JPS6132371Y2 - - Google Patents

Info

Publication number
JPS6132371Y2
JPS6132371Y2 JP2698980U JP2698980U JPS6132371Y2 JP S6132371 Y2 JPS6132371 Y2 JP S6132371Y2 JP 2698980 U JP2698980 U JP 2698980U JP 2698980 U JP2698980 U JP 2698980U JP S6132371 Y2 JPS6132371 Y2 JP S6132371Y2
Authority
JP
Japan
Prior art keywords
liquid
pipe
voltage
line
tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP2698980U
Other languages
Japanese (ja)
Other versions
JPS56128576U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP2698980U priority Critical patent/JPS6132371Y2/ja
Publication of JPS56128576U publication Critical patent/JPS56128576U/ja
Application granted granted Critical
Publication of JPS6132371Y2 publication Critical patent/JPS6132371Y2/ja
Expired legal-status Critical Current

Links

Landscapes

  • Indicating Or Recording The Presence, Absence, Or Direction Of Movement (AREA)

Description

【考案の詳細な説明】 この考案は、たとえば液体ヘリウムなどのトラ
ンスフアチユーブ内の液体の流れ検知装置に関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION This invention relates to a device for detecting the flow of liquid in a transfer tube, such as liquid helium.

一般りに、液体ヘリウムを親タンクから子タン
クへ移送するときなどは、ステンレス製の親タン
クから非磁性の子タンクへ、ステンレス材により
構成される二重構造のトランスフア・チユーブを
介して行なわれら。この場合、二重管の外側の空
隙部分は通常高真空に保持され、熱にの移動(伝
導、ふく射、対流)を阻止して、液体ヘリウムな
どがトランスフアチユーブ内を移動中に気化しな
いようのに注意している。
Generally, when liquid helium is transferred from a parent tank to a child tank, it is transferred from the stainless steel parent tank to the non-magnetic child tank via a double-layered transfer tube made of stainless steel. Rera. In this case, the outer cavity of the double tube is usually kept under a high vacuum to prevent heat transfer (conduction, radiation, convection) and to prevent liquid helium, etc., from vaporizing while moving through the transfer tube. I'm careful about that.

しかしながら、ステンレス製の二重管であるた
め、液体が流れているか気体が流れているか、明
確に判断することが困難であつた。
However, since it is a double tube made of stainless steel, it has been difficult to clearly determine whether liquid or gas is flowing.

この考案は、上記の問題点を解消するもので、
トランスフアチユーブの任意の断面に細い超電導
線を設け、液体の有無(流れ)により、その抵抗
値が相違することを利用して液体の流れ状況を判
別するようにしたものである。
This idea solves the above problems,
A thin superconducting wire is provided on an arbitrary cross section of the transfer tube, and the flow status of the liquid is determined by utilizing the difference in resistance value depending on the presence or absence (flow) of liquid.

以下図面について説明する。第1図において、
1はトランスフアチユーブ、2は真空空隙、3は
液送管、4は外管壁、5は内管壁、6,7,8お
よび9は、電気系路の接続端子で管路を気密にし
て設置されている今この端子をa,b,cおよび
dとする。10は銅導線、11は超電導線(Nb
〔ニオブ〕線、ニオブタンタル線など)、12は内
管および外管接合部(真空気密保持部)、13は
電圧測定器、14は電圧測定用電源、15は抵抗
である。第2図において、16は親タンク、17
は子タンク、18は外圧(ヘリウムガスなど)、
19は排気孔、20は液体ヘリウムなどである。
The drawings will be explained below. In Figure 1,
1 is a transfer tube, 2 is a vacuum gap, 3 is a liquid feed pipe, 4 is an outer pipe wall, 5 is an inner pipe wall, 6, 7, 8 and 9 are connection terminals for electrical system lines to make the pipe airtight. Let these terminals that are currently installed be a, b, c, and d. 10 is a copper conductor wire, 11 is a superconducting wire (Nb
(niobium wire, niobium tantalum wire, etc.), 12 is an inner tube and outer tube joint (vacuum sealing section), 13 is a voltage measuring device, 14 is a voltage measurement power source, and 15 is a resistor. In Figure 2, 16 is the parent tank, 17
18 is external pressure (helium gas, etc.),
19 is an exhaust hole, 20 is liquid helium, etc.

次に、液体ヘリウムなどを移送する場合につい
て説明する。電源14から抵抗15および端子
6,7,8および9(a,b,cおよびd)を流
れる電流をiとすれば、端子6,9間の端子電圧
Vは、 V=i・(reb+rbc+rcd) ……(1) rab,rcdは温度の低下によつて約4%/℃の割
合で減少するが、rbcは前記のとおり超電導線で
あるため、その臨界温度Tcになると、急峻に抵
抗が低下し端子中の抵抗を除いて零に到達する。
その状況は第3図に示すとおりである。同図中O
゜Kは絶対零度度である。従つて、端子a,d、
6,9間の電圧V(式1に示す)は、 V′=i(rab+rcd) ……(2) となる。ゆえに△V=V−V′とすれば、(1),(2)
式より、 △V〓i・rbc ……(3) (3)式よりrbc〓0であれば△V〓0となること
がわかる。以上の結果を、具体的に換言すれば、
液送管3中をガス状のHeが移動しているとき
は、温度はTcよりもはるかに高い温度であるた
めに、△Vはi・rbcを示すが、液送管3に液体
Xが充満している状況になれば、液送管3内は
Tc以下になるため△Vの変化が生じ、液体の流
れ有無を検知することが可能となる。
Next, the case of transferring liquid helium or the like will be explained. If the current flowing from the power supply 14 through the resistor 15 and the terminals 6, 7, 8, and 9 (a, b, c, and d) is i, the terminal voltage V between the terminals 6 and 9 is V=i・(reb+rbc+rcd) ...(1) rab and rcd decrease at a rate of about 4%/℃ as the temperature decreases, but since rbc is a superconducting wire as mentioned above, its resistance drops sharply when it reaches its critical temperature Tc. reaches zero when the resistance in the terminal is removed.
The situation is shown in Figure 3. O in the same figure
°K is absolute zero degree. Therefore, terminals a, d,
The voltage V between 6 and 9 (shown in equation 1) is V'=i(rab+rcd)...(2). Therefore, if △V=V−V′, (1), (2)
From the formula, △V〓i・rbc...(3) From formula (3), it can be seen that if rbc〓0, then △V〓0. To put the above results concretely,
When gaseous He is moving in the liquid feed pipe 3, the temperature is much higher than Tc, so △V indicates i・rbc, but the liquid X in the liquid feed pipe 3 is much higher than Tc. If it is full, the inside of the liquid feed pipe 3 will be
Since it becomes less than Tc, a change in ΔV occurs, and it becomes possible to detect the presence or absence of liquid flow.

なお、第1図の装置においては、電圧測定器1
3の電源として直流の電圧測定用電源14を用い
ているが、電源波形はsin波形でも、矩形波、三
角波でも判別上問題なく利用できる。また同図に
おいてて測定電圧を端子6および9(aおよび
d)とからなつているが、端子7および8(bお
よびc)の構造を2回貫通形とすれば、端子7お
よび8から直接、前記(3)式の△Vを得ることが可
能である。従つてこの場合は、電圧測定器13に
おいて△V=V−V′なる演算操作(初期値消去
操作)は不用となる。
In addition, in the apparatus shown in FIG.
Although the DC voltage measurement power supply 14 is used as the power supply in step 3, the power supply waveform can be a sinusoidal waveform, a rectangular wave, or a triangular wave without any problem in terms of discrimination. In addition, in the same figure, the measured voltage is made up of terminals 6 and 9 (a and d), but if the structure of terminals 7 and 8 (b and c) is a double penetration type, it can be directly connected to terminals 7 and 8. , it is possible to obtain ΔV of the above equation (3). Therefore, in this case, the calculation operation (initial value erasing operation) of ΔV=V-V' in the voltage measuring device 13 is unnecessary.

第2図は、液体ヘリウムなどを親タンクから子
タンク(これらタンクのことをデユワということ
があり、いずれにしても、この場合マホー瓶的な
断熱構造容器を意味する。親デユワは一般にステ
ンレス鋼製で、子デユワは非磁性材料で作られて
いる)に移送する状況を示す図面で、親タンク1
6内の液体ヘリウム20などに、外圧18(空気
よりもヘリウムガスなど液体と同一の気体が望ま
しい)を加えると、液体ヘリウム20などはトラ
ンスフアチユーブ1(その構造の詳細は第1図に
示す)を通つて、子タンク17に移送されるが、
子タンク17中にあつた空気などのガスは排気孔
19から追い出される。なお、トランスフアチユ
ーブ1はステンレス鋼製であり、液送管3内の流
体の状況は外部より透視不可能であるから、この
考案のような液体の流れ検知装置があれば、非常
に便利である。
Figure 2 shows how liquid helium, etc. is transferred from the parent tank to the child tank (these tanks are sometimes called deyuwa, and in any case, in this case, it means a container with an insulating structure similar to a Maho bottle. The parent deyuwa is generally made of stainless steel. This is a drawing showing the situation in which the parent tank 1 is transferred to
When external pressure 18 (preferably the same gas as the liquid, such as helium gas is preferable to air) is applied to the liquid helium 20 etc. in the tube 6, the liquid helium 20 etc. is transferred to the transfer tube 1 (the details of its structure are shown in Fig. 1). ), and is transferred to the child tank 17,
Gas such as air in the child tank 17 is expelled from the exhaust hole 19. Furthermore, since the transfer tube 1 is made of stainless steel and the fluid status inside the liquid feed tube 3 cannot be seen from the outside, it would be very convenient to have a liquid flow detection device like this one. be.

この考案によつて、親タンクが空になつた場
合、ガスばかりを子タンクに送り、せつかく子タ
ンクに溜めた液体ヘリウムを気化させて、子タン
グ外に押出すなどの事故を防止できるほか、液体
ヘリウムの移送が適切に進行しているかどうかの
監視や、トランスフアチユーブの外管(真空空隙
2)の真空度劣化の監視にも役立など、実用的に
有用な効果を奏する。もちろんこの考案は液体ヘ
リウム以外他の液体流れの検知も可能で有用であ
る。
With this device, when the parent tank becomes empty, it is possible to send only gas to the child tank, vaporize the liquid helium stored in the child tank, and prevent accidents such as pushing it out of the child tank. This has practical effects such as being useful for monitoring whether the transfer of liquid helium is progressing appropriately and for monitoring deterioration of the vacuum degree of the outer tube (vacuum gap 2) of the transfer tube. Of course, this invention is also useful because it is possible to detect flows of other liquids than liquid helium.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、この考案の液体の流れ検知装置の構
成を概略的に示す構造図、第2図はこの考案によ
る液体ヘリウムなどの移送装置を示す図、第3図
は超電導材の電気抵抗の温度特性図である。 符号の説明、1……トランスフアチユーブ、2
……真空空隙、3……液送管、4……外管壁、5
……内管壁、6,7,8および9……気密端子
a,b,cおよびd、10……銅導線、11……
超電導線、13……電圧測定器。
Fig. 1 is a structural diagram schematically showing the configuration of the liquid flow detection device of this invention, Fig. 2 is a diagram showing a transfer device for liquid helium etc. of this invention, and Fig. 3 shows the electrical resistance of the superconducting material. It is a temperature characteristic diagram. Explanation of codes, 1...Transfer tube, 2
...Vacuum gap, 3...Liquid feed pipe, 4...Outer tube wall, 5
... Inner tube wall, 6, 7, 8 and 9 ... Airtight terminals a, b, c and d, 10 ... Copper conductor wire, 11 ...
Superconducting wire, 13... Voltage measuring device.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 液体を移送二重管路に対してその管軸方向と垂
直に貫通する電気系路と、この電気系路の貫通両
端部間の電圧を測定する電圧測定機構とを設け、
前記電気系路は二重管路の内管と外管の間は通常
の導線で形成し、内管内は超電導材で形成して構
成し、前記貫通両端部間の電圧変化を測定して液
体の流れを検知するようにしたことを特徴とする
液体の流れ検知装置。
An electric system line that penetrates the double pipe line for transferring liquid perpendicularly to the pipe axis direction, and a voltage measurement mechanism that measures the voltage between both ends of the electric line are provided,
The electrical system path is constructed by forming a normal conductor between the inner pipe and the outer pipe of the double pipe, and a superconducting material inside the inner pipe, and measuring the voltage change between the two ends of the passage to detect the liquid. A liquid flow detection device characterized by detecting the flow of liquid.
JP2698980U 1980-02-29 1980-02-29 Expired JPS6132371Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2698980U JPS6132371Y2 (en) 1980-02-29 1980-02-29

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2698980U JPS6132371Y2 (en) 1980-02-29 1980-02-29

Publications (2)

Publication Number Publication Date
JPS56128576U JPS56128576U (en) 1981-09-30
JPS6132371Y2 true JPS6132371Y2 (en) 1986-09-20

Family

ID=29622958

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2698980U Expired JPS6132371Y2 (en) 1980-02-29 1980-02-29

Country Status (1)

Country Link
JP (1) JPS6132371Y2 (en)

Also Published As

Publication number Publication date
JPS56128576U (en) 1981-09-30

Similar Documents

Publication Publication Date Title
CN100422694C (en) Method for measuring liquid cryogen level using a level probe
US6208254B1 (en) Thermal dispersion mass flow rate and liquid level switch/transmitter
EP0352371B1 (en) Detector for helium leaks
CN109564179A (en) Conductivity sensor with gap correction
CZ20001995A3 (en) Liquid level analog sensor
JPS6132371Y2 (en)
US3015232A (en) Flow cell
US2978691A (en) Liquid level gages
TW202117341A (en) Monitoring system and method of monitoring static charge
US4365200A (en) Self alarming four double electrodes conductivity cell
WO2015022652A1 (en) Invasive level probe
US4309661A (en) Device for measuring quantity of electric charges on electrified fluid
EP0137754B1 (en) Series-connected, skin-current heating pipe including current trouble detector
JP3122287B2 (en) Double tube capacitance type density meter
Farber et al. Variation of heat transfer coefficient with length
JP2000019144A (en) Zeta potential measuring method and measuring device
US3416372A (en) Corrosive liquid-metal-level gauge
JPH04301520A (en) Liquid level gauge
RU2046293C1 (en) Thermoelectric level meter for point-by-point measuring of media boundary
JPH04192509A (en) Gas leakage detecting apparatus of gas-insulated electric apparatus
JPH04118630U (en) level switch
SU1040338A1 (en) Device for measuring consumption of electroconductive liquid
Selvaraj Potential drop sensors for sodium loops
JPS628480Y2 (en)
JPH0547050B2 (en)