレン粒0. 9&タグ金得た。塩素含量2.77%で
、ポリクロロメチルスチレン残基の29.0%にアセト
フェノン基が結合したことになる。
and benzene! ;0 ml was added, and the mixture was stirred and heated on a boiling water bath for 2 hours with a reflux condenser attached. After cooling, the polyethylene particles are filtered through a TP filter, washed repeatedly with benzene and methanol, and dried under reduced pressure to obtain sponge-like polychloromethylstyrene graft crosslinked polyethylene particles bonded with acetophenone groups. I got 9 & tag money. At a chlorine content of 2.77%, acetophenone groups were bonded to 29.0% of the polychloromethylstyrene residues.

実施例2 実施例/のポリクロロメチ/I/7ーチレングラフト架
橋ポリエチレン粒0り2乙y’i三角フラスコに取り、
o−ベンゾイル安息香酸(ペンゾフエノンカ ルホ  
ン 酸 )/:にIP  、  l−  リ エ チ 
ル ア ミ ン 03;mi。
Example 2 Two polychloromethy/I/7-ethylene grafted crosslinked polyethylene particles of Example were placed in an Erlenmeyer flask.
o-benzoylbenzoic acid (penzophenone carpho)
phosphoric acid)/: to IP, l-rich
Rua Min 03;mi.

ベンゼン! Ornl ’に加え、還流冷却器をつけて
沸騰水浴上で2時間かく拌しながら加熱した。冷却後、
ポリエチレン粒k V−i別し、ベンゼンおよびメタノ
ールで#3シ返し洗浄して減圧乾燥し、ベンゾフェノン
基ヲ結合したポリクロロメチルスチレンクラ7)mWポ
リエチレン粒Og5り2を得た。塩素含量/、70%で
、クロロメチフレスチレン残基の塩素の34/%にベン
ゾフェノン基が置換したことになる。
benzene! The mixture was added to Ornl' and heated with stirring on a boiling water bath with a reflux condenser for 2 hours. After cooling,
The polyethylene grains kV-i were separated, washed twice with benzene and methanol, and dried under reduced pressure to obtain polychloromethylstyrene 7) mW polyethylene grains Og5-2 with benzophenone groups bonded. At a chlorine content of 70%, 34% of the chlorine in the chloromethyfurstyrene residue was substituted with benzophenone groups.

実施例3 %l’MllJ/のボリクロロメチルヌチレングラフト
架橋ポリエチレン粒03!;、、29に、コバルト−プ
ロトポルフィリン0.793119.トリエチルアミン
0、 / tttt、ジメチルホルムアミトゲOxtを
加え、コ時間かく拌しながら加熱した。冷却後、ポリエ
チレンat”p別し、温ジメチルホルムアミドロロホル
ムで洗浄後減圧乾燥し、コバルト−プロトポルフィリン チルヌチレングラフト架橋ポリエチレン粒0/3乙グを
得た。塩素含量は2.73%で、クロロメチルスチレン
残基の239%にコバIレトープロトボルフイリンが結
合したことになる。
Example 3 Polychloromethylnutylene grafted crosslinked polyethylene particles with %l'MllJ/ 03! ;,29, cobalt-protoporphyrin 0.793119. Triethylamine 0./tttt and dimethylformamide Oxt were added and heated with stirring for an hour. After cooling, the polyethylene was separated, washed with hot dimethylformamide chloroform, and dried under reduced pressure to obtain cobalt-protoporphylynthylene grafted crosslinked polyethylene particles of 0/3.The chlorine content was 2.73%. This means that 239% of the chloromethylstyrene residues were bound to Coba I retauprotovoruphyrin.

(io)発明の効果 本発明による反応促進剤は不溶性であり、マクロな形態
金保ちながら、母体となる架橋ポリエチレンが大・表面
積であるだけでなく゛無極性有機物質に対する親和性を
有するために局部的に反応物質の膿縮・吸着による反応
促進が実現され、反応効率が極めて高く、しかも分離p
別等が容易であるという特徴を有する。参考例によりそ
の効果を、他の不溶性担体を用いた場合と比較して示す
(io) Effects of the Invention The reaction accelerator according to the present invention is insoluble, and while maintaining its macroscopic morphology, the crosslinked polyethylene that serves as the base material not only has a large surface area but also has an affinity for non-polar organic substances. The reaction is accelerated by shrinkage and adsorption of the reactant, and the reaction efficiency is extremely high.
It has the characteristic of being easy to distinguish. The effect will be shown in reference examples in comparison with cases where other insoluble carriers are used.

次表は実施例/、及びコで合成したアセトフェノン基と
ベンゾフェノン基を結合したポリクロロメチルヌチレン
グラフトポリエチレン粒のツルボlレナジエンークオド
リシクレン光異性化反応に対する光増感剤としての効果
を示したものである。
The following table shows the effect as a photosensitizer on the photoisomerization reaction of the polychloromethylnutylene grafted polyethylene grains with acetophenone groups and benzophenone groups synthesized in Examples and Co. This is what is shown.

本−用定に際して用いた光は3り0皿の紫外線(強度/
 0 5erg,/cJ−sec ) テ、/ on 
角+7) a BA 7c+ ’Jj セルに1)、2
)では3個の増感剤粒を入れ、これに3 me(7) 
/ mol/j’ m 度のノルボルナジエンーンクロ
ヘキサン溶液を入れ、内部をかく拌しながら照射しクオ
ドリシクレンへの転化率ヲガスクロマトグラフで測定し
た。次表に用いた試料のうち、3)はセルロースアセテ
ート繊維、4)はカシミロン繊維、5ンは極めて大きな
表面積を持つ活性灰素繊維に対し、それぞれそのままク
ロロメチルスチレンをグラフト!合させ、その後ベンゾ
フェノン基を結合させたものであり、結合旦も表中に示
した。
The light used for this specification was ultraviolet rays (intensity/
0 5erg,/cJ-sec) Te,/on
Corner + 7) a BA 7c + 'Jj 1), 2 in cell
), add 3 sensitizer grains and add 3 me (7)
/ mol/j' m degrees of norbornadiene-chlorohexane solution was added, and the interior was irradiated while stirring, and the conversion to quadricyclene was measured using a gas chromatograph. Among the samples used in the table below, 3) is cellulose acetate fiber, 4) is cashmilon fiber, and 5) is activated ash fiber with an extremely large surface area, and chloromethylstyrene is directly grafted to each! After that, a benzophenone group was bonded, and the bonding number is also shown in the table.

その結果は表に見られるように架橋ポリエチレン粒の場
合、即ち、1)、2)はその量および、結合した増感基
量が少ないにもかかわらず、極力て反応促進効果が大で
ある。7ルポ!レナジエンのクオドリンクレンへの異性
化率は試料中の光増感基量や担体の表面積の多少による
ものではなく、基材の膨潤性及び吸着性に大きく左右さ
れるものであることが分かり、この発明の効果を明瞭に
示している。
As can be seen from the table, the crosslinked polyethylene particles, ie, 1) and 2), have the greatest reaction accelerating effect despite their small amounts and the amount of bonded sensitizing groups. 7 Report! It was found that the isomerization rate of renadiene to quadrindrene does not depend on the amount of photosensitizing groups in the sample or the surface area of the carrier, but largely depends on the swelling and adsorption properties of the base material. This clearly shows the effects of this invention.

表/ 各種の不溶性光増感剤の異性化 反応促進効果 ・寸た丈施例3で作成したコバlレトープロトボルフイ
リン全結合した架橋ポリエチレン粒77個(約0. 3
9 ”) t O乙ざ2のクオドリンクレンとともにざ
0ゴのシクロヘキサン中に加え、かく拌しながら2!’
Cで双子型恒温壁熱量計を用いて発熱速度及び発熱量を
測定した。その結果約り50ジユールの発熱が見られた
が、発熱速度は他の繊維状物質にコバルト−プロトポル
フィリンを結合した場合より遥かに高く、この発明の効
果を明瞭に示した。
Table/Isomerization reaction promotion effect of various insoluble photosensitizers/Length 77 fully bonded crosslinked polyethylene grains (approximately 0.3
9 '') Add it to the cyclohexane in the colander along with the quadrine from Ootza 2, and stir while stirring.
The heat generation rate and calorific value were measured using a twin-type constant temperature wall calorimeter at C. As a result, approximately 50 Joules of heat was generated, which was much higher than when cobalt-protoporphyrin was bonded to other fibrous materials, clearly demonstrating the effectiveness of the present invention.

0ワ1−−0wa 1--

Claims (1)

【特許請求の範囲】[Claims] 架橋ポリエチレン成形物を膨潤法により原形態を保つた
大表面積体とし、これにクロロメチルスチレンをグラフ
ト反応させたのち、その塩素を置換することにより、反
応促進機能を持つ反応性基をこれに結合させることを特
徴とする、異性化反応促進剤の製造方法。
A cross-linked polyethylene molded product is made into a large surface area that maintains its original shape by a swelling method, and then chloromethylstyrene is grafted onto this product. By replacing the chlorine, a reactive group with a reaction accelerating function is bonded to it. A method for producing an isomerization reaction accelerator, the method comprising:
JP59154253A 1984-07-25 1984-07-25 Preparation of isomerization accelerating agent Granted JPS6133237A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59154253A JPS6133237A (en) 1984-07-25 1984-07-25 Preparation of isomerization accelerating agent

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59154253A JPS6133237A (en) 1984-07-25 1984-07-25 Preparation of isomerization accelerating agent

Publications (2)

Publication Number Publication Date
JPS6133237A true JPS6133237A (en) 1986-02-17
JPS6353857B2 JPS6353857B2 (en) 1988-10-25

Family

ID=15580172

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59154253A Granted JPS6133237A (en) 1984-07-25 1984-07-25 Preparation of isomerization accelerating agent

Country Status (1)

Country Link
JP (1) JPS6133237A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015040198A (en) * 2013-08-23 2015-03-02 公立大学法人首都大学東京 Isomerization reaction control method and isomer production method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015040198A (en) * 2013-08-23 2015-03-02 公立大学法人首都大学東京 Isomerization reaction control method and isomer production method

Also Published As

Publication number Publication date
JPS6353857B2 (en) 1988-10-25

Similar Documents

Publication Publication Date Title
US6110533A (en) Polymeric desiccant articles and process for their manufacture
Stannett Radiation grafting—state-of-the-art
CN106519281A (en) Metal-organic framework composite and production method thereof
Guin et al. Radiation grafting: A voyage from bio-waste corn husk to an efficient thermostable adsorbent
Bondar et al. Synthesis of cation-exchange adsorbent for anchoring metal ions by modification of poly (glycidyl methacrylate) chains grafted onto polypropylene fabric
Iqbal et al. Microwave radiation induced synthesis of hydroxypropyl methylcellulose-graft-(polyvinylalcohal-co-acrylic acid) polymeric network and its in vitro evaluation
EP0670852B1 (en) Process for the preparation of a graft copolymer bound catalyst
JPS6133237A (en) Preparation of isomerization accelerating agent
Kiatkamjornwong et al. Enhancement of the grafting performance and of the water absorption of cassava starch graft copolymer by gamma radiation
Nakayama et al. Novel surface fixation technology of hydrogel based on photochemical method: Heparin‐immobilized hydrogelated surface
Kamath et al. Interpenetrating polymer networks of photocrosslinkable cellulose derivatives
JPS62270610A (en) Graft polymerization of acetylene derivative
JP2000309609A (en) Remover of halogenated alkyl and its production
JPS62500795A (en) Crosslinking method for organopolysilane polymers
Sadanandan An eco‐friendly molecular imprinting technique for the selective recognition and controlled release of bovine serum albumin
JPS58205545A (en) Uranium adsorbent containing both amidoxime group and neutral hydrophilic group and its production
Zhu et al. Immobilization of poly (ethylene imine) onto polymer films pretreated with plasma
JPS5851008B2 (en) Grafting method
JP2004115748A (en) Agent for selective adsorption and removal of chemical substance
JP2004337749A (en) Boron catching material and its production method
JPH03221501A (en) Synthesis of cyclodextrin polymer and production of cyclodextrin film
JPS58177150A (en) Catalyst for isomerization reaction
JPS5915323B2 (en) Method for producing alkali metal trap material
KR20000067415A (en) manufacturing method of spherical surface-grafted polystyrene resin
Suzuki et al. Interpenetrating inorganic–organic hybrid gels: preparation of hybrid and replica gels

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term