JPS6132749Y2 - - Google Patents

Info

Publication number
JPS6132749Y2
JPS6132749Y2 JP10441379U JP10441379U JPS6132749Y2 JP S6132749 Y2 JPS6132749 Y2 JP S6132749Y2 JP 10441379 U JP10441379 U JP 10441379U JP 10441379 U JP10441379 U JP 10441379U JP S6132749 Y2 JPS6132749 Y2 JP S6132749Y2
Authority
JP
Japan
Prior art keywords
foam
synthetic resin
nonwoven fabric
metal substrate
glass fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP10441379U
Other languages
Japanese (ja)
Other versions
JPS5620811U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP10441379U priority Critical patent/JPS6132749Y2/ja
Publication of JPS5620811U publication Critical patent/JPS5620811U/ja
Application granted granted Critical
Publication of JPS6132749Y2 publication Critical patent/JPS6132749Y2/ja
Expired legal-status Critical Current

Links

Landscapes

  • Building Environments (AREA)
  • Laminated Bodies (AREA)

Description

【考案の詳細な説明】 本考案は建築,構築物の特に断熱,耐火性を有
する部位に有用な耐火断熱パネルに関する。
[Detailed Description of the Invention] The present invention relates to a fire-resistant insulation panel that is useful for buildings and structures, particularly in heat-insulating and fire-resistant parts.

最近、省エネルギーの関係から断熱構造が各分
野に奨励導入されつつある。特に建築分野におい
てはその導入が急速に行なわれている。しかし、
建築部材としては基材に対し、建築基準法によつ
て種々の規制、例えば防火構造には準不燃基材料
を使用するとか、高層建築には不燃材料を使用し
なければならない等がある。一方、断熱性におい
ては合成樹脂発泡体は他の周知基材の中で、例え
ばポリウレタンフオーム(密度40Kg/m3)では、
0.025Kg/m・h・℃の熱伝導率を示し、セメン
トモルタルでは1.3kcal/m・h・℃を示す。こ
のことから明らかなように断熱性能においては非
常に大きな差がある。それ故、現在では建材に合
成樹脂発泡体を使用することが多い。しかしなが
ら、合成樹脂泡体は防火性,耐熱性に欠けるもの
が殆んどであり、仮令防火性があつても亀裂と
か、脆性とかの点で建材の芯材用としては大きな
改善がせまられていた。
Recently, thermal insulation structures are being encouraged and introduced in various fields in order to save energy. Particularly in the field of architecture, its introduction is being rapidly carried out. but,
The Building Standards Law imposes various regulations on base materials used as building materials, such as requiring the use of quasi-incombustible base materials for fireproof structures and non-combustible materials for high-rise buildings. On the other hand, in terms of heat insulation properties, synthetic resin foams, among other well-known base materials, for example, polyurethane foam (density 40Kg/m 3 ),
It shows a thermal conductivity of 0.025Kg/m・h・℃, and cement mortar shows 1.3kcal/m・h・℃. As is clear from this, there is a very large difference in thermal insulation performance. Therefore, synthetic resin foams are now often used as building materials. However, most synthetic resin foams lack fire retardant properties and heat resistance, and even if they do have provisional fire retardant properties, there is a need for major improvements in terms of cracking and brittleness for use as core materials in building materials. Ta.

そこで、金属薄板(例えばカラー鋼板)と耐火
断熱性のあるフエノールフオーム等を一体化した
複合構造のパネルが一部、実用化されつつある。
しかしながら、カラー鋼板とフエノールフオーム
等とを直接(接着剤なし)、所謂、現場発泡的に
注入し一体化した複合構造のパネルにおいては、
○イフオームが脆いため金属製基板とフオーム間の
境界部のフオームに凝集破壊が生ずる。○ロ金属製
基板にフオーム原料を平均に延展しにくい。すな
わち、原料の粘度が液状から急激に粘度を増大す
るため液状で薄膜状に平均に分布することが困難
となるからである。○ハ金属製基板と接触するフオ
ーム原料の反応状態が不均一なため均一密度のス
キン層を形成することが不可能であつた。○ニフオ
ーム自体は脆く、弾性に欠けるため、外力、変形
に追従できず、これらの変形がフオームの亀裂と
なつて現われる不利があり、総合的には金属製基
板とフオーム間の接着力の欠如、フオームの脆性
からくる強度不足と、それに伴う耐火性の弱さが
あつた。さらに説明すると、○イは金属板のように
高い弾性率(105〜106Kg/cm2)の部材と合成樹脂
発泡体の金属板との接触部分の剛直な接着剤層と
しての部分との間において、接着剤層が金属の弾
性変形に追従できず、それによつて接着剤層の内
部応力を緩和できなくなり、接着部に高い応力集
中を招いて破壊が生起されることになるものであ
る。○ロ,○ハは接着剤層と被着体(金属板)との接
触面積によつて接着力が異なることに起因するも
のである。
Therefore, some panels with a composite structure in which a thin metal plate (for example, a colored steel plate) and a fire-resistant and heat-insulating phenol foam are integrated are being put into practical use.
However, in panels with a composite structure in which colored steel sheets and phenol foam, etc. are directly injected (without adhesive), so-called in-situ foaming, and integrated,
○Because the form is brittle, cohesive failure occurs in the form at the boundary between the metal substrate and the form. ○B It is difficult to spread the foam raw material evenly on the metal substrate. That is, since the viscosity of the raw material increases rapidly from a liquid state, it becomes difficult to distribute the raw material evenly in a thin film form in a liquid state. C) It was impossible to form a skin layer of uniform density because the reaction state of the foam raw material in contact with the metal substrate was non-uniform. ○Niform itself is brittle and lacks elasticity, so it cannot follow external forces and deformation, and these deformations have the disadvantage of appearing as cracks in the form.Overall, this results in a lack of adhesive strength between the metal substrate and the form. There was a lack of strength due to the brittleness of the foam, and a corresponding weakness in fire resistance. To explain further, ○B is between a member with a high elastic modulus (105 to 106 Kg/cm 2 ) such as a metal plate and a rigid adhesive layer at the contact area of the synthetic resin foam with the metal plate. The adhesive layer is unable to follow the elastic deformation of the metal, and as a result, the internal stress of the adhesive layer cannot be alleviated, leading to high stress concentration at the bonded portion and failure. ○B and ○C are due to the fact that the adhesive strength differs depending on the contact area between the adhesive layer and the adherend (metal plate).

すなわち、フエノールフオーム等のセル構造は
金属製基板とフオーム間に空気層を多く形成する
ことになり、結果として接着面積が大幅に低減さ
れることになり、金属製基板の裏面とフエノール
フオーム等の合成樹脂発泡体間に発泡体の未着部
分が生ずることになる。従つて、しつかりしたス
キン層の形成は達成されないことになる。さら
に、○ニは耐火性のある合成樹脂発泡体は、重合反
応が急激であつたり、原料の粘度が他の合成樹脂
発泡体に比し、高く、かつフオーム自体が脆かつ
たりするため単なる衝撃によつても直接的にフオ
ームの接着剤層部に伝達され、これがこの部分で
吸収できず破壊へと到達するものであると推測さ
れる。
In other words, the cell structure of phenol foam etc. forms a large air layer between the metal substrate and the foam, which results in a significant reduction in the adhesion area. This results in areas where the foam has not adhered between the synthetic resin foams. Therefore, the formation of a firm skin layer will not be achieved. Furthermore, fire-resistant synthetic resin foams undergo a rapid polymerization reaction, the viscosity of the raw material is higher than that of other synthetic resin foams, and the foam itself is brittle, so it is difficult to resist the effects of simple shocks. It is presumed that this is also directly transmitted to the adhesive layer of the foam, and that it cannot be absorbed in this area, leading to destruction.

本考案はこのような欠点を除去するため、金属
製基板と合成樹脂発泡体間にこの発泡体を内蔵し
た状態で、かつクツシヨン性、可撓性、合成樹脂
発泡体原料が通過する貫通空隙を有するガラス繊
維不織布を一体に介在させると共に、上記不織布
を通過した合成樹脂発泡体が金属製基板を一体に
固着するように構成したものであり、主に合成樹
脂発泡体の断熱性を損ねずに、かつ接着剤、芯材
としても有用に作用し、その上、金属製基板と合
成樹脂発泡体間の緩衝材、合成樹脂発泡体の亀裂
防止材、補強材、および合成樹脂発泡体の一部を
有用な接着剤として作用させ、しかも高熱下では
合成樹脂発泡体に亀裂が入らないようにした耐火
断熱パネルを提供するものである。
In order to eliminate these drawbacks, the present invention incorporates this foam between the metal substrate and the synthetic resin foam, and provides cushioning properties, flexibility, and a through gap through which the synthetic resin foam raw material passes. It is structured so that a glass fiber non-woven fabric with the above non-woven fabric is integrally interposed, and the synthetic resin foam that has passed through the non-woven fabric fixes the metal substrate together, mainly without impairing the heat insulation properties of the synthetic resin foam. It also acts usefully as an adhesive and a core material, and can also be used as a cushioning material between a metal substrate and a synthetic resin foam, a crack prevention material for a synthetic resin foam, a reinforcing material, and a part of a synthetic resin foam. To provide a fireproof heat insulating panel in which the synthetic resin foam acts as a useful adhesive and the synthetic resin foam does not crack under high heat.

以下に図面を用いて本考案に係る耐火断熱パネ
ル(以下、単にパネルと称す)の一実施例につい
て詳細に説明する。第1図は金属製基板を合成樹
脂発泡体の片面にのみ設けたパネルを示す説明図
であり、1は金属製基板で、表面処理を施した表
面処理鋼板、アルミニウム板、ステンレス、鋼板
等を素材とし、これを平板あるいは樋状等のその
目的に応じ成形したものである。なお上記表面処
理鋼板とは、メツキ鋼板、金属圧着鋼板、化成処
理鋼板、無機塗装鋼板、有機塗装鋼板、有機ラミ
ネート鋼板、有機膜吹付鋼板等である。2は合成
樹脂発泡体で、少なくとも高温下において寸法変
形が僅かで、その上炭化層を形成すると共に高温
下および通常状態にして断熱層として機能する物
性を有する素材からなる。具体的な一例として
は、フエノール樹脂発泡体(フエノールフオー
ム),ポリイソシアヌレートフオーム等であり、
特にこの発泡体は樹脂原料を現場発泡体に成形す
ることにより得るものである。3はガラス繊維不
織布で繊維からなる不織布で、かつ繊維間の貫通
空隙が約50%以上あるネツト状物的構造であり、
その上厚さが0.1〜3mm位でクツシヨン性も具備
するものである。さらに説明すると、上記不織布
3は合成樹脂発泡体原料を通過させて発泡体原料
の反応系を均一化した状態で金属製基板1の裏面
と接触させて接着力を強化すると共に、金属製基
板1の弾性変形を合成樹脂発泡体2に直接的に伝
達させないように吸収するクツシヨン材としても
機能させるものである。また、ガラス繊維不織布
3は合成樹脂発泡体原料を通過させることにより
合成樹脂発泡体2内にガラス繊維不織布3を内蔵
すると共に、発泡体原料の反応系をほぼ均一化
し、かつガラス繊維の貫通空隙を通過した原料は
反応が促進されているため均一な性状で金属製基
板1と接触し、均一なスキン層を形成することに
より、接着力が大幅に改善されるものである。例
えばガラス繊維不織布3(厚さ3mm、260g/
m2、空隙率50%)を敷設したときのJIS−A−
1613による試験(フエノールフオーム接着強度)
では0.9Kg/cm2に対し、不織布不使用では0.1Kg/
cm2であり大きな差異が認められた。しかも、上記
ガラス繊維不織布3を用いた場合の破壊は凝集破
壊であり、比較例では界面破壊であつた。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of a fireproof insulation panel (hereinafter simply referred to as a panel) according to the present invention will be described in detail below with reference to the drawings. Fig. 1 is an explanatory diagram showing a panel in which a metal substrate is provided only on one side of a synthetic resin foam. 1 is a metal substrate, which is made of surface-treated steel plate, aluminum plate, stainless steel plate, etc. This material is formed into a flat plate or a gutter shape depending on the purpose. The above-mentioned surface-treated steel sheets include galvanized steel sheets, metal crimped steel sheets, chemical conversion treated steel sheets, inorganic coated steel sheets, organic coated steel sheets, organic laminated steel sheets, organic film sprayed steel sheets, and the like. Reference numeral 2 is a synthetic resin foam made of a material that exhibits slight dimensional deformation at least at high temperatures, forms a carbonized layer, and functions as a heat insulating layer at high temperatures and in normal conditions. Specific examples include phenolic resin foam (phenol foam), polyisocyanurate foam, etc.
In particular, this foam is obtained by molding a resin raw material into an in-situ foam. 3 is a glass fiber nonwoven fabric, which is a nonwoven fabric made of fibers, and has a net-like physical structure with about 50% or more of through-gaps between the fibers;
Moreover, it has a thickness of about 0.1 to 3 mm and has cushioning properties. To explain further, the nonwoven fabric 3 is brought into contact with the back surface of the metal substrate 1 in a state where the synthetic resin foam raw material is passed through and the reaction system of the foam raw material is made uniform to strengthen the adhesive force and to strengthen the adhesive force between the metal substrate 1. It also functions as a cushion material that absorbs the elastic deformation of the synthetic resin foam 2 so that it is not directly transmitted to the synthetic resin foam 2. In addition, the glass fiber nonwoven fabric 3 incorporates the glass fiber nonwoven fabric 3 into the synthetic resin foam 2 by passing the synthetic resin foam raw material, and also makes the reaction system of the foam raw material almost uniform, and the through-holes of the glass fibers are Since the reaction of the raw material that has passed has been accelerated, it comes into contact with the metal substrate 1 with uniform properties and forms a uniform skin layer, thereby greatly improving adhesive strength. For example, glass fiber nonwoven fabric 3 (thickness 3mm, 260g/
m2 , porosity 50%) JIS-A-
Test by 1613 (phenol foam adhesive strength)
0.9Kg/cm 2 with non-woven fabric, 0.1Kg/cm 2 with non-woven fabric.
cm2 , and a large difference was observed. In addition, the failure when the glass fiber nonwoven fabric 3 was used was cohesive failure, and in the comparative example, it was interfacial failure.

次に本考案に係るパネルの製造方法について簡
単に説明すると、まず下型に例えば、カラー鉄板
(平板)を載せ、これにガラス繊維の不織布を敷
設し、その上にフエノール樹脂(フエノール1モ
ルに対し、37%のホルマリンを1.6モルの割合で
配合し、その他周知手段を介してPH5になし、安
定なレゾール型フエノール樹脂初期縮合物100重
量部)と界面活性剤(シリコン)3部、発泡剤
(ダイクロンソルベント),着色剤(これをA液と
称す)と、硬化剤(トルエンスルフオン酸の50%
水溶液)を40重量部(これをB液と称す)を混合
して吐出する。その上に上型をのせ、加温して発
泡硬化させた。このようにして得たパネルを切断
して観察したところ、第2図に拡大して示すよう
にフエノール樹脂はガラス繊維不織布3の貫通空
隙を通つてガラス繊維不織布3の空隙をフエノー
ルフオームで充填すると共に、金属製基板1とフ
エノールフオーム2間に接着力にすぐれた高密度
の薄膜状のスキン層が形成されていた。これはス
キン層の形成と金属製基板1とフエノールフオー
ム2原料のヌレとが良好であつたためである。ま
た、金属製基板1に外力を付加してもフエノール
フオーム2にクラツクが入りにくく、かつ金属製
基板1面を高熱(900℃に10分間)に曝してもフ
エノールフオーム2の裏面側には全く到達しない
ものであつた。
Next, to briefly explain the manufacturing method of the panel according to the present invention, first, for example, a colored iron plate (flat plate) is placed on the lower mold, a glass fiber non-woven fabric is laid on this, and a phenolic resin (1 mole of phenol) is placed on this. On the other hand, 37% formalin was blended at a ratio of 1.6 mol, and the pH was adjusted to 5 using other well-known means, and 100 parts by weight of a stable resol type phenolic resin initial condensate), 3 parts of surfactant (silicon), and a blowing agent. (Dyclone Solvent), coloring agent (this is called Part A), and hardening agent (50% toluene sulfonic acid).
Aqueous solution) is mixed with 40 parts by weight (this is called liquid B) and discharged. An upper mold was placed on top of it and heated to foam and harden. When the panel obtained in this manner was cut and observed, it was found that the phenolic resin passed through the voids in the glass fiber nonwoven fabric 3 and filled the voids in the glass fiber nonwoven fabric 3 with phenol foam, as shown in an enlarged view in FIG. At the same time, a high-density thin film-like skin layer with excellent adhesive strength was formed between the metal substrate 1 and the phenol foam 2. This is because the formation of the skin layer and the wetting of the metal substrate 1 and the phenol foam 2 raw material were good. In addition, even if an external force is applied to the metal substrate 1, the phenol foam 2 is difficult to crack, and even if the metal substrate 1 side is exposed to high heat (900°C for 10 minutes), there is no crack on the back side of the phenol form 2. It was something I couldn't reach.

以上説明したのは本考案の一実施例にすぎず、
例えば第3図aに示すように合成樹脂発泡体の両
面に前記と同様の構造を設けたりb図に示すよう
にアスフアルトフエルト、合成樹脂フイルム等の
防水紙、または前記と同様のガラス繊維不織布を
設けることもできる。さらに第3図cに示すよう
に金属製基板1を樋状に成形しそこに本考案に係
るパネル構造を形成することもできる。また図示
しないが、ガラス繊維不織布3をテンシヨンを付
加した状態でフエノール樹脂を吐出し発泡硬化さ
せ、十分に養生した後に取り出したパネルも可能
である。
What has been described above is only one embodiment of the present invention.
For example, as shown in Figure 3a, the same structure as above is provided on both sides of the synthetic resin foam, or as shown in Figure 3b, waterproof paper such as asphalt felt or synthetic resin film, or a glass fiber nonwoven fabric similar to that described above is provided. It is also possible to provide one. Furthermore, as shown in FIG. 3c, the metal substrate 1 can be formed into a gutter shape and the panel structure according to the present invention can be formed therein. Although not shown, it is also possible to produce a panel by discharging phenolic resin onto the glass fiber nonwoven fabric 3 under tension, foaming and curing it, and taking it out after sufficient curing.

上述したように本考案に係るパネルによれば、
接着性に欠けるフエノールフオーム等と金属製基
板の接着を特殊なガラス繊維不織布によつて接着
に必要なヌレと内部応力の緩和を一挙に解決し、
かつつ構成材の一体をも図つたためパネルの機械
強度の改善と、構成部材間の接着力の強化を達成
し、金属板が膨脹収縮してもこれに接着剤層分が
追従して伸縮するので破壊,はくり,割裂,せん
断を大きく改善した特徴がある。
As mentioned above, according to the panel according to the present invention,
By using a special glass fiber non-woven fabric, we can solve the problem of bonding between phenol foam, etc., which lacks adhesive properties, and metal substrates, all at once by relieving the wetting and internal stress necessary for bonding.
At the same time, since the constituent materials are integrated, the mechanical strength of the panel is improved and the adhesive force between the constituent members is strengthened. Even when the metal plate expands and contracts, the adhesive layer follows and expands and contracts. Therefore, it has the characteristics of greatly improved fracture, peeling, splitting, and shearing.

【図面の簡単な説明】[Brief explanation of drawings]

第1は本考案に係る耐火断熱パネルの一実施例
を示す説明図、第2図はその一部分を拡大して示
す説明図、第3図a〜cはその他の実施例を示す
縦断面図である。 1……金属製基板、2……合成樹脂発泡体、3
……ガラス繊維不織布。
The first is an explanatory view showing one embodiment of the fireproof heat insulating panel according to the present invention, the second is an explanatory view showing an enlarged part of the panel, and the third a to c are longitudinal sectional views showing other embodiments. be. 1...Metal substrate, 2...Synthetic resin foam, 3
...Glass fiber non-woven fabric.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 金属製基板とポリイソシアヌレートフオーム、
フエノールフオームのように高熱下で炭化層を形
成する芯材兼接着剤として機能する合成樹脂発泡
体間に繊維からなる不織布で、かつ繊維間に貫通
空隙を有すると共に、クツシヨン性もあるガラス
繊維不織布の空隙を合成樹脂発泡体で充填して一
体に固着し、また上記ガラス繊維不織布を通過し
た合成樹脂発泡体がガラス繊維不織布と金属製基
板間に高密度層の接着剤層として一体に形成した
ことを特徴とする耐火断熱パネル。
metal substrate and polyisocyanurate foam,
A nonwoven fabric made of fibers between a synthetic resin foam that forms a carbonized layer under high heat, such as phenol foam, which functions as a core material and adhesive. A glass fiber nonwoven fabric that has through-spaces between the fibers and also has cushioning properties. The voids were filled with synthetic resin foam and fixed together, and the synthetic resin foam passed through the glass fiber nonwoven fabric was integrally formed as a high-density adhesive layer between the glass fiber nonwoven fabric and the metal substrate. A fireproof insulation panel characterized by:
JP10441379U 1979-07-26 1979-07-26 Expired JPS6132749Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10441379U JPS6132749Y2 (en) 1979-07-26 1979-07-26

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10441379U JPS6132749Y2 (en) 1979-07-26 1979-07-26

Publications (2)

Publication Number Publication Date
JPS5620811U JPS5620811U (en) 1981-02-24
JPS6132749Y2 true JPS6132749Y2 (en) 1986-09-24

Family

ID=29337099

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10441379U Expired JPS6132749Y2 (en) 1979-07-26 1979-07-26

Country Status (1)

Country Link
JP (1) JPS6132749Y2 (en)

Also Published As

Publication number Publication date
JPS5620811U (en) 1981-02-24

Similar Documents

Publication Publication Date Title
US8753473B2 (en) Composite structural elements and method of making same
US20200011050A1 (en) Construction boards with coated inorganic facer
EP0953090B1 (en) Composite roof system
JPS6132749Y2 (en)
KR20040091885A (en) fire retardant complex adiabatic waterproof-sheet and construction method thereof
JPS6232849Y2 (en)
USRE31007E (en) Roof construction and method thereof
EP0597982A1 (en) Composite structure with foam plastic core and method of making same
JP2838982B2 (en) Fireproof panel
JP2001317204A (en) Heat-insulating curing sheet for concrete
CN108385925A (en) A kind of intelligent vibration damping heat insulating and sound insulating backing plate
JPH11198264A (en) Fiber reinforced plastic fire-resistant member and its manufacture
JP3110522B2 (en) Composite board
JPH1018551A (en) Ceramic tile setting method
JPH11350614A (en) Heat-insulating and water-proofing construction method for heat storage tank
JPS6230035A (en) Laminate and manufacture thereof
JPH0126432Y2 (en)
JPS6127410Y2 (en)
JP2920928B2 (en) In-situ foaming method for phenolic resin foam
JPS6116122Y2 (en)
JPS5852115Y2 (en) insulation composite board
JP3163373B2 (en) Fire resistant composite board
JP3841533B2 (en) Fireproof and fireproof covering structure for concrete structure and manufacturing method thereof
JPS6116118Y2 (en)
JP3065403B2 (en) Composite board