JPS6132550B2 - - Google Patents
Info
- Publication number
- JPS6132550B2 JPS6132550B2 JP9793878A JP9793878A JPS6132550B2 JP S6132550 B2 JPS6132550 B2 JP S6132550B2 JP 9793878 A JP9793878 A JP 9793878A JP 9793878 A JP9793878 A JP 9793878A JP S6132550 B2 JPS6132550 B2 JP S6132550B2
- Authority
- JP
- Japan
- Prior art keywords
- sodium
- piping
- coating
- coating material
- pipe
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 239000011734 sodium Substances 0.000 claims description 130
- 229910052708 sodium Inorganic materials 0.000 claims description 128
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 claims description 127
- 239000000463 material Substances 0.000 claims description 102
- 238000000576 coating method Methods 0.000 claims description 60
- 239000011248 coating agent Substances 0.000 claims description 50
- 229910052751 metal Inorganic materials 0.000 claims description 13
- 239000002184 metal Substances 0.000 claims description 13
- 239000011261 inert gas Substances 0.000 claims description 10
- 238000000465 moulding Methods 0.000 claims description 9
- 238000010276 construction Methods 0.000 claims description 8
- 239000000853 adhesive Substances 0.000 claims description 7
- 230000001070 adhesive effect Effects 0.000 claims description 7
- 229910001220 stainless steel Inorganic materials 0.000 claims description 5
- 238000000034 method Methods 0.000 claims description 4
- 239000011230 binding agent Substances 0.000 claims description 3
- 239000003795 chemical substances by application Substances 0.000 claims description 2
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 15
- 239000000203 mixture Substances 0.000 description 14
- 239000004115 Sodium Silicate Substances 0.000 description 12
- 239000012774 insulation material Substances 0.000 description 12
- NTHWMYGWWRZVTN-UHFFFAOYSA-N sodium silicate Chemical compound [Na+].[Na+].[O-][Si]([O-])=O NTHWMYGWWRZVTN-UHFFFAOYSA-N 0.000 description 12
- 229910052911 sodium silicate Inorganic materials 0.000 description 12
- 239000011810 insulating material Substances 0.000 description 11
- 239000000835 fiber Substances 0.000 description 6
- 238000010586 diagram Methods 0.000 description 5
- 238000009472 formulation Methods 0.000 description 5
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 4
- 238000001035 drying Methods 0.000 description 4
- 239000001301 oxygen Substances 0.000 description 4
- 229910052760 oxygen Inorganic materials 0.000 description 4
- 239000000843 powder Substances 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- 238000009413 insulation Methods 0.000 description 3
- 238000002156 mixing Methods 0.000 description 3
- 239000000047 product Substances 0.000 description 3
- 229910000029 sodium carbonate Inorganic materials 0.000 description 3
- XOOUIPVCVHRTMJ-UHFFFAOYSA-L zinc stearate Chemical compound [Zn+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O XOOUIPVCVHRTMJ-UHFFFAOYSA-L 0.000 description 3
- 235000021355 Stearic acid Nutrition 0.000 description 2
- 229910052783 alkali metal Inorganic materials 0.000 description 2
- -1 alkali metal salt Chemical class 0.000 description 2
- 238000002485 combustion reaction Methods 0.000 description 2
- MQRJBSHKWOFOGF-UHFFFAOYSA-L disodium;carbonate;hydrate Chemical compound O.[Na+].[Na+].[O-]C([O-])=O MQRJBSHKWOFOGF-UHFFFAOYSA-L 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 239000011499 joint compound Substances 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 239000002075 main ingredient Substances 0.000 description 2
- QIQXTHQIDYTFRH-UHFFFAOYSA-N octadecanoic acid Chemical compound CCCCCCCCCCCCCCCCCC(O)=O QIQXTHQIDYTFRH-UHFFFAOYSA-N 0.000 description 2
- OQCDKBAXFALNLD-UHFFFAOYSA-N octadecanoic acid Natural products CCCCCCCC(C)CCCCCCCCC(O)=O OQCDKBAXFALNLD-UHFFFAOYSA-N 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 230000035515 penetration Effects 0.000 description 2
- 239000012779 reinforcing material Substances 0.000 description 2
- 150000003839 salts Chemical class 0.000 description 2
- 239000000779 smoke Substances 0.000 description 2
- 239000000344 soap Substances 0.000 description 2
- KKCBUQHMOMHUOY-UHFFFAOYSA-N sodium oxide Chemical compound [O-2].[Na+].[Na+] KKCBUQHMOMHUOY-UHFFFAOYSA-N 0.000 description 2
- 229910001948 sodium oxide Inorganic materials 0.000 description 2
- 239000008117 stearic acid Substances 0.000 description 2
- XNMARPWJSQWVGC-UHFFFAOYSA-N 2-[3-[11-[[5-(dimethylamino)naphthalen-1-yl]sulfonylamino]undecanoylamino]propoxy]-4-[(5,5,8,8-tetramethyl-6,7-dihydronaphthalene-2-carbonyl)amino]benzoic acid Chemical compound CC1(C)CCC(C)(C)C=2C1=CC(C(=O)NC=1C=C(C(=CC=1)C(O)=O)OCCCNC(=O)CCCCCCCCCCNS(=O)(=O)C1=C3C=CC=C(C3=CC=C1)N(C)C)=CC=2 XNMARPWJSQWVGC-UHFFFAOYSA-N 0.000 description 1
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 1
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- 150000008064 anhydrides Chemical class 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 239000010425 asbestos Substances 0.000 description 1
- ODINCKMPIJJUCX-UHFFFAOYSA-N calcium oxide Inorganic materials [Ca]=O ODINCKMPIJJUCX-UHFFFAOYSA-N 0.000 description 1
- 239000000378 calcium silicate Substances 0.000 description 1
- 229910052918 calcium silicate Inorganic materials 0.000 description 1
- OYACROKNLOSFPA-UHFFFAOYSA-N calcium;dioxido(oxo)silane Chemical compound [Ca+2].[O-][Si]([O-])=O OYACROKNLOSFPA-UHFFFAOYSA-N 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 239000002826 coolant Substances 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 150000004677 hydrates Chemical class 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 239000011490 mineral wool Substances 0.000 description 1
- 239000006082 mold release agent Substances 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 239000012466 permeate Substances 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 229910052895 riebeckite Inorganic materials 0.000 description 1
- RMAQACBXLXPBSY-UHFFFAOYSA-N silicic acid Chemical compound O[Si](O)(O)O RMAQACBXLXPBSY-UHFFFAOYSA-N 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- 150000003385 sodium Chemical class 0.000 description 1
- 239000001488 sodium phosphate Substances 0.000 description 1
- 229910000162 sodium phosphate Inorganic materials 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- RYFMWSXOAZQYPI-UHFFFAOYSA-K trisodium phosphate Chemical compound [Na+].[Na+].[Na+].[O-]P([O-])([O-])=O RYFMWSXOAZQYPI-UHFFFAOYSA-K 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
- 239000003643 water by type Substances 0.000 description 1
- 210000002268 wool Anatomy 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16L—PIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
- F16L59/00—Thermal insulation in general
- F16L59/02—Shape or form of insulating materials, with or without coverings integral with the insulating materials
- F16L59/021—Shape or form of insulating materials, with or without coverings integral with the insulating materials comprising a single piece or sleeve, e.g. split sleeve, two half sleeves
- F16L59/022—Shape or form of insulating materials, with or without coverings integral with the insulating materials comprising a single piece or sleeve, e.g. split sleeve, two half sleeves with a single slit
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16L—PIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
- F16L58/00—Protection of pipes or pipe fittings against corrosion or incrustation
- F16L58/02—Protection of pipes or pipe fittings against corrosion or incrustation by means of internal or external coatings
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16L—PIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
- F16L59/00—Thermal insulation in general
- F16L59/02—Shape or form of insulating materials, with or without coverings integral with the insulating materials
- F16L59/021—Shape or form of insulating materials, with or without coverings integral with the insulating materials comprising a single piece or sleeve, e.g. split sleeve, two half sleeves
- F16L59/024—Shape or form of insulating materials, with or without coverings integral with the insulating materials comprising a single piece or sleeve, e.g. split sleeve, two half sleeves composed of two half sleeves
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17D—PIPE-LINE SYSTEMS; PIPE-LINES
- F17D5/00—Protection or supervision of installations
- F17D5/02—Preventing, monitoring, or locating loss
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Thermal Insulation (AREA)
- Protection Of Pipes Against Damage, Friction, And Corrosion (AREA)
- Application Of Or Painting With Fluid Materials (AREA)
- Paints Or Removers (AREA)
Description
【発明の詳細な説明】
本発明は金属ナトリウムを冷却材とする高速増
殖炉ナトリウム配管用被覆工法に関するものであ
る。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a coating method for fast breeder reactor sodium piping using metallic sodium as a coolant.
従来、このナトリウム配管には保温材として石
綿保温材、ロツクウール保温材、バーライト保温
材、けい酸カルシウム保温材、セラミツクウール
などが使用されているが、当然のことながらこれ
らの保温材は通常プラント関係の熱設備用保温材
として開発された材料であり、断熱材として優れ
た特性を有している。即ち、耐熱性があり、熱伝
導率が小さい材料である。 Conventionally, asbestos insulation materials, rock wool insulation materials, barlite insulation materials, calcium silicate insulation materials, ceramic wool, etc. have been used as insulation materials for this sodium piping, but of course these insulation materials are usually used in plants. This material was developed as a heat insulating material for related thermal equipment, and has excellent properties as a heat insulating material. That is, it is a material that is heat resistant and has low thermal conductivity.
しかしながら、これらの保温材は大気中におい
て高温の金属ナトリウムと接触すると激しく反応
し、白煙を出しながら燃焼して、保温材を破壊す
る。従つて、これらの保温材をナトリウム配管に
使用した場合、万一、ナトリウムが漏洩した際は
直ちに、ナトリウムと反応して火災を起し、保温
材を破壊して流れ出し、大量の白煙を出して燃焼
をつづけ危険な状態となる。そこでナトリウム配
管を二重管構造とし、その間を不活性ガス雰囲気
とする方法や、保温材を施工した配管の下部に
“トヒ”や“受皿”を配置し、万一、ナトリウム
が漏洩し、流れ出た場合でも、これを“タメマ
ス”に誘導し、そこで集中的に消火させる方法が
検討された例もあるが、前者では、施工および経
済性の面で必ずしも有利でなく、後者では上述の
ような保温材との反応を許し、保温材の外側にあ
る“トヒ”や受皿において、ナトリウムあるいは
化合物が堆積してタメマスなどへの流動をさまた
げる可能性もあるなどの問題を伴うことで完全と
は言いがたい。 However, when these insulation materials come into contact with high-temperature metallic sodium in the atmosphere, they react violently and burn while emitting white smoke, destroying the insulation materials. Therefore, if these insulation materials are used for sodium piping, in the event that sodium leaks, it will immediately react with the sodium and cause a fire, destroying the insulation material and flowing out, producing a large amount of white smoke. The fuel will continue to burn, creating a dangerous situation. Therefore, we have adopted methods such as creating a double pipe structure for the sodium piping and creating an inert gas atmosphere between them, and placing a "tohi" or "receptacle" at the bottom of the piping covered with heat insulating material, in the event that sodium leaks and flows out. In some cases, methods have been considered for directing the fire to a "tamer mass" and centrally extinguishing it there, but the former is not necessarily advantageous in terms of construction and economy, and the latter is It is far from perfect as it involves problems such as allowing reactions with the heat insulating material and causing sodium or other compounds to accumulate on the "tohi" or saucer outside the heat insulating material, which may obstruct the flow to the tame mass. It's tough.
そこで、本発明の目的は、ナトリウム配管か
ら、万一ナトリウムが漏洩した場合でもそのナト
リウムと反応することなく且つ酸化反応し、燃焼
中のナトリウムに対しても反応することのない被
覆材を使用することによつて火災を防止し、ある
いは、そのナトリウムを安全に“タメマス”など
へ誘導することができる。ナトリウム配管用被覆
工法を提供するものである。 Therefore, the purpose of the present invention is to use a coating material that does not react with sodium even if sodium leaks from sodium piping, does not undergo an oxidation reaction, and does not react with burning sodium. By doing so, it is possible to prevent fires or to safely guide the sodium to ``Tamemas''. The present invention provides a coating method for sodium piping.
衆知の通り、金属ナトリウムは化学的に活性に
富み、大気雰囲気中において、酸素や水をはじめ
殆んどの物質と反応して燃焼する。例えば、前述
の保温材は、その主成分がSiO2、CaO、Al2O3な
どであり、大気雰囲気中で高温(約600℃)の金
属ナトリウムと激しく反応して燃焼する。 As is well known, metallic sodium is chemically active and burns by reacting with most substances, including oxygen and water, in the atmosphere. For example, the above-mentioned heat insulating material has SiO 2 , CaO, Al 2 O 3 and the like as its main components, and burns by violently reacting with high temperature (approximately 600° C.) metallic sodium in the atmosphere.
従つて、本発明に使用する被覆材は、大気雰囲
気中で、高温の金属ナトリウムと反応しない特性
を有することが不可欠であり、このような被覆材
の一例として、次の様なナトリウム配管用被覆材
がある。 Therefore, it is essential that the coating material used in the present invention has the property of not reacting with high-temperature metallic sodium in the atmosphere. Examples of such coating materials include the following coatings for sodium piping. There is material.
即ち、耐ナトリウム性のあるアルカリ金属塩と
珪酸又はリン酸ナトリウムとを湿式状態で混合
し、該混合物を加圧成型後、乾燥せしめた被覆材
であり、また必要に応じてこの混合物に金属石け
んを加えて加圧成型するか、或は、さらに補強材
を加えて加圧成型、乾燥せしめた被覆材である。 In other words, it is a coating material made by mixing a sodium-resistant alkali metal salt and silicic acid or sodium phosphate in a wet state, molding the mixture under pressure, and then drying it, and if necessary, adding metal soap to this mixture. It is a covering material that is pressure-molded with the addition of a reinforcing material, or that is pressure-molded with a reinforcing material and dried.
耐ナトリウム性のあるアルカリ金属塩は約800
℃までの金属ナトリウムに耐え得るもので、代表
的な配合例は次の通りである。 Approximately 800 sodium-resistant alkali metal salts
It can withstand metallic sodium up to ℃, and typical formulation examples are as follows.
無水炭酸ナトリウム 250〜300部
ステアリン酸金属塩 1〜10部
ステンレスフアイバ糸または線 1〜10部
珪酸ナトリウム 150〜250部
主成分である無水炭酸ナトリウムは水分を吸収
して炭酸ナトリウムの水和物となり、その水和物
にはNa2CO3・H2O Na2CO3・7H2O
Na2CO3・10H2Oがある。Anhydrous sodium carbonate 250-300 parts Stearic acid metal salt 1-10 parts Stainless fiber thread or wire 1-10 parts Sodium silicate 150-250 parts Anhydrous sodium carbonate, the main ingredient, absorbs water and becomes sodium carbonate hydrate. , its hydrates include Na 2 CO 3 .H 2 O Na 2 CO 3 .7H 2 O Na 2 CO 3 .10H 2 O.
これらの結晶水は100℃以下の温度で容易に分
解し、無水炭酸ナトリウムになることから、無水
の炭酸ナトリウムの代りに炭酸ナトリウムの水和
物を使用してもよい。 Since these waters of crystallization easily decompose at temperatures below 100°C and become anhydrous sodium carbonate, a hydrate of sodium carbonate may be used instead of anhydrous sodium carbonate.
粘結剤として使用する珪酸ナトリウムには、粉
末状と液状がある。無水炭酸ナトリウムを使用す
る場合は、液状の珪酸ナトリウムを水で薄めて使
用すればよいが、前記のような炭酸ナトリウムの
水和物を使用する場合は粉末、珪酸ナトリウムを
事前に混合しておき、成型時に、更に珪酸ナトリ
ウム水溶液を使用し加圧成型するとよい。 Sodium silicate used as a binder comes in powder form and liquid form. When using anhydrous sodium carbonate, it is sufficient to dilute liquid sodium silicate with water, but when using hydrated sodium carbonate as described above, mix powder and sodium silicate in advance. At the time of molding, it is preferable to further use a sodium silicate aqueous solution and perform pressure molding.
ステンレスフアイバ糸は、ステンレスフアイバ
(約12μ)を集束したものであり、成型体の加圧
成型および脱型を容易にし、更に成型体の強度を
増すと共に、ソリを防止し、且つ寸法安定性に有
効である。このステンレスフアイバ糸は組成によ
りSUS304、SUS310S、SUS316Lなどがあるが、
中でもSUS310Sが耐熱性があり、約600℃に耐え
られるほか、同材質のステンレス線(太さ約
0.4m/mφ)も使用できる。 Stainless fiber thread is a bundle of stainless fibers (approximately 12μ) that facilitates pressure molding and demolding of the molded product, increases the strength of the molded product, prevents warping, and improves dimensional stability. It is valid. This stainless fiber thread is available in SUS304, SUS310S, SUS316L, etc. depending on its composition.
Among them, SUS310S is heat resistant and can withstand temperatures of approximately 600°C.
0.4m/mφ) can also be used.
金属石けんであるステアリン酸金属塩は、脱型
の際の離型剤として、作用し、また約100〜200℃
で溶融し、被膜を形成して、金属ナトリウムの浸
透を防ぐ効果がある。 Stearic acid metal salt, which is a metal soap, acts as a mold release agent during demolding, and also works at temperatures of about 100 to 200℃.
It melts and forms a film, which has the effect of preventing the penetration of metallic sodium.
以上の配合素材を混合し、該混合物が全体に湿
式状態で加圧成型し、乾燥することによつて得ら
れた被覆材である。 This is a coating material obtained by mixing the above compounded materials, press-molding the mixture as a whole in a wet state, and drying it.
具体的な配合例は次の通りである。 Specific formulation examples are as follows.
配合例 1
軽質無水炭酸ナトリウム 300部
ステアリン酸亜鉛 6部
ステンレスフアイバ糸
(SUS310、長さ3〜50m/m) 5部
珪酸ナトリウム3号(15%濃度) 200部
軽質無水炭酸ナトリウムにステアリン酸亜鉛を
事前によく混合し、これに15%濃度の珪酸ナトリ
ウムおよび、ステンレスフアイバ糸を加えて混合
する。この場合、無水炭酸ナトリウムは、珪酸ナ
トリウム中の水分を吸収し、長時間混合すると水
和物となり、成型性が難かしくなるので、短時間
で混合し、直ちに型枠に入れて30〜40Kg/cm2で加
圧成型する。成型後、脱型し、この成型体を徐熱
し、約105℃で加熱して無水物になるまで乾燥さ
せることにより得られた被覆材である。Combination example 1 Light anhydrous sodium carbonate 300 parts Zinc stearate 6 parts Stainless steel fiber thread (SUS310, length 3-50m/m) 5 parts Sodium silicate No. 3 (15% concentration) 200 parts Light anhydrous sodium carbonate and zinc stearate Mix well in advance, add 15% concentration sodium silicate and stainless fiber thread, and mix. In this case, the anhydrous sodium carbonate absorbs the water in the sodium silicate and becomes a hydrate when mixed for a long time, making moldability difficult. Pressure mold in cm2 . This is a coating material obtained by removing the mold after molding, slow heating the molded product, heating it at about 105°C, and drying it until it becomes an anhydride.
配合例 2
軽質無水炭酸ナトリウム 250部
炭酸ナトリウム水和物
(Na2CO3・10H2O) 150部
ステアリン酸亜鉛 6部
ステンレス線
(径0.4m/m、長さ10〜50m/m) 5部
粉末、珪酸ナトリウム3号 10部
珪酸ナトリウム3号(15%濃度) 200部
製法は配合例1とほぼ同様で、先づ粉末分を事
前によく混合し、これに15%濃度の珪酸ナトリウ
ム、およびステンレス線を加えて混合し、該混合
物を同様に加圧成型後乾燥せしめて得られた被覆
材である。Formulation example 2 Light anhydrous sodium carbonate 250 parts Sodium carbonate hydrate (Na 2 CO 3・10H 2 O) 150 parts Zinc stearate 6 parts Stainless steel wire (diameter 0.4 m/m, length 10 to 50 m/m) 5 parts Powder, Sodium Silicate No. 3 10 parts Sodium Silicate No. 3 (15% concentration) 200 parts The manufacturing method is almost the same as in Formulation Example 1. First, the powder components are mixed well in advance, and then 15% concentration of sodium silicate and This is a coating material obtained by adding a stainless steel wire and mixing the mixture, press-molding the mixture in the same manner, and then drying it.
このようにして得られたナトリウム配管用被覆
材は、大気雰囲気中において、その被覆材の表面
に約600℃の金属ナトリウムを注いで耐ナトリウ
ム性のあることが確認されており、被覆材の厚さ
方向の浸透もないことが確認されている。即ち、
前記の被覆材は大気雰囲気中で、高温の金属ナト
リウムと反応することなく且つ酸化反応し、燃焼
中のナトリウムに対しても、反応することのない
特性を有しているほか、大略の物性は次の通りで
ある。 It has been confirmed that the sodium piping coating material obtained in this way has sodium resistance by pouring metallic sodium onto the surface of the coating material at approximately 600°C in an atmospheric atmosphere, and the coating material thickness It has been confirmed that there is no penetration in the horizontal direction. That is,
The above-mentioned coating material does not react with high-temperature metallic sodium in the atmosphere, undergoes an oxidation reaction, and does not react with burning sodium, and its general physical properties are as follows: It is as follows.
〇外観 白色固形状
〇密度 800Kg/m3〜1000Kg/m3
〇曲げ強度 20Kg/cm2〜30Kg/cm2
〇熱伝導率 0.1Kcal/mn℃
〜0.2Kcal/mh℃
〇施工性 “ノコ”作業可
本発明は上記のような大気雰囲気中で高温の金
属ナトリウムと反応しない被覆材を使用すること
を特徴とするナトリウム配管用被覆工法であり、
このような耐ナトリウム性のある被覆材をナトリ
ウム配管に取り付けることによつて万一、高温の
金属ナトリウムが漏洩した場合でも被覆材と反応
することがないので前述のような一般の保温材を
使用している場合とは異なり、被覆材の外部、即
ち、大気へ漏洩したり、あるいは火災を発生させ
ることなく、漏洩ナトリウムは、ナトリウム配管
の外周面と被覆材内周面との間隙に酸素が存在す
れば、そこで燃焼する。〇Appearance White solid 〇Density 800Kg/m 3 ~1000Kg/m 3 〇Bending strength 20Kg/cm 2 ~30Kg/cm 2 〇Thermal conductivity 0.1Kcal/mn℃ 〜0.2Kcal/mh℃ 〇Workability “Saw” work Possible The present invention is a coating method for sodium piping characterized by using a coating material that does not react with high-temperature metallic sodium in the atmospheric atmosphere as described above,
By attaching such a sodium-resistant coating material to the sodium piping, even if high-temperature metallic sodium leaks, it will not react with the coating material, so general insulation materials such as those mentioned above can be used. Unlike in the case where the sodium is exposed to the outside of the sheathing material, without leaking to the atmosphere or causing a fire, the leaked sodium is released into the gap between the outer circumferential surface of the sodium pipe and the inner circumferential surface of the sheathing material. If it exists, it will burn there.
この燃焼は、酸素が消耗されるまで続くか、あ
るいは金属ナトリウムの漏洩が続く限り続き、燃
焼が終了した金属ナトリウムはナトリウム酸化物
となつて堆積する。このように漏洩ナトリウム
は、被覆材と反応せず、浸透もしないことから、
金属ナトリウム自身が酸素の存在によつて被覆材
の内周面で燃焼するのみで外見的には何んの変化
もなく火災などを起す必配もない。従つて、漏洩
ナトリウムが少量の場合には、ただ単にナトリウ
ム配管に、この種の耐ナトリウム性のある被覆材
を取り付けておくのみでよいが、しかし金属ナト
リウムが高圧で漏洩した場合や、漏洩量が多量の
場合には、金属ナトリウムが被覆材と反応しない
ことから配管の勾配に沿つて流れていく。従つて
このような場合には被覆材の内面、即ち、ナトリ
ウム配管に接触する面にナトリウム配管のあらゆ
る位置からナトリウムが漏洩した場合でも容易に
底部に流れ出るよう数多くの溝を設けておき、更
に配管の底部に位置する被覆材には、配管の底部
の長さ方向に、漏洩ナトリウムの流路用の溝を設
けて使用するとよい。被覆材同志の継目には耐ナ
トリウム性のある接着目地剤を使用して接着させ
る。(この接着目地剤は一例として炭酸ナトリウ
ムと珪酸ナトリウムが主成分となつている耐熱性
無機質の耐ナトリウム性接着剤がある)このよう
に金属ナトリウムの漏洩量が多い場合や、高圧で
漏洩する場合には被覆材の内面に上記のような溝
を設けておくことにより、万一、ナトリウムが漏
洩した際は先づこの被覆材に接触するが、ナトリ
ウムを反応あるいは浸透しないことから、配管底
部の流路用の溝に流れ、酸素が存在すれば漏洩ナ
トリウムは燃焼し、配管の勾配に沿つて流れ、燃
焼したナトリウムはナトリウム酸化物となつて堆
積する。 This combustion continues until oxygen is consumed or as long as metallic sodium continues to leak, and the metallic sodium that has finished burning becomes sodium oxide and is deposited. In this way, leaked sodium does not react with or penetrate the coating material, so
The metallic sodium itself burns on the inner peripheral surface of the coating material due to the presence of oxygen, so there is no external change and there is no need to cause a fire. Therefore, if the amount of leaked sodium is small, it is sufficient to simply install this kind of sodium-resistant coating on the sodium piping, but if metallic sodium leaks under high pressure or the amount of leakage If there is a large amount of metal sodium, it will flow along the slope of the piping because it will not react with the coating material. Therefore, in such cases, a number of grooves should be provided on the inner surface of the coating material, that is, the surface that comes into contact with the sodium piping, so that even if sodium leaks from any part of the sodium piping, it can easily flow to the bottom. The covering material located at the bottom of the pipe is preferably used with a groove for a flow path for leaked sodium in the length direction of the bottom of the pipe. A sodium-resistant adhesive joint compound is used to bond the joints between the covering materials. (An example of this adhesive joint agent is a heat-resistant inorganic sodium-resistant adhesive whose main ingredients are sodium carbonate and sodium silicate.) In cases where a large amount of metallic sodium leaks or leaks under high pressure, By providing the above-mentioned grooves on the inner surface of the sheathing material, in the event that sodium leaks, it will come into contact with the sheathing material first, but the sodium will not react or penetrate, so the grooves at the bottom of the pipe will If oxygen is present, the leaked sodium will be burned and flowed along the slope of the pipe, and the burned sodium will become sodium oxide and deposit.
従つて、その溝の周辺を不活性ガス雰囲気にす
ることにより、漏洩ナトリウムの燃焼を最小限に
して、流動性を保持することによつて配管の勾配
に沿い、安全に“タメマス”などに誘導すること
ができる。しかしながら、その溝の周辺を常に、
不活性ガス雰囲気とすることは、不経済であるこ
とから、ナトリウムの漏洩検知器との組み合わせ
により漏洩時にのみ、不活性ガスが供給できるよ
うな装置を設けておくことなどの補助手段と組み
合わせることが望ましい。 Therefore, by creating an inert gas atmosphere around the groove, the combustion of the leaked sodium is minimized, and by maintaining fluidity, it can be guided safely along the slope of the pipe to "Tamemasu" etc. can do. However, always around the groove,
Since it is uneconomical to create an inert gas atmosphere, it should be combined with auxiliary measures such as installing a device that can supply inert gas only in the event of a leak in combination with a sodium leak detector. is desirable.
更に、前述の如く、ナトリウムの温度が約600
℃であることから、配管の熱膨脹が大きく、被覆
材の継目の個所で隙間を生じる危険があり、その
場合は、その隙間から、漏洩ナトリウムが浸透し
ていくことが考えられ、従つて被覆材を2層以上
に継目をずらせて耐ナトリウム性のある接着目地
剤で接着させて施工するとより安全である。 Furthermore, as mentioned above, the temperature of sodium is about 600℃.
℃, the thermal expansion of the piping is large, and there is a risk of creating gaps at the seams of the sheathing material.In that case, it is thought that leaked sodium will permeate through those gaps, and the sheathing material It is safer to construct two or more layers with staggered seams and adhere them with a sodium-resistant adhesive joint compound.
また、耐ナトリウム性のある被覆材が前述のよ
うな密度および熱伝導率が大きい場合には、ナト
リウム配管の運転温度が約600℃であり、断熱性
からみた場合には、必要以上に厚い被覆材を必要
とすることから、その場合には、保温材と併用し
て複合体として使用する。この場合も、当然のこ
とであるが、ナトリウム配管の外表面に先づ耐ナ
トリウム性がある被覆材を使用し、その外層に前
述の無機質保温材を使用することによつて全体の
被覆厚さを薄くし、且つ軽量化することができ
る。最外層には、いづれの場合も、保温工事など
で一般に使用している外装材で外装する。 In addition, if the sodium-resistant coating material has a high density and thermal conductivity as mentioned above, the operating temperature of sodium piping is approximately 600℃, and from the standpoint of insulation, the coating material is thicker than necessary. In that case, it is used in combination with a heat insulating material as a composite material. In this case as well, it goes without saying that a sodium-resistant coating material is first used on the outer surface of the sodium pipe, and by using the above-mentioned inorganic heat insulating material as the outer layer, the overall coating thickness can be reduced. can be made thinner and lighter. In either case, the outermost layer is covered with an exterior material commonly used for heat insulation work.
次に本発明の実施例を図面により説明する。第
1図、第2図において、1は例えば高速増殖炉の
ナトリウム配管、2は上述の配合例にて縦割半円
筒状に成型した被覆材で、これをナトリウム配管
1に被覆するには、縦割半円筒状の被覆材2を互
いに向かい合わせた状態でナトリウム配管1に取
り付け、その被覆材2の相互の継目2aを耐ナト
リウム性のある接着目地材3で接着し、その外周
をステンレス線4にて緊縛する。この被覆材2を
順次ナトリウム配管1の長さ方向に連続して取り
付け各被覆材2の両端の継目2bを前記接着目地
材3で接着した後、被覆材2の外周をテープ状或
はシート状の外装材5で順次外装して行く。 Next, embodiments of the present invention will be described with reference to the drawings. In FIGS. 1 and 2, 1 is a sodium pipe of a fast breeder reactor, for example, and 2 is a covering material molded into a vertically divided semi-cylindrical shape using the above-mentioned formulation example. To cover the sodium pipe 1 with this material, The vertically split semi-cylindrical sheathing materials 2 are attached to the sodium pipe 1 while facing each other, and the joints 2a of the sheathing materials 2 are glued with a sodium-resistant adhesive joint material 3, and the outer periphery is covered with stainless steel wire. Bondage at 4. The coating materials 2 are successively installed in the length direction of the sodium pipe 1 and the joints 2b at both ends of each coating material 2 are adhered with the adhesive joint material 3, and then the outer periphery of the coating material 2 is wrapped in a tape or sheet shape. The exterior is sequentially covered with exterior material 5.
第3図、第4図はナトリウム配管1の底部と接
する被覆材2の内面に漏洩金属ナトリウムの誘導
用溝6を設けたもので、該誘導用溝6がナトリウ
ム配管1の底部に沿つて連続するよう夫々被覆材
2を取り付けて行く、この場合ナトリウム配管1
から金属ナトリウムが漏洩した場合、誘導用溝6
を伝つて下方の“タメマス”(図示せず)まで安
全に誘導できる。第5図、第6図は縦割半円筒状
の被覆材2を二層に取り付けたもので外側の半円
筒状の被覆材2の継目2bと内側の継目とをずら
せて夫々取り付け、また内側の被覆材2の両端部
と外側の被覆材2の両端部とをずらせて取り付け
るのが望ましい。このように各継目をずらすと内
側の被覆材2の継目から金属ナトリウムの漏洩を
さらに防止できる。 FIGS. 3 and 4 show grooves 6 for guiding leaked metal sodium provided on the inner surface of the covering material 2 that is in contact with the bottom of the sodium pipe 1. The grooves 6 for guiding leaked metal sodium are continuous along the bottom of the sodium pipe 1. In this case, attach the covering material 2 to each of the sodium pipes 1 so as to
If metallic sodium leaks from the guide groove 6
It can be safely guided to the "Tamemasu" (not shown) below. Figures 5 and 6 show two layers of vertically split semi-cylindrical sheathing material 2, which are attached with the seam 2b of the outer semi-cylindrical sheathing material 2 and the inner seam staggered, respectively. It is desirable that both ends of the outer sheathing material 2 and both ends of the outer sheathing material 2 be offset from each other. By shifting each joint in this manner, leakage of metallic sodium from the joints of the inner covering material 2 can be further prevented.
第7図、第8図は被覆材2を二層にし、さらに
ナトリウム配管1の底部と接する被覆材2の内面
に誘導用溝6を設けたものである。 In FIGS. 7 and 8, the coating material 2 is made of two layers, and a guide groove 6 is further provided on the inner surface of the coating material 2 that contacts the bottom of the sodium pipe 1.
第1図〜第8図に示した実施例においては外装
材5は通常の断熱工法と同様の外装材を用いる例
を示したが、第9〜第16図に示すように外装材
5として無機質の保温材5aとシート状或はテー
プ状の外装材5bとを用い、夫々被覆材2の外周
に保温材5aを取り付け、さらにその外周をシー
ト状或はテープ状の外装材5bにて外装すると保
温効果が高まる。 In the embodiments shown in FIGS. 1 to 8, the sheathing material 5 is an example in which the same sheathing material as in the ordinary insulation method is used, but as shown in FIGS. 9 to 16, the sheathing material 5 is made of Using a heat insulating material 5a and a sheet-like or tape-like exterior material 5b, the heat-insulating material 5a is attached to the outer periphery of each covering material 2, and the outer periphery is further covered with a sheet-like or tape-like exterior material 5b. Increases heat retention effect.
第17図は縦割半円筒状の被覆材2の内面に複
数の突起部7を形成し、該突起部7にて被覆材2
の内面に円周方向の溝8a及び長手方向の溝8b
を形成し、漏洩した金属ナトリウムが底部の金属
ナトリウムの誘導用溝6に集まるようにする。第
18図はナトリウム配管の垂直部分に取り付ける
被覆材2で、その内面に傾斜溝8cを形成し、漏
洩した金属ナトリウムが傾斜溝8cを伝つて誘導
用溝6に集まるようにする。尚第17図、第18
図に示した被覆材は第1〜16図に示した実施例
と同様に取り付けるものである。第19図は第1
7図に示した被覆材2の内面の溝8a,8bを利
用し、該溝8a,8bに金属ナトリウム保温用の
シーズヒータ9を設けたものである。第20図
は、上述の実施例にて被覆材2をナトリウム配管
1に被覆した後、被覆材2の内面の金属ナトリウ
ム誘導用溝6内に金属ナトリウムの漏洩探知器1
0を設け、また前記誘導用溝6に不活性ガス供給
管11を接続したもので金属ナトリウムの漏洩を
前記探知器10に探知し、その信号を制御装置1
2にてナトリウム配管1の上流側バルブ13を閉
じて金属ナトリウムの漏洩が長時間に及ぶことを
防止し、同時に不活性ガスの供給バルブ14を開
いて前記誘導用溝6内に不活性ガスを供給する。
漏洩した金属ナトリウムは誘導用溝6を伝つて下
方のタメマス15まで安全に誘導される。 In FIG. 17, a plurality of protrusions 7 are formed on the inner surface of the covering material 2 having a vertically divided semi-cylindrical shape.
A circumferential groove 8a and a longitudinal groove 8b on the inner surface of the
is formed so that the leaked metallic sodium collects in the metallic sodium guiding groove 6 at the bottom. FIG. 18 shows a covering material 2 to be attached to a vertical portion of a sodium pipe, and an inclined groove 8c is formed on its inner surface so that leaked metallic sodium flows along the inclined groove 8c and collects in the guiding groove 6. Furthermore, Figures 17 and 18
The sheathing shown in the figure is installed in the same manner as the embodiment shown in FIGS. 1-16. Figure 19 is the first
Grooves 8a and 8b on the inner surface of the coating material 2 shown in FIG. 7 are used, and sheathed heaters 9 for keeping metal sodium warm are provided in the grooves 8a and 8b. FIG. 20 shows a metal sodium leak detector 1 installed in the metal sodium guide groove 6 on the inner surface of the sheathing material 2 after the sodium piping 1 is coated with the sheathing material 2 in the above-described embodiment.
0, and an inert gas supply pipe 11 is connected to the guide groove 6 to detect leakage of metallic sodium to the detector 10, and send the signal to the controller 1.
2, close the upstream valve 13 of the sodium pipe 1 to prevent metal sodium from leaking for a long time, and at the same time open the inert gas supply valve 14 to supply inert gas into the guiding groove 6. supply
The leaked metallic sodium is safely guided down the guide groove 6 to the dam 15 below.
尚上述の実施例では被覆材を縦割半円筒状に成
型する例を示したが本発明はこの形状に限定され
るものではなく、ナトリウム配管の径に合わせて
被覆材の形状を円筒の3分割、4分割等にして被
覆することは勿論である。 In addition, in the above-mentioned embodiment, an example was shown in which the sheathing material is formed into a vertically divided semi-cylindrical shape, but the present invention is not limited to this shape, and the shape of the sheathing material is shaped into a cylindrical shape according to the diameter of the sodium pipe. Of course, it can be covered by dividing it into four parts, etc.
以上本発明は、ナトリウム配管に対し、耐ナト
リウム性のある被覆材を使用していることから、
万一、ナトリウム配管から高温の金属ナトリウム
が漏洩した場合でも従来のような一般の保温材を
使用している場合とは異なり、そのナトリウムが
被覆材と反応せず浸透もしないことから火災を発
生させることなく且つ漏洩ナトリウムを大気へ漏
洩させることのないナトリウム配管には不可欠な
被覆工法である。 As described above, since the present invention uses a sodium-resistant coating material for sodium piping,
In the unlikely event that high-temperature metallic sodium leaks from sodium piping, a fire will occur because the sodium will not react with or penetrate the coating material, unlike when conventional general insulation materials are used. This is an indispensable coating method for sodium piping, which prevents leakage and prevents leakage of sodium into the atmosphere.
第1図はこの発明の一実施例を示す図、第2図
は第1図の―線断面図、第3図は第1図の被
覆材内面に誘導用溝を設けた実施例を示す図、第
4図は第3図の―線断面図、第5図は第1図
の被覆材を複層にした例を示す図、第6図は第5
図の―線断面図、第7図は第3図の被覆材を
複層にした例を示す図、第8図は第7図の―
線断面図、第9図、第11図、第13図、第15
図は夫々第1図、第3図、第5図、第7図の被覆
材外周に保温材を取り付けた実施例を示す図、第
10図は第9図の―線断面図、第12図は第
11図のXII―XII線断面図、第14図は第13図の
―線断面図、第16図は第15図の
―線断面図、第17図は被覆材の内面形状を
示す斜視図、第18図は被覆材の他の内面形状を
示す斜視図、第19図は第17図の被覆材にシー
ズヒーターを取り付けた斜視図、第20図はナト
リウム配管に被覆材を施工し、さらに探知器及び
不活性ガス供給管を取り付けた例を示す図であ
る。
1……ナトリウム配管、2……被覆材、5……
外装材。
Fig. 1 is a diagram showing an embodiment of the present invention, Fig. 2 is a sectional view taken along the line - - in Fig. 1, and Fig. 3 is a diagram showing an embodiment in which guide grooves are provided on the inner surface of the covering material in Fig. 1. , Fig. 4 is a sectional view taken along the line - - in Fig. 3, Fig. 5 is a diagram showing an example in which the covering material in Fig. 1 is made into a multilayer, and Fig. 6 is a cross-sectional view taken along the line -5 in Fig. 3.
Figure 7 is a cross-sectional view taken along the line ``-'', Figure 7 is a diagram showing an example in which the coating material in Figure 3 is made of multiple layers, and Figure 8 is a sectional view taken along the line ``-'' in Figure 7.
Line sectional view, Figure 9, Figure 11, Figure 13, Figure 15
The figures show an example in which a heat insulating material is attached to the outer periphery of the covering material shown in Fig. 1, Fig. 3, Fig. 5, and Fig. 7, respectively. Fig. 10 is a sectional view taken along the line - - of Fig. 9, and Fig. 12. is a sectional view taken along the line XII--XII in Fig. 11, Fig. 14 is a sectional view taken along the - line in Fig. 13, Fig. 16 is a sectional view taken along the - line in Fig. 15, and Fig. 17 is a perspective view showing the inner shape of the covering material. Fig. 18 is a perspective view showing another inner surface shape of the coating material, Fig. 19 is a perspective view of the sheathed heater attached to the sheathing material of Fig. 17, and Fig. 20 is a perspective view of the coating material installed on the sodium pipe. It is a diagram showing an example in which a detector and an inert gas supply pipe are further attached. 1... Sodium piping, 2... Covering material, 5...
Exterior material.
Claims (1)
結剤を用いて成型した被覆材を、ナトリウム配管
に被覆し、その外周に外装材を外装してなるナト
リウム配管用被覆工法。 2 特許請求の範囲第1項に記載の工法において
被覆材を予め複数の縦割円筒状に成型し、該縦割
円筒状の被覆材をナトリウム配管の円周方向に順
次取り付けて被覆するナトリウム配管用被覆工
法。 3 特許請求の範囲第2項に記載の工法におい
て、円周方向に取り付けた縦割円筒状の被覆材の
継目を耐ナトリウム性の接着目地剤で接着し、さ
らに被覆材の外周をステンレス線にて緊縛して被
覆材をナトリウム配管に被覆したナトリウム配管
用被覆工法。 4 特許請求の範囲第1項に記載の工法において
被覆材をナトリウム配管の径方向に複数層でかつ
各層がその円周方向に複数割となる縦割円筒状に
成型し、その内層側の被覆材を順次円周方向に取
り付けた後、その外周に外層側の被覆材を順次取
り付けて複数層に被覆するナトリウム配管用被覆
方法。 5 特許請求の範囲第2項、第3項、第4項、い
ずれかに記載の工法においてナトリウム配管の底
部と接する被覆材の内面の軸方向に金属ナトリウ
ム誘導用溝を形成したナトリウム配管用被覆工
法。 6 特許請求の範囲第5項に記載の工法において
ナトリウム配管と接する被覆材の内面に誘導用溝
へ漏洩金属ナトリウムを導くための溝を形成した
ナトリウム配管用被覆工法。 7 耐ナトリウム性の材料を耐ナトリウム性の粘
結剤を用いて被覆材を成型すると共に該被覆材の
内面に金属ナトリウム誘導用溝を形成し、該被覆
材をナトリウム配管に被覆し、その外周に外装材
を外装し、さらに前記被覆材の内面に形成した誘
導用溝に金属ナトリウム探知器を臨ませると共に
不活性ガス供給管を接続し、前記探知器と不活性
ガス供給管の供給バルブとを制御装置にて連動せ
しめたナトリウム配管用被覆工法。 8 特許請求の範囲第7項に記載の工法におい
て、被覆材を予め複数の縦割円筒状に成型してナ
トリウム配管に被覆すると共にナトリウム配管の
底部に誘導用溝を位置せしめたナトリウム配管用
被覆工法。[Scope of Claims] 1. A coating method for sodium piping, in which sodium piping is coated with a coating material made of a sodium-resistant material molded using a sodium-resistant binder, and an exterior material is wrapped around the outer periphery of the coating material. . 2. A sodium pipe in which the coating material is formed in advance into a plurality of vertically divided cylindrical shapes and the vertically divided cylindrical covering materials are successively attached to the sodium pipe in the circumferential direction to cover the sodium pipe in the construction method according to claim 1. Covering method. 3 In the construction method described in claim 2, the joints of the vertically split cylindrical covering material attached in the circumferential direction are adhered with a sodium-resistant adhesive joint agent, and the outer periphery of the covering material is further bonded to stainless steel wire. A coating method for sodium piping in which the sodium piping is tied up and covered with a covering material. 4 In the construction method described in claim 1, the coating material is formed into a longitudinally divided cylindrical shape with multiple layers in the radial direction of the sodium pipe and each layer is divided into multiple sections in the circumferential direction, and the coating material on the inner layer side is formed into a vertically divided cylindrical shape. A coating method for sodium piping in which the materials are sequentially attached in the circumferential direction, and then the outer layer coating material is sequentially attached to the outer periphery of the material to cover it in multiple layers. 5. A coating for sodium piping in which metal sodium guiding grooves are formed in the axial direction of the inner surface of the coating material in contact with the bottom of the sodium piping in the construction method according to any one of claims 2, 3, and 4. Construction method. 6. A coating method for sodium piping according to claim 5, in which a groove is formed on the inner surface of the coating material in contact with the sodium piping to guide leaked metallic sodium to the guiding groove. 7 Molding a coating material from a sodium-resistant material using a sodium-resistant binder, forming grooves for guiding metallic sodium on the inner surface of the coating material, coating the sodium piping with the coating material, and molding the coating material around the outer periphery. A metal sodium detector is arranged to face the guiding groove formed on the inner surface of the covering material, and an inert gas supply pipe is connected to the detector, and a supply valve of the inert gas supply pipe is connected to the detector. A coating method for sodium piping that is linked by a control device. 8. A coating for sodium piping in which the coating material is formed in advance into a plurality of vertically divided cylindrical shapes to cover the sodium piping and a guide groove is positioned at the bottom of the sodium piping in the construction method according to claim 7. Construction method.
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9793878A JPS5524268A (en) | 1978-08-11 | 1978-08-11 | Coating method for sodium pipings in fast |
GB7927681A GB2027839B (en) | 1978-08-11 | 1979-08-08 | Coating sodium pining |
DE19792932414 DE2932414A1 (en) | 1978-08-11 | 1979-08-09 | METHOD FOR APPLYING A PROTECTIVE COATING TO A LINE FOR LIQUID SODIUM |
FR7920489A FR2433151B1 (en) | 1978-08-11 | 1979-08-10 | PROCESS FOR SHEATHING SODIUM PIPING IN A RAPID REGENERATOR REACTOR |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9793878A JPS5524268A (en) | 1978-08-11 | 1978-08-11 | Coating method for sodium pipings in fast |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5524268A JPS5524268A (en) | 1980-02-21 |
JPS6132550B2 true JPS6132550B2 (en) | 1986-07-28 |
Family
ID=14205599
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP9793878A Granted JPS5524268A (en) | 1978-08-11 | 1978-08-11 | Coating method for sodium pipings in fast |
Country Status (4)
Country | Link |
---|---|
JP (1) | JPS5524268A (en) |
DE (1) | DE2932414A1 (en) |
FR (1) | FR2433151B1 (en) |
GB (1) | GB2027839B (en) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5962397U (en) * | 1982-10-18 | 1984-04-24 | 株式会社東芝 | Heat retention structure |
JPS6124893A (en) * | 1984-07-16 | 1986-02-03 | 動力炉・核燃料開発事業団 | Heat-insulating material structure |
FR2676526A1 (en) * | 1991-05-16 | 1992-11-20 | Centre Nat Rech Scient | NEW THERMAL INSULATING MATERIAL FOR HIGH PRESSURE GENERATING APPARATUS, BASED ON MIXED SODIUM HALIDE. |
FR2685023B1 (en) * | 1991-12-13 | 1995-07-13 | Fournier Christian | PIPE COATING IN A TRENCH. |
JP2005507990A (en) * | 2001-11-01 | 2005-03-24 | ザ ジョンズ ホプキンズ ユニバーシティ | Techniques for monitoring the condition of containers containing fluids |
DE102015012301B4 (en) * | 2015-09-23 | 2021-07-15 | Pfeiffer Chemie-Armaturenbau Gmbh | Channel system for a line component of a process engineering system, system for detecting a process medium leak and line component of the process engineering system |
CN114216000A (en) * | 2021-11-19 | 2022-03-22 | 中投(天津)智能管道股份有限公司 | Method for manufacturing prefabricated direct-buried steam heat-insulation pipe with nano heat-insulation layer |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB683221A (en) * | 1950-03-01 | 1952-11-26 | Fibreglass Ltd | Improvements relating to thermal-insulation coverings |
US3336716A (en) * | 1963-07-10 | 1967-08-22 | Johns Manville | Furnace combustion chamber with a transverse composition differential |
US3991254A (en) * | 1973-03-10 | 1976-11-09 | Nippondenso Co., Ltd. | High temperature insulating structure |
JPS6028868Y2 (en) * | 1976-11-08 | 1985-09-02 | 工業技術院長 | High temperature gas flow pipe |
-
1978
- 1978-08-11 JP JP9793878A patent/JPS5524268A/en active Granted
-
1979
- 1979-08-08 GB GB7927681A patent/GB2027839B/en not_active Expired
- 1979-08-09 DE DE19792932414 patent/DE2932414A1/en active Granted
- 1979-08-10 FR FR7920489A patent/FR2433151B1/en not_active Expired
Also Published As
Publication number | Publication date |
---|---|
DE2932414C2 (en) | 1988-06-30 |
FR2433151A1 (en) | 1980-03-07 |
GB2027839A (en) | 1980-02-27 |
GB2027839B (en) | 1983-03-02 |
DE2932414A1 (en) | 1980-02-21 |
FR2433151B1 (en) | 1985-12-27 |
JPS5524268A (en) | 1980-02-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS6132550B2 (en) | ||
IE52042B1 (en) | Insulated domestic chimney pipes | |
JP4230725B2 (en) | Insulating refractory material composition and insulating refractory material using the same | |
CN103727359B (en) | The pipe insulation construction method of a kind of many solidifying foam glass material and device thereof | |
US4395810A (en) | Method for coating a sodium piping in a fast breeder reactor | |
CN117299003A (en) | Chemical oxygen generator and manufacturing method of cooling layer thereof | |
CN212920659U (en) | Compound heat-resisting silica aerogel heat preservation felt | |
CN1098699A (en) | Be used to prepare the tubular heater of the gas mixture that contains carbon monoxide | |
US3375628A (en) | Insulated wall construction for heated surfaces | |
CN205957215U (en) | Brickwork structure is kept apart to second combustion chamber corrosion resistant type flue gas | |
GB1140042A (en) | A method for the manufacture of an exchanger packing intended for the exchange of heat and/or moisture between two fluids one at least of which is a gas | |
CA2200873C (en) | Discharge pipe for discharging hot substances | |
JP2004036869A (en) | Fireproof structure | |
RU2669218C1 (en) | Heat hydro insulation pipeline products for high-temperature thermal networks, heat and technological pipelines and the method of its manufacture | |
US4272388A (en) | Lightweight injectable, thixotropic foam insulating material | |
CN207989921U (en) | A kind of compound heat insulation steam pipeline | |
JPS6229757Y2 (en) | ||
JPH102041A (en) | Spreading fire preventive heat-insulated coated tube | |
CN219317856U (en) | Fire-fighting pipe with good fireproof performance | |
RU176767U1 (en) | Heat-insulated pipeline product for underground laying of high-temperature heating networks, heating mains and technological pipelines | |
JPS591910B2 (en) | Manufacturing method for fireproof double-layer pipe joints | |
CN218582609U (en) | Anti-corrosion heat-insulation anti-seepage pipeline | |
JP2003314789A (en) | Fire resistant protecting pipe and pipe protecting structure using the same | |
CN112451882A (en) | Fireproof blanket and preparation method thereof and fireproof method of steel structure | |
EP0759961B1 (en) | Intumescent compositions |