JPS6132598B2 - - Google Patents

Info

Publication number
JPS6132598B2
JPS6132598B2 JP1329780A JP1329780A JPS6132598B2 JP S6132598 B2 JPS6132598 B2 JP S6132598B2 JP 1329780 A JP1329780 A JP 1329780A JP 1329780 A JP1329780 A JP 1329780A JP S6132598 B2 JPS6132598 B2 JP S6132598B2
Authority
JP
Japan
Prior art keywords
lead
heat pipe
leaded
heat
pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1329780A
Other languages
Japanese (ja)
Other versions
JPS56110885A (en
Inventor
Shuichi Furuya
Tatsuya Koizumi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP1329780A priority Critical patent/JPS56110885A/en
Publication of JPS56110885A publication Critical patent/JPS56110885A/en
Publication of JPS6132598B2 publication Critical patent/JPS6132598B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Rigid Pipes And Flexible Pipes (AREA)
  • Thermal Insulation (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、硫黄酸化物を含む廃ガスから熱を回
収する熱交換器に用いられる耐硫酸露点腐食性に
優れた被鉛ヒートパイプの製造方法に関する。 一般にヒートパイプを用いた廃熱回収用熱交換
器はヒートパイプの吸熱側を高温廃ガスが通流す
るダクト内に配置し、ヒートパイプの放熱側を清
浄な空気が通流するダクトや水が通流する管路内
に配置して廃熱を回収し、空気や水を加熱してい
る。ところが、燃料油として硫黄を含むものを用
いると、燃焼ガス中に硫黄酸化物(SOx)が含ま
れ、この廃ガスがヒートパイプに接して温度が低
下し、硫酸露点以下になると、表面に硫酸が生成
され、これが腐食の原因となる。 このため、耐硫酸露点腐食性に優れた鉛または
鉛合金を外管として被覆した被鉛ヒートパイプが
用いられている。 従来、この被鉛ヒートパイプの製造方法は第1
図乃至第5図に示す如き方法で製造されている。
先ず第1図に示すように内管1となる両端を開口
した銅管などを用意し、これを注湯リング(ニツ
プル)とダイスを組合わせた被鉛機に通して、半
溶融状態の鉛または鉛合金を被覆固化して外管2
とし、第2図の如き被鉛二重管3を製造する。次
に第3図に示すように外管3の両端を、内管1が
露出するように除去した後、第4図に示すように
内管1の一端に円形状のキヤツプ4を、他端に注
入細管5を有するキヤツプ6を夫々ろう付けす
る。次いで前記注入細管5を真空ポンプに接続し
て内部を脱気した後、ここから所定量の作動液7
を注入し、しかる後この注入細管5を封じ切つて
第5図に示す如き被鉛ヒートパイプ8を製造して
いた。 しかしながら、上記の方法では両端側の鉛外管
2が、キヤツプ4,6のろう付け時に溶融するた
めこの部分を除去しなければならない。この鉛外
管2の除去作業が極めてめんどうである上、得ら
れた被鉛ヒートパイプ8は、両端側の内管1が露
出したままの状態となるので、この部分から腐食
される欠点があつた。 本発明は、かかる従来の欠点に鑑み種々研究を
行なつた結果、端部の完全な被鉛を可能にして耐
硫酸露点腐食性を高めた被鉛ヒートパイプの製造
方法を見い出したものである。 即ち本発明方法は、注湯リング(ニツプル)と
ダイスを組合せた被鉛機に内管となるヒートパイ
プを通して、この外周に半溶融状態の鉛または鉛
合金を、その両端が前記ヒートパイプより突出す
るように被覆固化した後、形成された鉛外管の突
出した両端部を絞り加工して密閉することを特徴
とするものである。 以下、本発明方法を図面を参照して詳細に説明
する。 第6図乃至第12図は本発明の一方法を示すも
ので、先ず第6図に示すように、銅、銅合金、炭
素鋼、あるいは合金鋼など両端を開口した金属管
を内管1とし、この一方の開口端に第7図に示す
ように円形状のキヤツプ4をろう付けすると共
に、他方の開口端に注入細管5を有するキヤツプ
6をろう付けする。 次いで、この注入細管5を図示しない真空ポン
プに接続して内管1内を脱気した後、内部に水、
フロンなどの作動液7を封入し、しかる後、注入
細管5を封じ切つて第8図に示す如きヒートパイ
プ9を形成する。 このようにして得られたヒートパイプ9を第9
図に示す、注湯リング(ニツプル)10と、所定
の内径に形成したダイス11とを組合せた被鉛機
12に通して、ヒートパイプ9の外周に半溶融状
態の鉛または鉛合金13を被覆固化させた後、水
冷したダイス11に通して鉛外管2を所定の肉厚
に調整し、更にこの先端側をシヤワー14により
水冷して、ヒートパイプ9を冷却しながら被鉛を
完了し、第10図に示す如く、鉛外管2がヒート
パイプ9の両端より突出するように形成する。 この場合、外管2となる材料は鉛でも良いが、
加工性および機械的強度の上から錫(Sn)およ
びアンチモン(Sb)の何れか1種または両種を
合計で0.5〜11重量%、残部鉛からなる鉛合金1
3が好適である。 なお本発明において、鉛合金13の組成を上記
範囲に限定した理由は次の通りである。 錫およびアンチモンは鉛合金13の機械的強度
を高めると共に、加工性を容易にする作用をな
し、これら元素は何れか1種を単独で添加しても
良く、また両種を同時に添加しても良い。 その添加量が合計で0.5重量%未満では機械的
強度に乏しく、11重量%を越えると組織がもろく
なり加工性が低下するので好ましくない。なお砒
素(As)は0.3重量%以下の添加であれば加工性
を害することなく、更に機械的特性を向上させる
ことができる。 またヒートパイプ9と鉛外管2との密着性を高
めるため、被鉛加工時における締め代φ、即ちヒ
ートパイプ9の外径d1と鉛外管2の空管状態にお
ける内径d2との差φ=d1−d2は、0.2〜2.0mmの範
囲になるように、被鉛機12の注湯リング(ニツ
プル)10とダイス11を調整して行なうことが
好ましい。締め代φが0.2mm未満であると、ヒー
トパイプ9と鉛外管2の密着性が悪くなつて熱抵
抗が増大し、また2.0mmを越えると内部応力が高
くなつて後工程で行なう絞り加工時に亀裂を生ず
る虞れがあるため、締め代φは上記範囲が望まし
い。 また被鉛加工時に、ヒートパイプ9は高温の鉛
または鉛合金13と接して加熱されるが、先端側
をシヤワー14により水冷するのでヒートパイプ
9の急速な熱伝達作用により全体が冷却されて、
ヒートパイプ9の破裂や、密着部界面の熱抵抗増
大を防止することができる。なおこの場合の冷却
温度は100℃以下が好ましい。 上記の如く、ヒートパイプ9の外周に鉛外管2
を被鉛した後、第11図に示すようにこれを回転
台に取付けて回転させながら、ヒートパイプ9の
両端より突出した鉛外管2の部分にへら15を押
付けて、円形キヤツプ4側はこれに密着するよう
に絞り加工を行ない、また注入細管5を有するキ
ヤツプ6側は空気層16を形成するように絞り加
工を行なう。 次にこの絞り加工により鉛外管2の両端に形成
された小孔17を、バーナで溶融するか、或はろ
う付けして密閉し、第12図に示す如き被鉛ヒー
トパイプ8を完成する。 このようにして得られた被鉛ヒートパイプ8は
全体が鉛外管2により覆われ、ヒートパイプ9の
両端が露出していないので、この部分からの腐食
はなく、長寿命化を図ることができると共に、封
じ切つた注入細管5の部分に空気層16が形成さ
れているので、この部分を外部からの衝撃に対し
て保護することができる。 なお本発明は、第13図に示すように鉛外管2
の両端に空気層16,16を形成するように絞り
加工した後、これをねじ溝を形成したローラーダ
イスに通して転造加工を行ない、外管2と一体に
フイン18を形成した被鉛ヒートパイプ8として
も良い。 次に本発明の具体的な実施例について説明す
る。 実施例 外径32mmφ、肉厚1.5mm、長さ2mの銅管を内管
1とし、この一方の開口端に円形の銅製キヤツプ
4をろう付けすると共に、他方の開口端に注入細
管5を有する銅製キヤツプ6をろう付けしてした
後、内部を脱気して作動液7として水を封入し、
しかる後、注入細管5を封じ切つて、第8図の如
きヒートパイプ9を組立てた。 次にこのヒートパイプ9を第9図に示す如き被
鉛機12に通して、第1表のNo.1〜No.4に示す条
件で半溶融状態の鉛合金13を被覆固化して鉛外
管2を形成した。次いで鉛外管2の両端を内面半
球状ダイスにて絞り加工した後、形成された小孔
17,17を酸素―水素バーナで加熱して溶融密
閉し、第12図に示す如き被鉛ヒートパイプ8を
製造した。 このようにして得られた被鉛ヒートパイプ8を
10段10列に計100本配置して、ヒートパイプ熱交
換器を組立てた。この熱交換器の吸熱側を重油燃
焼廃ガス(SO2300ppm、水分10%、硫酸露点127
℃)が通流するダクト内に配置し、放熱側を外気
(25℃)が通流するダスト内に配置して廃熱回収
を行なつた。なおこの場合の、廃ガスの入口およ
び出口温度、回収熱量、被鉛ヒートパイプ8の表
面温度は、上記No.1〜No.4の各熱交換器について
第2表に示す条件で、1年間廃熱回収を行なつ
た。 この結果は、第2表に示す如く、被鉛ヒートパ
イプ8の表面温度は一部硫酸露点より低かつたが
表面には腐食の発生が全く認められなかつた。な
お、No.4の水冷なしで被鉛加工した被鉛ヒートパ
イプ8を用いて組立てた熱交換器は、性能的に若
干低下していた。 比較例 本発明の効果と比較のため、第10図に示す如
き、鉛外管2の両端を密閉しない被鉛ヒートパイ
プ8(No.5)、および第8図に示す鉛外管2を形
成していないヒートパイプ9(No.6)を夫々用い
て熱交換器を組立てて、上記実施例と同様に廃熱
回収を行なつた。 この結果は、第2表に併記した如く、鉛外管2
の端部を密閉しなかつたNo.5のものは、両端側が
腐食して、約3カ月後に全体の3分の1の被鉛ヒ
ートパイプ8に貫通孔を生じて作動を停止した。
また鉛外管2を形成していないヒートパイプ9を
用いたNo.6のものは、約1カ月で全体の3分の1
に貫通孔を生じて作動を停止した。
The present invention relates to a method for manufacturing a leaded heat pipe that has excellent sulfuric acid dew point corrosion resistance and is used in a heat exchanger that recovers heat from waste gas containing sulfur oxides. In general, a heat exchanger for waste heat recovery using a heat pipe places the heat absorption side of the heat pipe in a duct through which high-temperature waste gas flows, and the heat radiation side of the heat pipe in a duct through which clean air flows or water flows through. They are placed inside pipes that carry water and recover waste heat to heat air and water. However, when fuel oil containing sulfur is used, the combustion gas contains sulfur oxides (SOx), and when this waste gas comes into contact with the heat pipe and its temperature drops below the sulfuric acid dew point, sulfuric acid forms on the surface. is generated, which causes corrosion. For this reason, leaded heat pipes are used in which the outer tube is coated with lead or a lead alloy that has excellent sulfuric acid dew point corrosion resistance. Conventionally, this leaded heat pipe manufacturing method was the first method.
It is manufactured by the method shown in FIGS. 5 to 5.
First, as shown in Figure 1, prepare a copper pipe with both ends open, which will become the inner pipe 1, and pass it through a lead-bearing machine that combines a pouring ring (nipple) and a die to pour semi-molten lead. Or cover the lead alloy and solidify the outer tube 2.
Then, a leaded double pipe 3 as shown in FIG. 2 is manufactured. Next, as shown in FIG. 3, after removing both ends of the outer tube 3 to expose the inner tube 1, a circular cap 4 is attached to one end of the inner tube 1 and the other end is removed as shown in FIG. A cap 6 with an injection capillary 5 is respectively brazed to the cap. Next, the injection capillary 5 is connected to a vacuum pump to degas the inside, and then a predetermined amount of the working fluid 7 is poured from there.
was injected, and then the injection tube 5 was sealed off to produce a leaded heat pipe 8 as shown in FIG. However, in the above method, the lead outer tubes 2 at both ends melt when the caps 4 and 6 are brazed, so these portions must be removed. This removal work of the leaded outer tube 2 is extremely troublesome, and the resultant leaded heat pipe 8 has the inner tube 1 at both ends exposed, so it has the disadvantage that this part is corroded. Ta. The present invention has been made as a result of conducting various studies in view of such conventional drawbacks, and has discovered a method for manufacturing a leaded heat pipe that enables complete lead coating at the end and improves sulfuric acid dew point corrosion resistance. . That is, the method of the present invention involves passing semi-molten lead or lead alloy around the outer periphery of the heat pipe, which serves as an inner pipe, through a lead-covered machine that combines a pouring ring (nipple) and a die, with both ends protruding from the heat pipe. After the coating is solidified in such a manner, both protruding ends of the formed lead outer tube are drawn and hermetically sealed. Hereinafter, the method of the present invention will be explained in detail with reference to the drawings. 6 to 12 show one method of the present invention. First, as shown in FIG. 6, a metal tube with open ends, such as copper, copper alloy, carbon steel, or alloy steel, is used as the inner tube 1. As shown in FIG. 7, a circular cap 4 is brazed to one open end, and a cap 6 having an injection capillary 5 is brazed to the other open end. Next, this injection tube 5 is connected to a vacuum pump (not shown) to degas the inside of the inner tube 1, and then water and
A working fluid 7 such as fluorocarbon is sealed, and then the injection tube 5 is sealed off to form a heat pipe 9 as shown in FIG. The heat pipe 9 obtained in this way is
The outer periphery of the heat pipe 9 is coated with semi-molten lead or lead alloy 13 by passing it through a lead coating machine 12 that combines a pouring ring (nipple) 10 and a die 11 formed to a predetermined inner diameter, as shown in the figure. After solidification, the lead outer tube 2 is passed through a water-cooled die 11 to adjust the thickness to a predetermined thickness, and the tip side is further water-cooled by a shower 14 to complete lead coating while cooling the heat pipe 9. As shown in FIG. 10, the lead outer tube 2 is formed to protrude from both ends of the heat pipe 9. In this case, the material for the outer tube 2 may be lead, but
Lead alloy 1 consisting of 0.5 to 11% by weight of one or both of tin (Sn) and antimony (Sb) in terms of workability and mechanical strength, and the balance being lead.
3 is preferred. In the present invention, the reason why the composition of the lead alloy 13 is limited to the above range is as follows. Tin and antimony have the effect of increasing the mechanical strength of lead alloy 13 and making it easier to work with.These elements may be added alone or both may be added at the same time. good. If the total amount added is less than 0.5% by weight, mechanical strength will be poor, and if it exceeds 11% by weight, the structure will become brittle and workability will decrease, which is not preferable. Note that if arsenic (As) is added in an amount of 0.3% by weight or less, the mechanical properties can be further improved without impairing processability. In addition, in order to improve the adhesion between the heat pipe 9 and the lead outer tube 2, the interference φ during lead processing, that is, the difference between the outer diameter d 1 of the heat pipe 9 and the inner diameter d 2 of the lead outer tube 2 in the empty state is determined. It is preferable to adjust the pouring ring (nipple) 10 of the leaded machine 12 and the die 11 so that the difference φ=d 1 -d 2 is in the range of 0.2 to 2.0 mm. If the interference φ is less than 0.2 mm, the adhesion between the heat pipe 9 and the lead outer tube 2 will deteriorate and the thermal resistance will increase, and if it exceeds 2.0 mm, internal stress will increase and the drawing process performed in the subsequent process will be difficult. Since cracks may sometimes occur, it is desirable that the interference φ be within the above range. Furthermore, during lead processing, the heat pipe 9 comes into contact with high-temperature lead or lead alloy 13 and is heated, but since the tip side is water-cooled by the shower 14, the entire body is cooled by the rapid heat transfer action of the heat pipe 9.
It is possible to prevent the heat pipe 9 from bursting and from increasing the thermal resistance at the interface of the contact portion. Note that the cooling temperature in this case is preferably 100°C or less. As mentioned above, the lead outer tube 2 is attached to the outer periphery of the heat pipe 9.
After coating the heat pipe with lead, as shown in FIG. 11, it is mounted on a turntable and rotated, while pressing the spatula 15 against the portion of the lead outer tube 2 that protrudes from both ends of the heat pipe 9, and the circular cap 4 side is A drawing process is performed so that it comes into close contact with this, and a drawing process is performed so that an air layer 16 is formed on the side of the cap 6 having the injection tube 5. Next, the small holes 17 formed at both ends of the lead outer tube 2 by this drawing process are sealed by melting with a burner or by brazing to complete the leaded heat pipe 8 as shown in FIG. . The lead-covered heat pipe 8 thus obtained is entirely covered with the lead outer tube 2, and both ends of the heat pipe 9 are not exposed, so there is no corrosion from this part and a long service life can be achieved. In addition, since the air layer 16 is formed in the sealed injection capillary tube 5, this portion can be protected from external impact. Note that the present invention provides a lead outer tube 2 as shown in FIG.
After drawing to form air layers 16, 16 at both ends of the leaded heat shield, the fins 18 are formed integrally with the outer tube 2 by rolling through a roller die with threaded grooves. It may also be pipe 8. Next, specific examples of the present invention will be described. Example A copper tube with an outer diameter of 32 mmφ, a wall thickness of 1.5 mm, and a length of 2 m is used as the inner tube 1. A circular copper cap 4 is brazed to one open end of the inner tube 1, and an injection thin tube 5 is provided at the other open end. After brazing the copper cap 6, the inside is degassed and water is filled in as the working fluid 7.
Thereafter, the injection tube 5 was sealed off, and a heat pipe 9 as shown in FIG. 8 was assembled. Next, this heat pipe 9 is passed through a lead-covered machine 12 as shown in FIG. Tube 2 was formed. Next, both ends of the lead outer tube 2 are drawn using an inner hemispherical die, and the formed small holes 17, 17 are heated with an oxygen-hydrogen burner to melt and seal, forming a lead-covered heat pipe as shown in FIG. 8 was manufactured. The leaded heat pipe 8 obtained in this way is
A total of 100 heat pipes were arranged in 10 rows and 10 stages to assemble a heat pipe heat exchanger. The endothermic side of this heat exchanger is connected to heavy oil combustion waste gas ( SO2 300ppm, moisture 10%, sulfuric acid dew point 127).
The heat dissipation side was placed inside a duct through which outside air (25°C) flows, and waste heat was recovered. In this case, the inlet and outlet temperatures of the waste gas, the amount of recovered heat, and the surface temperature of the leaded heat pipe 8 were determined for one year under the conditions shown in Table 2 for each heat exchanger No. 1 to No. 4 above. Waste heat was recovered. As shown in Table 2, the surface temperature of the leaded heat pipe 8 was partially lower than the sulfuric acid dew point, but no corrosion was observed on the surface. Note that the heat exchanger No. 4 assembled using the lead-covered heat pipe 8 without water cooling had a slight decrease in performance. Comparative Example For comparison with the effects of the present invention, a leaded heat pipe 8 (No. 5) as shown in FIG. 10 in which both ends of the lead outer tube 2 are not sealed, and a lead outer tube 2 as shown in FIG. 8 were formed. A heat exchanger was assembled using each of the heat pipes 9 (No. 6) that had not been used, and waste heat recovery was performed in the same manner as in the above example. As shown in Table 2, this result shows that the lead outer tube 2
No. 5, in which the ends of the heat pipe were not sealed, corroded on both ends, and after about three months, a through hole was formed in one-third of the leaded heat pipe 8, and the operation stopped.
In addition, the heat pipe No. 6 that uses the heat pipe 9 without the lead outer tube 2 takes about one-third of the total heat in about one month.
A through hole was formed in the hole and the operation stopped.

【表】【table】

【表】 以上説明した如く、本発明に係わる被鉛ヒート
パイプの製造方法によれば、ヒートパイプの外周
に溶融状態の鉛または鉛合金を被覆固化させた
後、この鉛外管の両端を絞り加工して密閉するの
で、極めて作業性に優れていると共に、端部の完
全な被鉛が可能となり、耐硫酸露点腐食性に優
れ、これを用いて組立てたヒートパイプ式熱交換
器の特性の向上と長寿命化を図ることができるな
ど顕著な効果を有するものである。
[Table] As explained above, according to the method for manufacturing a leaded heat pipe according to the present invention, after the outer periphery of the heat pipe is coated with molten lead or lead alloy and solidified, both ends of the leaded outer pipe are squeezed. Since it is processed and sealed, it is extremely easy to work with, and the ends can be completely leaded, and it has excellent sulfuric acid dew point corrosion resistance. It has remarkable effects such as being able to improve performance and extend life.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図乃至第5図は従来方法により被鉛ヒート
パイプを製造する方法を工程に従つて順次示す断
面図、第6図乃至第12図は本発明方法により被
鉛ヒートパイプを製造する方法を工程に従つて順
次示す断面図、第13図は転造によりフインを形
成した被鉛ヒートパイプの断面図である。 1……内管、2……外管、3……被鉛二重管、
4,6……キヤツプ、5……注入細管、7……作
動液、8……被鉛ヒートパイプ、9……ヒートパ
イプ、10……注湯リング(ニツピル)、11…
…ダイス、12……被鉛機、14……シヤワー、
15……へら、16……空気層、17……小孔、
18……フイン。
FIGS. 1 to 5 are cross-sectional views sequentially showing a method for manufacturing a leaded heat pipe according to the conventional method, and FIGS. 6 to 12 are sectional views showing a method for manufacturing a leaded heat pipe by the method of the present invention. FIG. 13 is a cross-sectional view of a lead-covered heat pipe in which fins are formed by rolling. 1...Inner pipe, 2...Outer pipe, 3...Leaded double pipe,
4, 6...Cap, 5...Injection tube, 7...Working fluid, 8...Leaded heat pipe, 9...Heat pipe, 10...Pouring ring (Nitsupil), 11...
...Dice, 12...Leaded machine, 14...Shower,
15... spatula, 16... air layer, 17... small hole,
18...Fin.

Claims (1)

【特許請求の範囲】 1 注湯リング(ニツプル)とダイスを組合せた
被鉛機に、内管となるヒートパイプを通して、こ
の外周に半溶融状態の鉛または鉛合金を、その両
端が前記ヒートパイプより突出するように被覆固
化した後、形成された鉛外管の突出した両端部を
絞り加工して密閉することを特徴とする被鉛ヒー
トパイプの製造方法。 2 被鉛機出口側のヒートパイプを冷却しなが
ら、鉛または鉛合金を被覆固化することを特徴と
する特許請求の範囲第1項記載の被鉛ヒートパイ
プの製造方法。 3 内管となるヒートパイプの外径と、鉛外管の
内径との締め代が0.2〜2.0mmとなるように鉛また
は鉛合金を被覆固化することを特徴とする特許請
求の範囲第1項記載の被鉛ヒートパイプの製造方
法。 4 鉛外管の材料として錫およびアンチモンの何
れか1種または両種を合計で0.5〜11重量%、残
部鉛からなる鉛合金を用いたことを特徴とする特
許請求の範囲第1項記載の被鉛ヒートパイプの製
造方法。
[Scope of Claims] 1. A heat pipe serving as an inner tube is passed through a lead-covered machine that combines a pouring ring (nipple) and a die, and semi-molten lead or lead alloy is passed around the outer circumference of the heat pipe, and both ends thereof are connected to the heat pipe. A method for producing a leaded heat pipe, which comprises solidifying the coating so that it protrudes more, and then drawing and sealing both protruding ends of the formed lead outer tube. 2. The method for manufacturing a leaded heat pipe according to claim 1, wherein the lead or lead alloy is coated and solidified while cooling the heat pipe on the outlet side of the leaded machine. 3. Claim 1, characterized in that lead or a lead alloy is coated and solidified so that the interference between the outer diameter of the heat pipe serving as the inner pipe and the inner diameter of the lead outer pipe is 0.2 to 2.0 mm. A method of manufacturing the described leaded heat pipe. 4. A lead alloy according to claim 1, characterized in that the lead outer tube is made of a lead alloy consisting of a total of 0.5 to 11% by weight of either one or both of tin and antimony, and the balance being lead. Method of manufacturing leaded heat pipes.
JP1329780A 1980-02-06 1980-02-06 Manufacture of lead-covered heat pipe Granted JPS56110885A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1329780A JPS56110885A (en) 1980-02-06 1980-02-06 Manufacture of lead-covered heat pipe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1329780A JPS56110885A (en) 1980-02-06 1980-02-06 Manufacture of lead-covered heat pipe

Publications (2)

Publication Number Publication Date
JPS56110885A JPS56110885A (en) 1981-09-02
JPS6132598B2 true JPS6132598B2 (en) 1986-07-28

Family

ID=11829243

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1329780A Granted JPS56110885A (en) 1980-02-06 1980-02-06 Manufacture of lead-covered heat pipe

Country Status (1)

Country Link
JP (1) JPS56110885A (en)

Also Published As

Publication number Publication date
JPS56110885A (en) 1981-09-02

Similar Documents

Publication Publication Date Title
CN105940129B (en) Aluminum alloy heat exchanger
US5692300A (en) Method for forming aluminum tubes and brazing a lockseam formed therein
JPH05156494A (en) Welded pipe having excellent corrosion resistance on inside surface and production thereof
JPS6158756B2 (en)
US3426420A (en) Method of making brazed composite tubing for heat exchangers used in corrosive fluids
JPS6132598B2 (en)
JPS6011222B2 (en) Heat exchanger and its manufacturing method
CN1011538B (en) Heat pipe
JPH0371973A (en) Method for brazing tubes
JPS6136155B2 (en)
US4873127A (en) Method of making heat transfer tube
US2147709A (en) Tinned copper radiator fin
JP2539229B2 (en) Heat exchanger manufacturing method
JPS6136156B2 (en)
JP2006510866A (en) COOLING ELEMENT AND MANUFACTURING METHOD THEREOF
JP3092843B2 (en) Flux for double layer centrifugal casting
SU921739A1 (en) Method of producing solder band by continuous casting
BRPI0508751B1 (en) Mold for Cast Iron Casting and Process of Making an Object by Casting
JPS5849898A (en) Manufacture of heat exchanger
JPS60137566A (en) Production of heat exchanging tube provided with aluminum fin
JPS6258821B2 (en)
JPH0357342Y2 (en)
JPH037874B2 (en)
JPS5812862B2 (en) composite pipe
JP3222391B2 (en) Cladded steel tubes for boilers and heat exchangers