JPS6133069B2 - - Google Patents

Info

Publication number
JPS6133069B2
JPS6133069B2 JP8979281A JP8979281A JPS6133069B2 JP S6133069 B2 JPS6133069 B2 JP S6133069B2 JP 8979281 A JP8979281 A JP 8979281A JP 8979281 A JP8979281 A JP 8979281A JP S6133069 B2 JPS6133069 B2 JP S6133069B2
Authority
JP
Japan
Prior art keywords
oxygen concentration
plating
bath
zinc
seal box
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP8979281A
Other languages
Japanese (ja)
Other versions
JPS57203760A (en
Inventor
Kango Sakai
Katsushi Saito
Hajime Hinoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP8979281A priority Critical patent/JPS57203760A/en
Publication of JPS57203760A publication Critical patent/JPS57203760A/en
Publication of JPS6133069B2 publication Critical patent/JPS6133069B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/14Removing excess of molten coatings; Controlling or regulating the coating thickness
    • C23C2/16Removing excess of molten coatings; Controlling or regulating the coating thickness using fluids under pressure, e.g. air knives
    • C23C2/18Removing excess of molten coatings from elongated material
    • C23C2/20Strips; Plates

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Coating With Molten Metal (AREA)

Description

【発明の詳細な説明】 本発明は耐食性に優れ、メツキ面に「よれ」
「ヘア」の発生がなく、密着性良好な溶融亜鉛メ
ツキ鋼板の製造方法に関する。
[Detailed description of the invention] The present invention has excellent corrosion resistance and does not cause "kinks" on the plating surface.
The present invention relates to a method for producing a hot-dip galvanized steel sheet that does not generate "hair" and has good adhesion.

溶融亜鉛メツキ鋼板はその優れた防食特性から
急激に成長し、耐食性材料として建築材料、家庭
電気製品材料、自動車々体材料等の広範囲の分野
で使用されており、日本における生産量は年間
600万tに達し、冷延鋼板の約30%にも及んでい
る。
Hot-dip galvanized steel sheets have rapidly grown due to their excellent corrosion-resistant properties, and are used as corrosion-resistant materials in a wide range of fields such as building materials, home appliance materials, and automobile body materials.
It has reached 6 million tons, accounting for approximately 30% of cold-rolled steel sheets.

亜鉛は安価であり化学的に活性な金属であると
同時に反応して生成する化合物が緻密であるから
適度の腐食速度が得られ鋼材の防食に適した金属
である。一般に中性環境下における亜鉛の鋼材に
対する犠牲防食能は過防食状態になつており、亜
鉛の腐食速度を更に抑制しても充分犠牲防食能が
発揮できる。例えば3%の食塩水中における測定
では純亜鉛の腐食速度を1/20〜1/50に抑制しても
鋼材に対する犠牲防食能は有効である。従つて中
性環境下に於ては何らかの方法で亜鉛の腐食速度
を1/20〜1/50に抑制できれば、純亜鉛に対し同一
目付量で20〜50倍の長寿命が達成出来、又現行と
同じ性能を得るのに目付量を1/20〜1/50に下げる
ことが可能である。
Zinc is an inexpensive and chemically active metal, and at the same time, the compound produced by the reaction is dense, so that a moderate corrosion rate can be obtained, making it a metal suitable for corrosion protection of steel materials. Generally, the sacrificial anticorrosion ability of zinc against steel materials in a neutral environment is in an overly protective state, and even if the corrosion rate of zinc is further suppressed, sufficient sacrificial anticorrosion ability can be exhibited. For example, when measured in 3% saline, sacrificial corrosion protection against steel is effective even if the corrosion rate of pure zinc is suppressed to 1/20 to 1/50. Therefore, in a neutral environment, if the corrosion rate of zinc can be suppressed to 1/20 to 1/50 by some means, a life of 20 to 50 times longer than that of pure zinc with the same basis weight can be achieved, and the current It is possible to lower the basis weight to 1/20 to 1/50 to obtain the same performance.

近年の亜鉛メツキ鋼板の適用先は、従来の主な
用途であつた建材分野から家電、自動車、鋼製家
具に拡大され用途にマツチした性能を具備しなけ
ればならない。即ち耐食性が優れていると共に、
(1) メツキ密着性の良いこと、(2) 外観が良好で
変色のないこと、(3) 上塗々装性能(化成処理を
含む)が良いこと等が要求される。
In recent years, the applications of galvanized steel sheets have expanded from the traditional field of building materials to home appliances, automobiles, and steel furniture, and they must have performance that matches the application. In other words, it has excellent corrosion resistance, and
Requirements include (1) good plating adhesion, (2) good appearance and no discoloration, and (3) good topcoat performance (including chemical conversion treatment).

本発明は上述した要求にマツチした品質を備え
た亜鉛メツキ鋼板の提供を目的とするものであ
る。この目的を達成するために本発明は亜鉛浴組
成を限定すると共に鋼帯面に付着したメツキ金属
の未凝固領域及び凝固域を特定の条件に保持して
処理を行うことにあり下記の通りである。
The object of the present invention is to provide a galvanized steel sheet with quality that meets the above-mentioned requirements. In order to achieve this object, the present invention limits the composition of the zinc bath and maintains the unsolidified and solidified areas of the plating metal attached to the steel strip surface under specific conditions for treatment, as follows: be.

(1) 亜鉛浴で少なくとも片面にメツキし、メツキ
量を制御する工程を含む溶融亜鉛メツキ鋼帯の
製造方法において、亜鉛浴中にMg0.1〜2.0
%、Al 0.1〜0.5%、残部は亜鉛及び不可避的
不純物からなる浴を使用し、該浴面から鋼帯表
面に付着したメツキ金属が凝固する間の少くと
も1部をシールボツクスで囲み、ワイピングノ
ズルを含む浴面側の酸素濃度を50〜1000ppm
に制御すると共に、その上方のメツキ金属の凝
固域側酸素濃度をメツキ目付量が50g/m2未満
の場合には制御することなしに、又メツキ目付
量が50g/m2以上の場合には100〜100ppmに制
御して鋼帯表面の未凝固メツキ金属を凝固させ
ることを特徴とする溶融メツキ鋼帯の製造方
法。
(1) In a method for producing a hot-dip galvanized steel strip, which includes a step of plating at least one side in a zinc bath and controlling the amount of plating, Mg0.1 to 2.0 is added to the zinc bath.
%, Al 0.1 to 0.5%, the balance being zinc and unavoidable impurities, and at least a portion of the plating metal adhering to the steel strip surface from the bath surface is surrounded by a seal box and wiped during solidification. Oxygen concentration on the bath surface side including the nozzle is 50 to 1000 ppm
At the same time, the oxygen concentration on the solidification zone side of the plating metal above it is not controlled when the plating weight is less than 50 g/ m2 , and when the plating weight is 50 g/m2 or more , A method for producing a hot-dip galvanized steel strip, characterized by solidifying unsolidified galvanized metal on the surface of the steel strip at a concentration of 100 to 100 ppm.

(2) メツキ浴面からワイピングノズル上方の最大
限1mの空間を浴面側とすることを特徴とする
上記第1項記載の溶融メツキ鋼帯の製造方法。
(2) The method for producing a hot-dip galvanized steel strip according to item 1 above, characterized in that the bath surface side is a space of 1 m at most above the wiping nozzle from the plating bath surface.

以下本発明を行う態様を図面に基き詳述する。
第1図は電気亜鉛(純度99.97%)と該電気亜鉛
及び調合亜鉛(Al 0.22%、その他不純物として
Pb0.1%、Od0.01%、Fe0.02%を含む)にMgを
第1図の如く加えた3種の浴を用いゼンジマー式
パイロツトラインを用いて溶融メツキした鋼板の
耐食性を日本工業規格(JIS)Z2371に規定され
た塩水噴霧試験法に準拠して3日間試験を行い腐
食減量を測定した記録であつて、直線M1はMg無
添加電気亜鉛浴、曲線N1及びA1は電気亜鉛及び
調合亜鉛に図示の通りMgを添加した浴の結果で
ある。第1図から溶融亜鉛メツキ鋼板の腐食量
M1はMgの添加によつて曲線N1に示す通り著しく
向上しMg無添加に較べMg0.5%では1/10の減
量、Mg1.0%では1/20の減量となる。然し多量の
Mg添加は意味がなく、Mg2.0%で性能が飽和す
る。従つて耐食性向上の目的に対してMgの有効
添加量は0.1〜2.0%である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The mode of carrying out the present invention will be described below in detail with reference to the drawings.
Figure 1 shows electrolytic zinc (purity 99.97%), electrolytic zinc and mixed zinc (Al 0.22%, other impurities).
The corrosion resistance of steel sheets hot-dipped using a Sendzimer pilot line using three types of baths containing Mg (including 0.1% Pb, 0.01% Od, and 0.02% Fe) as shown in Figure 1 was determined according to the Japanese Industrial Standards. (JIS) This is a record of the corrosion loss measured in a 3-day test based on the salt spray test method specified in Z2371, where the straight line M 1 is Mg-free electrolytic zinc bath, and the curves N 1 and A 1 are electrolytic zinc bath. These are the results of baths in which Mg was added to zinc and mixed zinc as shown. From Figure 1, the amount of corrosion on hot-dip galvanized steel sheets
M 1 is significantly improved by the addition of Mg as shown in curve N 1 , and compared to the case without Mg addition, the weight loss is 1/10 with 0.5% Mg and 1/20 with 1.0% Mg. However, a large amount
Adding Mg is meaningless, and performance is saturated at 2.0% Mg. Therefore, for the purpose of improving corrosion resistance, the effective amount of Mg added is 0.1 to 2.0%.

この場合、電気亜鉛に較らべて調合亜鉛の耐食
性は低く腐食減量は大であるが、Mgの添加量の
増大と共に耐食性が向上(約1.0%で電気亜鉛と
均等になり性能が飽和する。測ち亜鉛にAlの添
加は耐食性を改善させないが、メツキ密着性を向
上させるためにはMgと共にAlを少量添加するこ
とが好ましい。第2図はMg1.0%を加えた電気亜
鉛浴にAlを0.05%、0.1%、0.15%、0.2%、0.3
%、0.4%、0.5%加えた時のメツキ密着性をボー
ルインパクト試験で評価したものである。ボール
インパクト試験はボール径25mmを用い手打ち式で
行なつた。試験後粘着テープで強制的に剥離し剥
離を面積率で示した。第2図から明らかな如く
Al 0.1%以上で密着性が良くなる。又、第3図は
Mg0.2%+Al 0.2%(〇印)、Mg0.5%+Al 0.2%
(△印)、Mg1.0%+Al 0.2%(□印)、Mg0.2%の
み(●印)の浴組成でGJCのワイピングガス圧力
を制御してメツキ量の異るメツキ鋼板を作成し、
その密着性をボールインパクト試験で第2図と同
様に評価したものである。Al 0.2%添加したもの
は広範囲の目付量で良好なメツキ密着性を示すが
Alを加えないものはメツキ密着性が充分とは云
えない。Alの添加はメツキ密着性に関しては0.1
%以上で改善出来るが、多すぎるとSnとの組合
せ或はPb等不純物の影響で粒界腐食が発生する
ため上限は0.5%におくべきである。
In this case, the corrosion resistance of the blended zinc is lower than that of electrolytic zinc, and the corrosion loss is large, but as the amount of Mg added increases, the corrosion resistance improves (at about 1.0%, it becomes equal to electrolytic zinc and the performance is saturated). Although the addition of Al to electrolytic zinc does not improve corrosion resistance, it is preferable to add a small amount of Al together with Mg in order to improve plating adhesion.Figure 2 shows that Al is added to an electrolytic zinc bath containing 1.0% Mg. 0.05%, 0.1%, 0.15%, 0.2%, 0.3
%, 0.4%, and 0.5% were added, and the plating adhesion was evaluated using a ball impact test. The ball impact test was conducted by hand using a ball with a diameter of 25 mm. After the test, it was forcibly peeled off with an adhesive tape, and the peeling was expressed as an area percentage. As is clear from Figure 2
Adhesion improves with Al content of 0.1% or more. Also, Figure 3 is
Mg0.2% + Al 0.2% (○ mark), Mg0.5% + Al 0.2%
(△ mark), Mg 1.0% + Al 0.2% (□ mark), Mg 0.2% only (● mark), the wiping gas pressure of GJC was controlled to create plated steel sheets with different plating amounts.
The adhesion was evaluated using a ball impact test in the same manner as shown in FIG. The one containing 0.2% Al shows good plating adhesion over a wide range of area weight.
It cannot be said that the adhesion to plating is sufficient if Al is not added. The addition of Al is 0.1 for plating adhesion.
% or more, but if it is too large, intergranular corrosion will occur due to the combination with Sn or the influence of impurities such as Pb, so the upper limit should be set at 0.5%.

尚お、合金元素としてMg0.1〜2.5%未満を含
有し、且つAl含有量が0.1〜3%未満であること
を特徴とする溶融亜鉛メツキ鋼板組成物は本願出
願人が昭和54年12月28日特願昭54−173435号に於
て特許出願済であるが、本願発明は該メツキ金属
未凝固域及び凝固域に於ける雰囲気の酸素濃度制
御を特徴とする製造方法に関するものである。
Incidentally, a hot-dip galvanized steel sheet composition characterized by containing 0.1 to less than 2.5% Mg as an alloying element and having an Al content of 0.1 to less than 3% was developed by the applicant in December 1978. Although a patent application has been filed in Japanese Patent Application No. 173435/1983 on the 28th, the present invention relates to a manufacturing method characterized by controlling the oxygen concentration of the atmosphere in the unsolidified area and solidified area of the plating metal.

Mgを含む亜鉛浴でメツキした鋼板は耐食性向
上に極めて有効であるが、更に上塗々装性に於て
も効果的である。特に塗装前処理として行われる
燐酸塩処理に就いては、従来の亜鉛メツキ鋼板と
同様の条件で安定した燐酸塩皮膜を形成させるこ
とが出来る。上塗々装は自動車業界で用いられて
いる電着塗装(カチオン、アニオン)及び焼付塗
装、或はカラー鋼板用下塗上塗々装、家電関係の
焼付塗装等殆んど凡ての塗装に対して優れた性能
を発揮する。
Steel plates plated with a zinc bath containing Mg are extremely effective in improving corrosion resistance, but are also effective in terms of repaintability. In particular, with respect to phosphate treatment performed as a pre-painting treatment, a stable phosphate film can be formed under the same conditions as conventional galvanized steel sheets. Top coating is excellent for almost all types of coatings, such as electrodeposition coating (cationic, anionic) and baking coating used in the automobile industry, primer coating for color steel plates, baking coating for home appliances, etc. Demonstrates excellent performance.

上記の通り、亜鉛浴へMgの添加は耐食性には
頻る有効であるが、製造面及び品質面に於て多く
の問題がある。製造面に於ては、ドロスの増大、
目付制御不能、皮張り等による外観不良等の問題
があり、品質面に於ては黒変等の変色、メツキム
ラ、スパングルフリー、等の問題が生ずる。即ち
単純に現行製造方法にMgを添加した浴を用いた
のでは、製造出来ないし、品質的にも極く限られ
た分野にしか適用できない。茲に於て、発明者等
は多くのパイロツトライン実験を行い、MgとAl
を含む亜鉛メツキ鋼板の製造方法を完成すること
ができた。
As mentioned above, the addition of Mg to zinc baths is often effective for corrosion resistance, but there are many problems in terms of manufacturing and quality. In terms of manufacturing, the increase in dross,
There are problems such as uncontrollable basis weight and poor appearance due to skin covering, etc., and quality problems such as discoloration such as blackening, unevenness, spangle-free, etc. occur. That is, simply using the current production method with a bath containing Mg does not allow production, and in terms of quality, it can only be applied to extremely limited fields. In the future, the inventors conducted many pilot line experiments, and found that Mg and Al
We were able to complete a manufacturing method for galvanized steel sheets including

以下、本発明の製造方法に就いて更に詳述す
る。
The manufacturing method of the present invention will be explained in more detail below.

Mgは酸素との親和力が強く、ドロスを生成し
易い。特に現在行われている気体のジエツトによ
る目付量制御(G.J.Cと略称)では、大気と溶融
金属との接触が大で大気中へ条件によつては溶融
金属のスプラツシユが発生し、ドロスの増加が烈
しく、Mgを含む浴では事実上操業が出来ない。
ドロスを防止若しくは減少させるためにはG.J.C
部の酸素をゼロにすれば発生しなくなり、これに
関してはいくつかの公知例がある。然しながら、
本発明者は酸素濃度を下げると金属の蒸気が発生
し装置の内部に凝固してトラブルが発生すること
を実験的に知得した。第4図に蒸気量とドロスに
対する雰囲気中の酸素濃度の関係の実験結果を示
す。第4図は第5図の無酸化炉方式の溶融亜鉛メ
ツキライン(NOF−CGLと略称)を用い、
Mg0.5%を含有させた溶融亜鉛浴のラインスピー
ド80m/minで通板時の酸素濃度と金属蒸気量及
びドロス生成を現行の大気中ワイピングを1.0と
して相対比で示したものである。第4図の曲線
は電気亜鉛(純度99.99%)にMg0.5%を加えた
浴、曲線はAl 0.2%及び不可避的不純物を含む
亜鉛にMg0.5%を加えた浴で発生した蒸気発生量
である。又、曲線は曲線及びと同じ浴で発
生したドロスである。浴温は何れも450゜で行つ
た。曲線の場合、蒸気の発生は酸素濃度
100ppm以上で発生が止まる。曲線のAlを含有
する場合、酸素濃度50ppmに臨界点がある。ド
ロスの発生量は酸素濃度1000ppm以下でほぼ発
生せず酸素濃度1000ppm超で急速に発生する。
尚、第5図中、1はストリツプ、2は酸素濃度を
制御するシールボツクス、7はGJCのガスワイピ
ングノズルであつて、ガスは窒素を用いた。3は
ポツト釜、4はメツキ浴で450℃に加熱、5はポ
ツトロール、6はスナウトである。酸素濃度はワ
イピングノズルの上下100mmからガスを吸引し高
感度の酸素メーターで測定した。
Mg has a strong affinity with oxygen and easily generates dross. In particular, with the current method of controlling the basis weight using gas jets (abbreviated as GJC), the contact between the atmosphere and molten metal is large, and depending on the conditions, molten metal may splash into the atmosphere, resulting in an increase in dross. It is virtually impossible to operate in a bath containing intense Mg.
GJC to prevent or reduce dross
If the amount of oxygen in the area is reduced to zero, it will no longer be generated, and there are several known examples regarding this. However,
The present inventor has experimentally found that when the oxygen concentration is lowered, metal vapor is generated and solidified inside the device, causing trouble. FIG. 4 shows the experimental results of the relationship between the amount of steam and the oxygen concentration in the atmosphere with respect to dross. Figure 4 shows the non-oxidizing furnace type hot-dip galvanizing line (abbreviated as NOF-CGL) shown in Figure 5.
The oxygen concentration, amount of metal vapor, and dross generation during sheet threading in a molten zinc bath containing 0.5% Mg at a line speed of 80 m/min are shown as relative ratios, assuming the current atmospheric wiping as 1.0. The curve in Figure 4 shows the amount of steam generated in a bath containing 0.5% Mg in electrolytic zinc (99.99% purity), and the curve in the bath containing 0.2% Al and 0.5% Mg in zinc containing unavoidable impurities. It is. Also, the curve is the dross generated in the same bath as the curve. The bath temperature was 450° in all cases. In the case of the curve, the evolution of steam depends on the oxygen concentration
Generation stops at 100ppm or more. When containing Al in the curve, there is a critical point at an oxygen concentration of 50 ppm. The amount of dross generated is almost non-existent when the oxygen concentration is below 1000 ppm, and it rapidly occurs when the oxygen concentration exceeds 1000 ppm.
In FIG. 5, 1 is a strip, 2 is a seal box for controlling oxygen concentration, and 7 is a GJC gas wiping nozzle, in which nitrogen was used as the gas. 3 is a pot pot, 4 is a plating bath heated to 450℃, 5 is a pot roll, and 6 is a snout. Oxygen concentration was measured using a highly sensitive oxygen meter by sucking gas from 100 mm above and below the wiping nozzle.

上述の通り、適正な酸素濃度に制御することに
よつて目付量制御操業が可能であることが判つ
た。又、酸素濃度を制御することによつてドロス
生成が抑えられることから、より高速度で通板し
ても操業可能であることが知られた。
As mentioned above, it was found that the area weight control operation was possible by controlling the oxygen concentration to an appropriate level. It has also been found that the production of dross can be suppressed by controlling the oxygen concentration, making it possible to operate the steel plate even when the plate is passed at a higher speed.

即ち、現行溶融亜鉛メツキラインの通板スピー
ドはスプラツシユの発生に伴うドロス増大等の理
由により通常の亜鉛メツキ浴でも150m/min以上
の通板が難しい現状である。酸素濃度制御により
高速化が可能となり、Mgを含む浴に於ても同様
に高速度で通板することが出来る。一方薄目付量
に制御するワイピング条件では、同様にワイピン
グノズルの近接化、ガス圧力アツプによりスプラ
ツシユの発生が多くなり適正な酸素濃度範囲外で
は多大のドロスと蒸気が発生する。従つて高速化
と同様な問題が生じ薄目付化に限界がある。然る
に酸素濃度を制御するとスプラツシユに伴う問題
が解決出来ると同時に薄目付に制御し易い特徴が
ある 即ち、同一ワイピング条件で大気ワイピン
グと酸素濃度100ppm制御ワイピングを比較する
と、後者が約2割低目付になる。
That is, the current hot-dip galvanizing line has difficulty running the sheet at a speed of 150 m/min or more even in a normal galvanizing bath due to the increase in dross associated with the generation of splash. Oxygen concentration control makes it possible to increase the speed, and it is also possible to thread the sheet at high speed even in a bath containing Mg. On the other hand, under wiping conditions where the coating weight is controlled to be light, splashes are generated more often due to the proximity of the wiping nozzle and increased gas pressure, and a large amount of dross and steam are generated outside the appropriate oxygen concentration range. Therefore, problems similar to those caused by speeding up occur, and there is a limit to reducing the area weight. However, controlling the oxygen concentration can solve the problem associated with splashing, and at the same time has the characteristic that it is easy to control the coating weight to a light weight.In other words, if you compare atmospheric wiping and wiping with an oxygen concentration control of 100ppm under the same wiping conditions, the latter has a coating weight that is approximately 20% lower. Become.

以上の理由から酸素濃度制御によつて高速で薄
目付迄含めたMgとAlを含むメツキ鋼板の目付制
御操業が可能になつた。
For the above reasons, oxygen concentration control has made it possible to control the area weight of galvanized steel sheets containing Mg and Al, including light weights, at high speed.

かくの如くにして、メツキ鋼板の品質上の問題
及び製造上の問題から酸素濃度はワイピングノイ
ズル近傍迄の領域と凝固過程とを分けて制御する
ことが必要である。ワイピングノズル近傍の具体
的範囲はスプラツシユの発生範囲を考えれば良
く、ノズル上1000mm以下の領域でストリツプスピ
ード、目付量制御、浴組成によつて決定する。本
発明におけるこの領域の酸素度範囲は50〜
1000ppmである。(第6図、二重斜線部分) シールボツクス中の酸素濃度はメツキされる外
観に対しても適正な領域に制御しなければならな
い。Mgを添加したこれ迄の公知例は、単に非酸
化域は弱酸化雰囲気と定性的な表現があるのにし
ても、可久的に酸素濃度を低くすることを指向し
ており酸素濃度制御に対する具体的な方法が全く
示されておらず、実用に適するようなメツキ鋼板
は得られていない。外観に対する酸素濃度の影響
が特に問題になるのは、ワイピングノズル部即ち
目付制御部に於ける皮張り現象である。皮張りは
メツキ金属の表面が周囲の酸素によつて酸化を受
け固体に変り、内部は流動性の溶融金属の状態で
あるため、メツキ表面に噴きつけられる高圧のガ
スによつて流れが生じ皺模様が発生する。当然目
付制御能力も低下する。第7図に皮張り発生域を
ワイピング部分の酸素濃度と浴中のMg含有率で
示した(図中、×は全面皮張り、△は軽度の皮張
り、〇は皮張りなしを夫々示す。)。亜鉛は調合亜
鉛浴を用い、浴温450℃、ラインスピード80m/m
in、ワイピングガス圧力1.0Kg/cm2、ワイピングノ
ズルのスリツト0.5mm、ノズル間隔20mmで行つ
た。なおMgにAlを添加した場合にも第7図と同
じ結果が得られた。第7図から明らかな如く、2
%以下のMg添加浴において、1000ppmの酸素濃
度以下であれば皮張りは発生せず、Mg0.5%添加
浴では3000ppmでも発生しない。
As described above, due to quality problems and manufacturing problems of galvanized steel sheets, it is necessary to separately control the oxygen concentration in the region up to the vicinity of the wiping noisle and in the solidification process. The specific area near the wiping nozzle can be determined by considering the area where splash occurs, and is determined by stripping speed, control of basis weight, and bath composition in an area of 1000 mm or less above the nozzle. The oxygen degree range in this region in the present invention is 50~
It is 1000ppm. (Figure 6, double hatched area) The oxygen concentration in the seal box must be controlled within an appropriate range for the appearance to be plated. Previously known examples of adding Mg are aimed at permanently lowering the oxygen concentration, even though the non-oxidizing region is qualitatively expressed as a weakly oxidizing atmosphere, and it is difficult to control the oxygen concentration. No specific method has been disclosed, and a plated steel sheet suitable for practical use has not been obtained. The influence of oxygen concentration on appearance is particularly problematic in the skinning phenomenon in the wiping nozzle section, that is, the area control section. In leather covering, the surface of the plating metal is oxidized by the surrounding oxygen and turns into a solid, while the inside is in a state of fluid molten metal, so the high pressure gas sprayed onto the plating surface creates a flow and wrinkles. A pattern occurs. Naturally, the area weight control ability also decreases. Figure 7 shows the area where skinning occurs in terms of the oxygen concentration in the wiping area and the Mg content in the bath (in the figure, × indicates full skinning, △ indicates slight skinning, and ○ indicates no skinning, respectively). ). For zinc, use a mixed zinc bath, bath temperature 450℃, line speed 80m/m.
The wiping gas pressure was 1.0 Kg/cm 2 , the wiping nozzle slit was 0.5 mm, and the nozzle interval was 20 mm. The same results as in FIG. 7 were also obtained when Al was added to Mg. As is clear from Figure 7, 2
In a bath with an Mg content of 0.5% or less, skinning will not occur if the oxygen concentration is below 1000 ppm, and in a bath with a 0.5% Mg content, skinning will not occur even at 3000 ppm.

酸素濃度とメツキ外観との関係に就いては、更
にメツキ金属の凝固過程においても問題になるの
でこの点に就いて説明する。
The relationship between oxygen concentration and plating appearance is also a problem in the solidification process of plating metal, so this point will be explained below.

本発明における凝固過程の範囲は前述した目付
制御より上方に位置し、メツキ金属が凝固するま
での一部又は全ての領域である。
The range of the solidification process in the present invention is located above the above-mentioned basis weight control, and is a part or all of the region until the plating metal solidifies.

第8図は調合亜鉛(Al 0.22%含有)にMg0.5
及び1.0%添加した浴(どちらも結果は同じ)、を
用いてメツキした場合の凝固過程における外観不
良が発生する領域を示す。酸素濃度制御方法につ
いては後述する。凝固過程の酸素濃度が高いと
「ヘアー」状のメツキ外観が発生し、低いと粒状
もしくは六角形状のまだら模様(「よれ」と呼
称)の外観となる。「ヘアー」はMgを加えた浴特
有の現象である。一方「よれ」は亜鉛共通の現象
である。第8図は「ヘアー」に関して(□:発生
なし、■:発生)、「よれ」に関して(〇:発生な
し、●:発生)で示し、それぞれ発生域を目付量
との関係で斜線で示した。第8図では酸素濃度
100〜1000ppmが最適範囲で、50g/m2未満の低
目付量(例えば20g/m2)においては酸素濃度を
制御する必要はない。
Figure 8 shows Mg0.5 in mixed zinc (containing 0.22% Al).
This shows the area where poor appearance occurs during the solidification process when plating is performed using a bath containing 1.0% and 1.0% (the results are the same in both cases). The oxygen concentration control method will be described later. If the oxygen concentration during the coagulation process is high, a "hair" plating appearance will occur, and if it is low, the appearance will be a granular or hexagonal mottled pattern (referred to as "wavy"). “Hair” is a phenomenon unique to baths containing Mg. On the other hand, "waving" is a common phenomenon with zinc. Figure 8 shows "hair" (□: no occurrence, ■: occurrence) and "kink" (○: no occurrence, ●: occurrence), and the areas of occurrence are indicated by diagonal lines in relation to the basis weight. . In Figure 8, oxygen concentration
The optimal range is 100 to 1000 ppm, and there is no need to control the oxygen concentration at a low basis weight of less than 50 g/m 2 (for example, 20 g/m 2 ).

以下、第9図乃至第20図に基き本発明に於て
酸素を制御するシールボツクスに就いて詳述す
る。これら図中の符号は格別の指示なき限り下記
の通りである。
The seal box for controlling oxygen in the present invention will be described in detail below with reference to FIGS. 9 to 20. The symbols in these figures are as follows unless otherwise specified.

1:ストリツプ 1S:メツキ金属(固体)が
付着 1L:メツキ金属(液体)が付着 2:シ
ールボツクス 2a:シールボツクスの下部ケー
シング(ワイピング、浴面) 2b:シールボツ
クス上部ケーシング(凝固過程) 2c:2重構
造シールボツクス内室 2d:ガスカーテンシー
ルボツクスの内室 2e:ガスカーテン2重構造
シールボツクスの内壁 3:ポツト釜 4:メツ
キ浴 5:ポツトロール 6:スナウト 7:ワ
イピングノズル 8:シールガス導管 9:不活
性ガス供給口 10:空気供給口 11:エアー
クツシヨンパツト(酸素濃度制御も兼ねる) 1
2:循環ブロアー 13:ガス吸引口 14:循
環パイプ 15:シール壁 M,M1,M2,M3
酸素濃度測定用ガス吸引口 M1:下部(浴面、
ワイピング部分に相当) M2:中部(凝固過程
に相当) M3:上部(凝固過程に相当) W1
W2:ストリツプが通過するシールボツクスの開
口部 第9図、第10図、第11図は3通りのシール
ボツクスの位置を示す。図中、1はストリツプを
示し、1L(黒)はメツキされた金属が溶融状
態、1S(白)は固体の状態である。2aはワイ
ピングノズルと浴面を制御するシールボツクス、
2bは凝固過程を制御するシールボツクスであ
る。大気中凝固の場合、2bは省略出来、第9図
となる。第10図は凝固まで完全に酸素濃度を規
制し、第11図は凝固過程の一部を規制する例で
ある。
1: Strip 1 S : Plated metal (solid) attached 1 L : Plated metal (liquid) attached 2: Seal box 2a: Lower casing of seal box (wiping, bath surface) 2b: Upper casing of seal box (solidification process) 2c: Inner room of double structure seal box 2d: Inner room of gas curtain seal box 2e: Inner wall of gas curtain double structure seal box 3: Pot pot 4: Plating bath 5: Pot roll 6: Snout 7: Wiping nozzle 8: Seal Gas conduit 9: Inert gas supply port 10: Air supply port 11: Air cushion part (also serves as oxygen concentration control) 1
2: Circulation blower 13: Gas suction port 14: Circulation pipe 15: Seal wall M, M 1 , M 2 , M 3 :
Gas suction port for measuring oxygen concentration M 1 : Bottom (bath surface,
(corresponds to the wiping part) M 2 : Middle part (corresponds to the solidification process) M 3 : Upper part (corresponds to the solidification process) W 1 ,
W 2 : Opening of the seal box through which the strip passes. Figures 9, 10 and 11 show three positions of the seal box. In the figure, 1 indicates a strip, 1 L (black) indicates that the plated metal is in a molten state, and 1 S (white) indicates that the plated metal is in a solid state. 2a is a seal box that controls the wiping nozzle and bath surface;
2b is a seal box that controls the solidification process. In the case of solidification in the atmosphere, 2b can be omitted and the result is shown in FIG. FIG. 10 shows an example in which the oxygen concentration is completely regulated until solidification, and FIG. 11 is an example in which a part of the solidification process is regulated.

以下、第12〜20図はシールボツクスの構造
の例、及び酸素濃度制御方法、並にその結果を示
す。本発明に於ては限定した酸素濃度が得られれ
ば、上記図に記載以外の方法でも適用できる。
Below, FIGS. 12 to 20 show an example of the structure of the seal box, an oxygen concentration control method, and the results thereof. In the present invention, methods other than those shown in the above figures can be applied as long as a limited oxygen concentration can be obtained.

シールボツクス(特に2a部)の構造に於て
は、酸素濃度を1000ppm以下にすることが可能
な構造を持ち外部より酸素を一定量入れることに
よつて2a部の酸素濃度を制御する必要がある。
2a部の酸素濃度を1000ppm以下に出来ないボ
ツクスでは、バラツキが大きくドロス増、皮張り
発生の原因となる。
The structure of the seal box (especially part 2a) must have a structure that can reduce the oxygen concentration to 1000 ppm or less, and the oxygen concentration in part 2a must be controlled by introducing a certain amount of oxygen from the outside. .
In boxes where the oxygen concentration in the 2a part cannot be kept below 1000 ppm, there will be large variations, causing increased dross and skin formation.

第12図は2a及び2cの2重壁によつて構成
される二重シールボツクスで、ボツクス内の酸素
濃度はワイピングノズルから噴射される不活性ガ
ス例えば窒素および二重シールの内室に、9より
不活性ガス、10より流量制御した酸素を含むガ
ス例えば空気が送り込まれ、浴面からボツクス内
へ入り制御される。ボツクスの内圧は水柱で5〜
10mmH2Oに達し、シールボツクス上部開口部W1
からの空気の侵入を防いでいる。10に空気量を
流さなければボツクス内の酸素は10ppmに維持
される。
Fig. 12 shows a double seal box composed of double walls 2a and 2c. An inert gas, such as air, containing oxygen whose flow rate is controlled at 10 is fed into the box from the bath surface and controlled. The internal pressure of the box is 5~5 in the water column.
Reaching 10mmH 2 O, seal box top opening W 1
Prevents air from entering. If the air volume is not supplied to the box 10, the oxygen inside the box will be maintained at 10 ppm.

第13図は不活性ガスカーテンによつてシール
ボツクスの開口部W1からの空気の侵入を防ぐ方
法である。酸素は10より入り、窒素と混合され
てボツクス内に送られ濃度制御される。
FIG. 13 shows a method of preventing air from entering through the opening W1 of the seal box by using an inert gas curtain. Oxygen enters from 10, is mixed with nitrogen, and sent into the box where its concentration is controlled.

第14図は開口部をストリツプに沿つて延長
し、2bボツクス構造にしたもので、開口部が長
いため2aボツクス内に空気の侵入を防ぐことが
出来る。
FIG. 14 shows a 2b box structure in which the opening extends along the strip, and since the opening is long, it is possible to prevent air from entering the 2a box.

第15図はワイピングノズル部2aと凝固過程
2bを分離した構造を持ち、凝固位置に合せて2
bの位置を決める。2aと2bとを合致させるこ
とが出来る。この場合、各ボツクス内への空気の
侵入を防ぐため、窒素のカーテン構造が必要であ
る。ボツクス内の酸素濃度は9および10で制御
する。
Fig. 15 has a structure in which the wiping nozzle part 2a and the solidification process 2b are separated, and the wiping nozzle part 2a and the solidification process 2b are separated, and the wiping nozzle part 2a and the solidification process 2b are separated.
Determine the position of b. 2a and 2b can be matched. In this case, a nitrogen curtain structure is required to prevent air from entering each box. The oxygen concentration in the box is controlled by 9 and 10.

第16図は2重カーテン構造を有するシールボ
ツクスで内室2dで開口部W1,W2に窒素カーテ
ンを作る。このシールボツクスを用いて溶融亜鉛
メツキのパイロツトラインテスト(ラインスピー
ド80m/min、ストリツプ巾150mm)を行つた結果
を第17図に示す。酸素濃度測定場所(第16図
のMで示した)はワイピングノズル上50mm、シー
ルボツクス側壁から30mmの位置である。W1,W2
の開口は開口巾20mmで行つた。外側カーテンへの
窒素量Q1を26m3/hr、内側カーテンQ2に16m3/hr
の窒素を流し、ワイピングノズル(ストリツプ巾
400mm、スリツト間隙0.3mm、ノズル間30mm)の圧
力を0.5Kg/cm2にセツトすると、ボツクス内の酸素
濃度は5〜15ppm(ストリツプの蛇行で変化)
に安定化する。Q2に空気を2.5/hr、10/hr、
17.5/hr、25/hr、混合させると、それぞれの
酸素濃度は第17図に示したように、100〜250、
100〜500、900〜1000、1500〜2000ppmに制御す
ることが出来る。
Fig. 16 shows a seal box having a double curtain structure, and nitrogen curtains are formed in the openings W 1 and W 2 in the inner chamber 2d. Figure 17 shows the results of a hot-dip galvanizing pilot line test (line speed 80 m/min, strip width 150 mm) using this seal box. The oxygen concentration measurement location (indicated by M in FIG. 16) is 50 mm above the wiping nozzle and 30 mm from the side wall of the seal box. W 1 , W 2
The opening was made with an opening width of 20 mm. Nitrogen amount Q 1 to the outer curtain 26 m 3 /hr and to the inner curtain Q 2 16 m 3 /hr
Flow nitrogen through the wiping nozzle (strip width
400mm, slit gap 0.3mm, nozzle distance 30mm) and set the pressure to 0.5Kg/ cm2 , the oxygen concentration inside the box will be 5 to 15ppm (varies with the meandering of the strip).
stabilized at Air to Q2 2.5/hr, 10/hr,
When mixed at 17.5/hr and 25/hr, the respective oxygen concentrations will be 100 to 250, as shown in Figure 17.
It can be controlled to 100-500, 900-1000, 1500-2000ppm.

第18図はシールボツクス2bに11で示した
エアクツシヨンパツド(ACP)を内蔵させたも
のである。ACPによつてストリツプ1の振動を
抑制出来るのでシールボツクスの開口部Wの面積
を小さく出来、且つ、ACPはガスカーテン効果
が発揮できる。ガスはシールボツクス中段13よ
り密閉ブロアー12によつて吸引されて配管14
を通つてACPに送られる。ボツクス内への窒素
はワイピングノズルから供給される。又、ボツク
ス内の酸素濃度は配管14の途中に10より空気
を入れることによつて制御される。勿論必要に応
じて2a,2b内に窒素9、空気10を設けて混
合供給してもよい。
In FIG. 18, an air action pad (ACP) indicated by 11 is built into the seal box 2b. Since the vibration of the strip 1 can be suppressed by the ACP, the area of the opening W of the seal box can be reduced, and the ACP can exert a gas curtain effect. The gas is sucked from the middle seal box 13 by the hermetic blower 12 and then passed through the pipe 14.
is sent to the ACP through Nitrogen into the box is supplied from a wiping nozzle. Further, the oxygen concentration inside the box is controlled by introducing air from the pipe 10 into the middle of the pipe 14. Of course, if necessary, nitrogen 9 and air 10 may be provided in 2a and 2b and mixed and supplied.

第19図は第18図のシールボツクスを用いて
溶融亜鉛メツキのパイロツトライン試験(ライン
スピード80m/min、ストリツプ巾150mm)を行つ
た結果である。ACPは100×100×3mmのスリツ
ト開口を持ち、ACPへの流量はブロアーのバル
ブ調節で4.4m3/minで行つた。ACP間の距離は30
mmである。ワイピングノズル(GJC)条件は、ノ
ズルスリツト0.5mm、巾350mm、ノズル間20mmで行
つた。GJCから噴出する窒素ガス量は3.9m2/min
(圧力1.0Kg/cm2)である。このボツクス構造の場
合、ACPのガス量とGJCのガス量比はACP/
GJC=1.4以下/1に制御する。ACP1.4超ではボ
ツクス内が負圧になり空気が侵入し易く、別個に
ボツクス内へ窒素を入れる必要性が生ずる。
Figure 19 shows the results of a pilot line test (line speed 80 m/min, strip width 150 mm) of hot-dip galvanizing using the seal box shown in Figure 18. The ACP had a slit opening of 100 x 100 x 3 mm, and the flow rate to the ACP was adjusted to 4.4 m 3 /min by adjusting the blower valve. The distance between ACPs is 30
mm. The wiping nozzle (GJC) conditions were a nozzle slit of 0.5 mm, a width of 350 mm, and a nozzle distance of 20 mm. The amount of nitrogen gas ejected from GJC is 3.9m 2 /min
(Pressure 1.0Kg/cm 2 ). In the case of this box structure, the gas amount ratio of ACP and GJC is ACP/
Control to GJC=1.4 or less/1. If the ACP exceeds 1.4, the pressure inside the box becomes negative and air tends to enter, making it necessary to separately introduce nitrogen into the box.

上記条件で第18図10より空気を供給し、酸
素濃度を第16図のM1,M2,M3で測定し、第1
9図の曲線M1,M2,M3に示した。空気を供給し
ない場合、M1,M2,M3はいずれも10ppm近傍に
安定化する。空気20/min供給時にはM1=50、
M2=100、M3=500ppm、空気50/min供給時は
M1=100、M2=500、M3=2000ppm、空気100/
min供給時はM1=500、M2=2000、M3=5000ppm
であつた。
Under the above conditions, air was supplied from Figure 18 10, and the oxygen concentration was measured at M 1 , M 2 , M 3 in Figure 16.
This is shown in curves M 1 , M 2 , and M 3 in Figure 9. When no air is supplied, M 1 , M 2 , and M 3 all stabilize around 10 ppm. When air is supplied at 20/min, M 1 = 50,
M 2 = 100, M 3 = 500ppm, when air is supplied at 50/min
M 1 = 100, M 2 = 500, M 3 = 2000ppm, air 100/
When supplying min. M 1 = 500, M 2 = 2000, M 3 = 5000ppm
It was hot.

第20図はACP11をシールボツクスと分離
した構造を持つもので、必要によりシール壁15
を設けることが出来る。シールボツクス内の酸素
は9,10より混合供給され、ACPには13→
12→14でシールボツクス内のガスが再利用さ
れ、配管14に設けた空気供給口10によつて酸
素濃度を制御する。この構造において、ACPは
シールボツクスの2bの役割を兼ねることにもな
つている。
Figure 20 shows a structure in which the ACP 11 is separated from the seal box, and if necessary, the seal wall 15
can be provided. Oxygen in the seal box is mixed and supplied from 9 and 10, and ACP is supplied from 13→
The gas in the seal box is reused from step 12 to step 14, and the oxygen concentration is controlled by the air supply port 10 provided in the pipe 14. In this structure, ACP also serves as seal box 2b.

以上に詳細したシールボツクス以外でも、本発
明で定めたように酸素濃度を制御できれば適用す
ることができる。
Other seal boxes than those detailed above can be applied as long as the oxygen concentration can be controlled as defined in the present invention.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は電気亜鉛と該電気亜鉛及びAl 0.22%
を含む調合亜鉛にMgを0〜2%加えた亜鉛メツ
キ鋼板の腐食減量を示す曲線、第2図はMg1.0%
にAlを0.05〜0.5%のメツキ密着性を示す図、第
3図はMgとAlを含む亜鉛メツキをワイピングガ
ス圧を制御したメツキ密着性を示す図、第4図は
電気亜鉛及び調合亜鉛にMg0.5%を加えた浴で発
生した蒸気量及びドロス量を示す曲線、第5図は
第4図の無酸化炉方式の溶融亜鉛メツキラインの
説明図、第6図は酸素濃度と発生蒸気量、ドロス
量、皮張量の関係を示す図、第7図は皮張発生域
をワイピング部分の酸素濃度と浴中のMgで示す
図、第8図は目付量と酸素濃度に基く「ヘアー」
「よれ」発生域を示す図、第9図、第10図、第
11図はシールボツクスの3通りの位置を示す
図、第12〜20図はシールボツクスの構造を示
す図である。 1:ストリツプ、1S:メツキ金属(固体)が
付着、1L:メツキ金属(液体)が付着、2:シ
ールボツクス、2a:シールボツクスの下部ケー
シング(ワイピング、浴面)、2b:シールボツ
クス上部ケーシング(凝固過程)、2c:2重構
造シールボツクス内室、2d:ガスカーテンシー
ルボツクスの内室、2e:ガスカーテン2重構造
シールボツクスの内壁、3:ポツト釜、4:メツ
キ浴、5:ポツトロール、6:スナウト、7:ワ
イピングノズル、8:シールガス導管、9:不活
性ガス供給口、10:空気供給口、11:エアク
ツシヨンパツト、12:循環ブロアー、13:ガ
ス吸引口、14:循環パイプ、15:シール壁。
Figure 1 shows electrolytic zinc and the electrolytic zinc and Al 0.22%.
A curve showing the corrosion loss of a galvanized steel sheet prepared by adding 0 to 2% Mg to a zinc compound containing Mg 1.0%.
Figure 3 shows the plating adhesion of zinc plating containing Mg and Al by controlling the wiping gas pressure, and Figure 4 shows the adhesion of plating with 0.05 to 0.5% Al. A curve showing the amount of steam and dross generated in a bath containing 0.5% Mg, Figure 5 is an explanatory diagram of the hot-dip galvanizing line using the non-oxidizing furnace method in Figure 4, and Figure 6 is the oxygen concentration and amount of steam generated. , a diagram showing the relationship between the amount of dross and the amount of skin tension, Figure 7 is a diagram showing the area where skin tension occurs using the oxygen concentration of the wiping area and Mg in the bath, and Figure 8 is a diagram showing the relationship between the amount of dross and the amount of skin tension.
FIGS. 9, 10 and 11 are diagrams showing the area where "kink"occurs; FIGS. 9, 10, and 11 are diagrams showing three positions of the seal box; and FIGS. 12 to 20 are diagrams showing the structure of the seal box. 1: Strip, 1 S : Plated metal (solid) attached, 1 L : Plated metal (liquid) attached, 2: Seal box, 2a: Lower casing of seal box (wiping, bath surface), 2b: Upper part of seal box Casing (solidification process), 2c: Inner chamber of double structure seal box, 2d: Inner chamber of gas curtain seal box, 2e: Inner wall of gas curtain double structure seal box, 3: Pot pot, 4: Plating bath, 5: Pottrol, 6: Snout, 7: Wiping nozzle, 8: Seal gas conduit, 9: Inert gas supply port, 10: Air supply port, 11: Air action part, 12: Circulation blower, 13: Gas suction port, 14 : Circulation pipe, 15: Seal wall.

Claims (1)

【特許請求の範囲】 1 亜鉛浴で少なくとも片面にメツキし、メツキ
量を制御する工程を含む溶融亜鉛メツキ鋼帯の製
造方法において、亜鉛浴中にMg0.1〜2.0%、Al
0.1〜0.5%、残部は亜鉛及び不可避的不純物から
なる浴を使用し、該浴面から鋼帯表面に付着した
メツキ金属が凝固する間の少くとも1部をシール
ボツクスで囲み、ワイピングノズルを含む浴面側
の酸素濃度を50〜1000ppmに制御すると共に、
その上方のメツキ金属の凝固域側酸素濃度をメツ
キ目付量が50g/m2未満の場合には制御すること
なしに、又メツキ目付量が50g/m2以上の場合に
は100〜1000ppmに制御して鋼帯表面の未凝固メ
ツキ金属を凝固させることを特徴とする溶融メツ
キ鋼帯の製造方法。 2 メツキ浴面からワイピングノズル上方の最大
限1mの空間を浴面側とする特許請求の範囲第1
項記載の溶融メツキ鋼帯の製造方法。
[Scope of Claims] 1. A method for producing a hot-dip galvanized steel strip, which includes a step of plating at least one side in a zinc bath and controlling the amount of plating, wherein 0.1 to 2.0% Mg and 2.0% Al are added to the zinc bath.
A bath consisting of 0.1 to 0.5% zinc and unavoidable impurities is used, and at least a portion of the bath surface during which the plated metal adhering to the steel strip solidifies is surrounded by a seal box and includes a wiping nozzle. In addition to controlling the oxygen concentration on the bath surface side to 50 to 1000 ppm,
The oxygen concentration on the solidification zone side of the plating metal above is not controlled when the plating weight is less than 50g/ m2 , and is controlled to 100 to 1000 ppm when the plating weight is 50g/m2 or more . A method for producing a hot-dip galvanized steel strip, which comprises solidifying unsolidified galvanized metal on the surface of the steel strip. 2. Claim 1, in which the bath surface side is a space of 1 m at most above the wiping nozzle from the plating bath surface.
A method for manufacturing a hot-dip galvanized steel strip as described in Section 1.
JP8979281A 1981-06-11 1981-06-11 Manufacture of hot-dipped band steel Granted JPS57203760A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8979281A JPS57203760A (en) 1981-06-11 1981-06-11 Manufacture of hot-dipped band steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8979281A JPS57203760A (en) 1981-06-11 1981-06-11 Manufacture of hot-dipped band steel

Publications (2)

Publication Number Publication Date
JPS57203760A JPS57203760A (en) 1982-12-14
JPS6133069B2 true JPS6133069B2 (en) 1986-07-31

Family

ID=13980536

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8979281A Granted JPS57203760A (en) 1981-06-11 1981-06-11 Manufacture of hot-dipped band steel

Country Status (1)

Country Link
JP (1) JPS57203760A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6362835A (en) * 1986-09-02 1988-03-19 Nikko Aen Kk Zinc alloy for hot dip galvanizing and method for using same

Also Published As

Publication number Publication date
JPS57203760A (en) 1982-12-14

Similar Documents

Publication Publication Date Title
CA1153941A (en) Process for producing a hot dip galvanized steel strip
JP5211642B2 (en) Production equipment for hot dip galvanized steel sheet and method for producing hot dip galvanized steel sheet
FI79349C (en) Method for coating an iron-based metal strip with a zinc base ad metal
JP3201469B2 (en) Mg-containing hot-dip Zn-base plated steel sheet
CA1069390A (en) Method for effecting one side molten metal coating
US4171392A (en) Process of producing one-side alloyed galvanized steel strip
JPS6133069B2 (en)
JPS6133067B2 (en)
JPH01177350A (en) Method and equipment for manufacturing hot dip galvanized steel sheet having smooth surface
JPS6134504B2 (en)
JPH02175852A (en) Production of hot dip zinc-aluminum alloy plated steel sheet having superior surface smoothness and high corrosion resistance
US4207831A (en) Apparatus for one side coating of a continuous strip
Lucas et al. Effects of alloying parameters on formability of galvannealed sheets
KR100448622B1 (en) A Method for Manufacturing Hot Dip Coated Steel Sheet Having Good Surface Appearances
JP3367459B2 (en) Manufacturing method of hot-dip Zn-Al alloy plated steel sheet
KR100431604B1 (en) Method for manufacturing galvannealed steel sheet, characteristic as its corrosion resistance, with excellent paintability
JPH03211263A (en) Equipment for producing hot dip galvanized steel sheet
KR840002329B1 (en) Process for producing a hot dip galvanized steel strip
KR100525907B1 (en) Manufacturing method of galvannealed steel sheets
JPH03158450A (en) Production of hot dip galvanized steel sheet having smooth surface
JPS6354782B2 (en)
JP3291111B2 (en) Method for producing hot-dip Al-coated steel sheet having Zn diffusion layer
JPS6237361A (en) Method and apparatus for metal hot dipping
JPH01201456A (en) Method and apparatus for continuous metal hot dipping
JP3095935B2 (en) Hot-dip Zn plating method