JPS6132047B2 - - Google Patents

Info

Publication number
JPS6132047B2
JPS6132047B2 JP5133877A JP5133877A JPS6132047B2 JP S6132047 B2 JPS6132047 B2 JP S6132047B2 JP 5133877 A JP5133877 A JP 5133877A JP 5133877 A JP5133877 A JP 5133877A JP S6132047 B2 JPS6132047 B2 JP S6132047B2
Authority
JP
Japan
Prior art keywords
total weight
water
acrylic acid
emulsion
acrylamide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP5133877A
Other languages
Japanese (ja)
Other versions
JPS53137875A (en
Inventor
Maikuru Shimitsuto Jojifu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wyeth Holdings LLC
Original Assignee
American Cyanamid Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by American Cyanamid Co filed Critical American Cyanamid Co
Priority to JP5133877A priority Critical patent/JPS53137875A/en
Publication of JPS53137875A publication Critical patent/JPS53137875A/en
Publication of JPS6132047B2 publication Critical patent/JPS6132047B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Separation Of Suspended Particles By Flocculating Agents (AREA)
  • Colloid Chemistry (AREA)

Description

【発明の詳现な説明】[Detailed description of the invention]

近幎倚くの基質䟋えば䞋氎汚氎、歩留りおよび
濟氎床のために甚いられるセルロヌズ繊維および
埮粉、金属鉱石凊理物、メツキ廃液、石炭の尟
鉱、補鋌所の烟道塵や焌結塵および飲甚氎に察す
る有効な凝結剀ずしおアクリルアミドずアクリル
酞の共重合䜓の゚マルゞペンの利甚は益々重芁に
な぀おいる。これらの゚マルゞペンは通垞油䞭氎
の圢でこれに氎を添加するず氎䞭油の゚マルゞペ
ンずなりこの間ポリマヌは迅速に氎䞭に溶解す
る。この型の゚マルゞペンおよび溶解操䜜は米囜
特蚱RE28474号、第3826771号、および第3284393
号の各明现曞䞭に瀺されおいる。これら特蚱を参
考資料ずしお加える。 これらの゚マルゞペンは凝結剀ずしお甚いる時
には非垞に有効であるが、冬期に倚くの地域で芋
られるような凍結ず解凍が亀互に起るような枩床
のもずではその効果が枛少する傟向がある。この
ような枩床サむクルの反埩により゚マルゞペンは
凝固し、ポリマヌの埮现分散粒子が集合しお倧き
な塊の圢ずなりその結果凝結剀ずしおの有甚床は
急激に枛する。 本発明の新芏゚マルゞペンはすぐれた凍結―解
凍性を持぀。すなわち、本゚マルゞペンは凍結―
解凍条件䞋におかれた時に凝結状剀ずしおの有甚
性を倱う皋凝集䜓を䜜らない。本発明の゚マルゞ
ペンは凍結―解凍条件䞋での安定性を持぀ず同時
に珟存する゚マルゞペンの持぀他の魅力的な諞性
質䟋えば高枩における安定性、氎でうすめた時の
良奜な転化性、硬氎に察する高い耐性および転化
埌の良奜な氎䞭分散性を保持する。 このようなすぐれた性質の組み合わせは共重合
䜓䞭の䞀぀の限定された郚分的に䞭和的に䞭和さ
れたアクリル酞および限定された量の転化性面掻
性剀の䜿甚によ぀おもたらされる。 本発明は凍結―解凍に安定な自己転化性、油䞭
氎型゚マルゞペンより成るもので、その゚マルゞ
ペン䞭には埮粒状ポリマヌ粒子の分散が含たれ
る。該゚マルゞペンは次の〜より成る (A) およびの合蚈重量を基準ずしお玄70
重量癟分率、以䞋同じ乃至玄95の氎
盞、この氎盞は次の(1)および(2)より成る (1) の党重量を基準ずしお玄27乃至玄68
の濃床を有する氎溶性アクリルアミド―アク
リル酞共重合䜓、䜆し該共重合䜓の総重量の
箄25乃至玄35を占めるアクリル酞残郚
はアクリルアミドの玄50乃至玄75は䞭
和されたものである、および (2) の党重量の玄32乃至玄73の範囲の量
の氎、 (B) およびの合蚈重量を基準ずしお玄
乃至玄30の範囲の量の液䜓炭化氎玠、 (C) およびの合蚈重量を基準ずしお玄
0.1乃至玄15.0の範囲の濃床においお該氎
盞ず該液䜓炭化氎玠盞ずの間に分散された油䞭
氎型乳化剀、および (D) 玄モルの炭玠数玄12〜18の脂肪族アルコヌ
ルず玄〜10モルの゚チレンオキシドの反応生
成物をおよびの合蚈量を基準ずし
お玄2.0乃至玄3.2以䞋の範囲の量を含む転
化性衚面掻性剀。 䞊蚘のように本発明の新芏゚マルゞペン氎盞は
アクリルアミド―アクリル酞共重合䜓および氎よ
り成る。この共重合䜓はアクリルアミドを65〜75
およびアクリル酞を25〜35含有する。最終的
な組成物に察し䞊述の凍結―解凍安定性を付䞎す
るためにアクリル酞の玄50乃至玄75は䞭和さ
れねばならない。アクリル酞の䞭和はモノマヌを
共重合する前に行なうこずが望たしい。しかしも
し望むならば共重合の埌におこなうこずもでき
る。適圓な量の任意の呚知の䞭和剀䟋えばアルカ
リ金属又はアルカリ土類金属の氎酞化物、アンモ
ニア、アミン又は類䌌物を含む氎溶液䞭にアクリ
ル酞モノマヌを垞法によ぀お接觊させるこずによ
぀お䞭和がおこなわれる。埗られた氎盞のPHは玄
4.5乃至玄5.5の範囲内にある。 奜たしい順序ではアクリルアミドおよびアクリ
ル酞を所期の固䜓濃床になるように氎に溶解し、
゚チレンゞアミン四酢酞二ナトリりム塩のような
キレヌト詊薬を加え、アクリルアミド補造工皋䞭
に混入したような金属むオンをキレヌト化する。
次いでアクリル酞の䞭和を行぀おから、埌に詳し
く述べるように開始剀の䞀成分ずしお少量の鉄の
添加が行われる。埌述するように、この時期又は
これ以埌に酞化還元觊媒系埌述の過酞化物郚
分を添加するこずが望たしい。 䞊蚘のように氎盞を調補した埌これを油盞䞭に
泚入するずこの時点で氎䞭油型乳化剀を含んだ油
の溶液が出来る。この目的には任意の油が甚いら
れるが、これらの油は䞊に匕甚した米囜特蚱明现
曞䞭に瀺されおいる。奜適な油はナニオンオむル
瀟カリホルニア州より垂販されるAMSCO
OMS商品名である。その抂略組成はパラフ
むン86.9ナフテン類13.0および芳銙族類0.1
で透明な油状液䜓である。分子量玄170比重
0.755〔15.5℃60〓〕粘床1.4cps〔25℃77
〓〕凝固点−31.6℃−25〓以䞋沞点204
℃399〓匕火点TCC52.2℃126〓
および氎に䞍溶である。比熱は37.7℃100〓
で0.499BTU16、〓および93.3℃200〓で
0.588BTU16.〓である。 䞊蚘米囜特蚱明现曞に蚘茉されたものはその䟋
なのであるが、任意の入手可胜の油䞭氎型の乳化
剀が甚いうる。モノオレむン酞゜ルビタンは奜適
な乳化剀である。 䞊述の酞化還元觊媒系の酞化剀郚分がただ加え
られおいない堎合には、油ず氎盞ずをかきたぜお
均質な配合を確実にするこずによ぀お油䞭氎型゚
マルゞペンを生成した埌にこれを加える。この成
分はモノマヌ゚マルゞペンの氎溶液ずしお加えら
れ、その濃床は完党濃床即ちモノマヌ100䞇郚に
察し玄10乃至玄500郚奜たしくは25〜150ppmで
ある。䜿甚する酞化還元觊媒系は任意のもの、䟋
えば臭玠酞塩―亜硫酞塩系、過酞化物―亜硫酞塩
玠、ヒドロペルオキシド―重亜硫酞塩系、その他
である。さらに他の遊離基觊媒系を甚いうる。䟋
えばアゟビスむ゜ブチロニトリルベンゟむル過
酞化物ラりロむル過酞化物過硫酞カリりムお
よび呚知の類䌌物。単䞀成分觊媒系を甚いる時に
はモノマヌがポリマヌに転化するたでモノマヌ゚
マルゞペン䞭に該觊媒系を加えないこずが望たし
い。しかし本発明の奜適な圢では―ブチルヒド
ロペルオキシドずメタ重亜硫酞ナトリりムより成
る酞化還元觊媒系の酞化剀郚分は先ずモノマヌ゚
マルゞペンに察しお加えられる。觊媒系の䞀成分
ずしおモノマヌ重量の玄乃至玄10ppmの鉄を
甚いるこずが奜適である。その鉄は䞊述のように
氎盞䞭に倖郚的に加えられるか又は氎又はモノマ
ヌそれ自身䞭の本来の成分ずしお存圚するこずも
出来る。酞化還元觊媒の還元剀郚分の䜿甚量はモ
ノマヌ重量の玄10乃至玄500ppmの範囲奜たしく
は50〜200ppmであるべきである。 䞊蚘のように反応混合物が調補された埌に窒玠
ガスを甚いお系䞭の酞玠を完党に陀去する。次い
で觊媒系の酞化剀郚分を含有するモノマヌ゚マル
ゞペン䞭に玄時間乃至玄24時間望むべくは玄
〜16時間にわた぀お觊媒系の還元剀郚分をポンプ
を甚いお加え転化を完了させる。この所芁時間は
觊媒濃床が䜎ければ長時間を芁し高ければ短い時
間で完了する。反応物質の枩床は玄25℃乃至玄55
℃奜たしくは35℃乃至45℃の範囲に保぀べきであ
る。 觊媒成分が加えられ共重合がほずんど完了した
埌、生成した共重合䜓に察しさらにメタ重亜硫酞
ナトリりムすなわち觊媒の還元剀郚分を共重合枩
床で加え共重合䜓生成物の安定化ずおこなう。 次いで玄2.0より倚く玄3.2より少い䞊蚘の
転化性衚面掻性剀混合物を加えるこずによ぀お本
発明の新芏な゚マルゞペン、すなわち氎の添加の
みによ぀お転化が達成される所謂ワンパツケヌゞ
゚マルゞペンが調補される。この範囲が重芁であ
るずいうのは、もし2.0以䞋が加えられるず油
䞭氎型゚マルゞペンが氎䞭油型゚マルゞペンに転
化する割合が郚分的であり、もし3.2を超える
量が加えられるず生成した油䞭氎型゚マルゞペン
が粘皠すぎお効果的な取り扱いが困難であり䞔぀
凍結―解凍安定性も䜎䞋するからである。曎にた
た本発明の゚マルゞペンを転化しお氎凊理に䜿甚
する堎合に凊理すべき氎䞭のカルシりム濃床が痕
跡乃至䞭皋床である時には䜎濃床の衚面掻性剀を
有する゚マルゞペンで有効であるが、著量のカル
シりムが含たれる堎合にはより倚量の転化性衚面
掻性剀含有゚マルゞペンを必芁ずするこずが芋出
された。 次の実斜䟋は本発明を説明するこずのみを目的
ずしお蚘述され、特蚱請求範囲に蚘茉されたもの
を陀き本発明を制限するものず解すべきではな
い。䟋䞭の郚およびは特にこずわらない限り重
量に関する衚瀺である。 実斜䟋  適圓な反応容噚䞭に313.0郚のアクリルアミド
を47.3氎溶液ずしたもの、64.0郚のアクリル酞
および167.0郚の脱むオン氎を加える。埗た溶液
にアクリル酞のカルボキシル基の75を䞭和する
濃アンモニア氎28.6NH339.6郚を加える。
その結果埗た溶液のPHは玄5.3であるこの溶液に
0.848郚の゚チレンゞアミン四酢酞二ナトリりム
塩および0.23郚の硫酞第二鉄氎和物Fe2
SO4372のものを4.5郚1000郚の氎ずしお甚
いるを加える。以䞊がモノマヌ氎盞の組成であ
る。 油盞は18.0郚のモノオレむンン酞゜ルビタンを
308.0郚の垂販のAMSCO OMSナニオンオむル
瀟の商品、透明油状液䜓䞭に溶解しお調補す
る。 適圓な高速ホモゞナむザヌに䞊蚘の党油盞系を
加え、ホモゞナむザヌを䜜動させお埐々にモノマ
ヌ氎盞を加えお粘床725cpsの゚マルゞペンを䜜
る。埗た゚マルゞペンの分散盞䞭の粒子の倧きさ
は玄2.5ミクロンン以䞋である。 適圓な反応容噚に䞊蚘の党゚マルゞペン系を撹
拌し぀぀加える。モノマヌ量に察し70.0ppmのqt
―ブチルヒドロペルオキシドルを加える。埗た媒
質を窒玠ガスで掗浄しお酞玠を陀く。かきたぜな
がら玄40℃でメタ重亜硫酞ナトリりムを時間に
亘぀お容噚䞭にポンプで泚入し、次いで玄
200ppmモノマヌ重量基準を添加する。埗た
粘性゚マルゞペン䞭のアクリルアミドの転化率は
98.97、アクリル酞の転化率は99.10である。
重合䜓固䜓は25.48、暙準粘床は6.6cps、PHは
4.8である。 27.6郚の30メタ重亜硫酞ナトリりム溶液を加
えお重合䜓゚マルゞペンの安定化を達成する。こ
の゚マルゞペンを重合条件40℃に60分に保぀
お残りのアクリルアミドおよびアクリル酞をほず
んど完党に反応させる。゚マルゞペンは0.4の
重亜硫酞ナトリりムを含みこれが重合䜓系の安定
化をはたす。 埗た共重䜓゚マルゞペンに察し転化剀ずし次の
反応生成物が最終的に2.3含有されるに充分な
量を40℃においお30分にわた぀お加える。甚いる
反応生成物はモルのC12〜C14鎖匏アルコヌル類
混合物ずモルの゚チレンオキシドの反応によ぀
お埗られる反応生成物である。埗た゚マルゞペン
を曎に時間40℃に保぀ず生成物は滑らかで粒を
含たぬ粘床650cpsの生成物を埗る。分散した重
合䜓盞の粒の倧きさは2.5ミクロンおよびそれよ
りも小さい。暙準粘床は6.4cps、最終的固䜓含有
率は24.80である。 適圓な容噚䞭に25.0郚の最終゚マルゞペンを眮
き−10℃の枩床に22時間保぀。冷华された容噚を
宀枩にたで時間かけお枩め、゚マルゞペンを
埐々に第二の容噚に泚ぐ。その間巚芖的に認めう
る凝結した粒の数を数える。蚈枬が終぀たら党゚
マルゞペンを第䞀の容噚に移し再び−10℃に22時
間保぀。このサむクルを13日間続ける。 䞊述ず同じ調補方法によるのであるが゚マルゞ
ペン䞭のアクリル酞の䞭和率が玄10より小であ
る゚マルゞペン以䞋第二の゚マルゞペンずい
うに぀いお䞊蚘ず同じ凍結―解凍詊隓をおこな
う。その結果を䞋蚘第衚および第衚に瀺す。
週サむクルは䞀週間間隔の凍結―解凍である。
In recent years, many substrates such as sewage sewage, cellulose fibers and fines used for retention and freeness, metal ore processing products, wood waste, coal tailings, steel mill dust and sinter dust, and drinking water. The use of copolymer emulsions of acrylamide and acrylic acid as effective coagulants is becoming increasingly important. These emulsions are usually in the form of water-in-oil, and when water is added to them, they become oil-in-water emulsions, during which the polymer rapidly dissolves in the water. This type of emulsion and dissolution operation is described in US Pat.
This is shown in each specification of the issue. Add these patents as reference materials. Although these emulsions are very effective when used as coagulants, their effectiveness tends to decrease at temperatures such as the alternating freezing and thawing conditions found in many regions during the winter. Repeated temperature cycling causes the emulsion to coagulate, causing the finely dispersed particles of the polymer to aggregate into large clumps, thereby rapidly reducing its usefulness as a coagulant. The novel emulsion of the present invention has excellent freeze-thaw properties. In other words, this emulsion is frozen.
It does not aggregate to the extent that it loses its usefulness as a coagulant when subjected to thawing conditions. The emulsion of the present invention has stability under freeze-thaw conditions as well as other attractive properties of existing emulsions, such as stability at high temperatures, good conversion when diluted with water, and high resistance to hard water. Retains resistance and good dispersibility in water after conversion. This superior combination of properties is provided by the use of a limited amount of partially neutralized acrylic acid and a limited amount of a convertible surfactant in the copolymer. . The present invention comprises a freeze-thaw stable, self-converting, water-in-oil emulsion containing a dispersion of finely divided polymer particles within the emulsion. The emulsion consists of the following A-D: (A) about 70% by weight based on the total weight of A, B and C;
% (weight percentage, hereinafter the same) to about 95% aqueous phase, this aqueous phase consisting of the following (1) and (2): (1) about 27% to about 68% based on the total weight of A
a water-soluble acrylamide-acrylic acid copolymer having a concentration of from about 25% to about 35% of the total weight of the copolymer, provided that about 50% to about 75% of the acrylic acid (the remainder being acrylamide) is neutralized. (2) water in an amount ranging from about 32% to about 73% of the total weight of A; (B) about 5%, based on the combined weight of A, B, and C;
% to about 30% of liquid hydrocarbons, (C) based on the combined weight of A, B and C, about
a water-in-oil emulsifier dispersed between the aqueous phase and the liquid hydrocarbon phase at a concentration ranging from 0.1% to about 15.0%; and (D) about 1 mole of an aliphatic having about 12 to 18 carbon atoms. A convertible surfactant comprising the reaction product of an alcohol and about 6 to 10 moles of ethylene oxide in an amount ranging from about 2.0% to about 3.2% or less, based on the total amount of A, B, C, and D. As mentioned above, the aqueous phase of the novel emulsion of the present invention consists of an acrylamide-acrylic acid copolymer and water. This copolymer contains 65 to 75 acrylamide
% and 25-35% acrylic acid. About 50% to about 75% of the acrylic acid must be neutralized to impart the freeze-thaw stability described above to the final composition. It is desirable to neutralize acrylic acid before copolymerizing the monomers. However, it can also be carried out after the copolymerization if desired. By contacting the acrylic acid monomer in an aqueous solution containing a suitable amount of any known neutralizing agent such as an alkali metal or alkaline earth metal hydroxide, ammonia, an amine or the like in a conventional manner. Neutralization takes place. The pH of the resulting aqueous phase is approximately
In the range of 4.5 to about 5.5. A preferred sequence is to dissolve acrylamide and acrylic acid in water to the desired solids concentration;
Chelating reagents such as ethylenediaminetetraacetic acid disodium salt are added to chelate metal ions such as those introduced during the acrylamide manufacturing process.
Neutralization of the acrylic acid is then carried out, followed by the addition of a small amount of iron as a component of the initiator, as detailed below. As described below, it is desirable to add the peroxide portion of the redox catalyst system (described below) at or after this time. After preparing the aqueous phase as described above, the aqueous phase is injected into the oil phase, at which point an oil solution containing an oil-in-water emulsifier is created. Any oil may be used for this purpose, and these oils are shown in the US patent specifications cited above. A suitable oil is AMSCO, commercially available from Union Oil Co., California.
It is OMS (product name). Its approximate composition is 86.9% paraffin, 13.0% naphthenes, and 0.1% aromatics.
% clear oily liquid. Molecular weight approximately 170, specific gravity
0.755 [15.5℃ (60〓)] Viscosity 1.4cps [25℃ (77
〓)〕, freezing point -31.6℃ (-25〓) or lower, boiling point 204
℃ (399〓), flash point (TCC) 52.2℃ (126〓),
and insoluble in water. Specific heat is 37.7℃ (100〓)
0.499BTU/16 at 〓 and 93.3℃ (200〓)
It is 0.588BTU/16.〓. Any available water-in-oil emulsifier may be used, although those described in the above-mentioned US patents are examples. Sorbitan monooleate is a suitable emulsifier. If the oxidizer portion of the redox catalyst system described above has not already been added, this can be done after forming the water-in-oil emulsion by stirring the oil and water phases to ensure a homogeneous blend. Add. This component is added as an aqueous solution of the monomer emulsion, and its concentration is from about 10 to about 500 parts per million parts of monomer, preferably from 25 to 150 ppm. The redox catalyst system used can be any, such as bromate-sulfite systems, peroxide-chlorine sulfite systems, hydroperoxide-bisulfite systems, and the like. Still other free radical catalyst systems may be used. For example azobisisobutyronitrile, benzoyl peroxide, lauroyl peroxide, potassium persulfate and the well-known analogues. When using a single component catalyst system, it is desirable not to add the catalyst system to the monomer emulsion until the monomers have been converted to polymer. However, in the preferred form of the invention, the oxidant portion of the redox catalyst system comprising t-butyl hydroperoxide and sodium metabisulfite is first added to the monomer emulsion. It is preferred to use iron as a component of the catalyst system in an amount of about 1 to about 10 ppm by weight of monomer. The iron can be added externally to the aqueous phase as described above, or it can be present as an inherent component in the water or monomer itself. The amount of the reducing agent portion of the redox catalyst used should range from about 10 to about 500 ppm, preferably 50 to 200 ppm, based on the weight of monomer. After the reaction mixture is prepared as described above, nitrogen gas is used to completely remove oxygen from the system. The catalyst system is then placed in a monomer emulsion containing the oxidizing agent portion for about 2 hours to about 24 hours, preferably about 4 hours.
Add the reductant portion of the catalyst system using a pump over ~16 hours to complete the conversion. This process takes a long time if the catalyst concentration is low, and takes a short time if the catalyst concentration is high. The temperature of the reactants is between about 25°C and about 55°C.
The temperature should preferably be kept in the range of 35°C to 45°C. After the catalyst components are added and the copolymerization is substantially complete, sodium metabisulfite, the reducing agent portion of the catalyst, is added to the resulting copolymer at the copolymerization temperature to stabilize the copolymer product. By then adding more than about 2.0% and less than about 3.2% of the convertible surfactant mixture described above, the novel emulsion of the present invention, a so-called one-package emul, in which conversion is achieved only by the addition of water, is produced. Jiyoung is prepared. This range is important because if less than 2.0% is added, the water-in-oil emulsion will only partially convert to oil-in-water emulsion, and if more than 3.2% is added, the water-in-oil emulsion will only partially convert. This is because water-in-oil emulsions are too viscous and difficult to handle effectively, and their freeze-thaw stability is also reduced. Furthermore, when the emulsion of the present invention is converted and used for water treatment, when the calcium concentration in the water to be treated is trace to moderate, the emulsion with a low concentration of surfactant is effective; It has been found that a larger amount of convertible surfactant-containing emulsion is required when calcium is included. The following examples are set forth for the purpose of illustrating the invention only and should not be construed as limiting the invention except as described in the claims. Parts and percentages in the examples are by weight unless otherwise specified. Example 1 Into a suitable reaction vessel are added 313.0 parts of a 47.3% aqueous solution of acrylamide, 64.0 parts of acrylic acid, and 167.0 parts of deionized water. 39.6 parts of concentrated aqueous ammonia (28.6% NH 3 ), which neutralizes 75% of the carboxyl groups of acrylic acid, is added to the resulting solution.
The pH of the resulting solution is approximately 5.3.
0.848 parts of ethylenediaminetetraacetic acid disodium salt and 0.23 parts of ferric sulfate hydrate ( Fe2
(SO 4 ) 3 72% (4.5 parts/1000 parts water) is added. The above is the composition of the monomer aqueous phase. The oil phase contains 18.0 parts of sorbitan monooleate.
Prepared by dissolving in 308.0 parts of commercially available AMSCO OMS (Union Oil Company, clear oily liquid). Add the entire oil phase system described above to a suitable high speed homogenizer, operate the homogenizer and gradually add the monomer aqueous phase to form an emulsion with a viscosity of 725 cps. The particle size in the dispersed phase of the resulting emulsion is less than about 2.5 microns. Add the entire emulsion system described above to a suitable reaction vessel with stirring. 70.0ppm qt relative to monomer amount
-Add butyl hydroperoxide. The obtained medium is washed with nitrogen gas to remove oxygen. Sodium metabisulfite was pumped into the vessel over a period of 6 hours at approximately 40°C with stirring, then at approximately 40°C.
Add 200 ppm (based on monomer weight). The conversion rate of acrylamide in the obtained viscous emulsion is
98.97%, the conversion rate of acrylic acid is 99.10%.
Polymer solids is 25.48%, standard viscosity is 6.6cps, PH is
It is 4.8. Stabilization of the polymer emulsion is achieved by adding 27.6 parts of 30% sodium metabisulfite solution. The emulsion is kept under polymerization conditions (40° C. for 60 minutes) to almost completely react the remaining acrylamide and acrylic acid. The emulsion contains 0.4% sodium bisulfite, which stabilizes the polymer system. A sufficient amount of the following reaction product as a converting agent is added to the resulting copolymer emulsion at 40 DEG C. over 30 minutes to give a final content of 2.3%. The reaction product used is the reaction product obtained by reacting 1 mol of a mixture of C 12 -C 14 chain alcohols with 7 mol of ethylene oxide. The resulting emulsion is kept at 40° C. for an additional hour to obtain a smooth, grain-free product with a viscosity of 650 cps. The particle size of the dispersed polymer phase is 2.5 microns and smaller. Standard viscosity is 6.4 cps and final solids content is 24.80%. Place 25.0 parts of the final emulsion in a suitable container and keep at a temperature of -10°C for 22 hours. Warm the chilled container to room temperature over 2 hours and gradually pour the emulsion into the second container. During this time, count the number of macroscopically recognizable coagulated grains. After the measurement is completed, the entire emulsion is transferred to the first container and kept at -10°C for 22 hours. Continue this cycle for 13 days. The same freeze-thaw test as above is carried out on an emulsion (hereinafter referred to as the second emulsion) prepared according to the same method as above, but in which the neutralization rate of acrylic acid in the emulsion is less than about 10%. The results are shown in Tables 1 and 2 below.
Weekly cycles are freeze-thaw intervals of one week.

【衚】【table】

【衚】 実斜䟋の゚マルゞペンの䞀郚を䞭和率10の
第二の゚マルゞペンず共に高枩床凊理をおこない
暙準粘床による分子量䜎枛床の枬定によ぀お安定
性を枬぀た。50℃および60℃では実斜䟋の゚マ
ルゞペンはそれぞれ週および〜週安定であ
るが、䞭和率10の詊料はそれぞれ〜週およ
び〜週安定である。 実斜䟋の゚マルゞペンの䞀郚を急存撹拌䞭の
氎䞭に泚入し転化化性胜を怜した。この詊料は玄
30分以内にほずんど完党に転化した以䞋第䞉の
゚マルゞペンずいう。 実斜䟋の゚マルゞペンの䞀郚の転化性胜を塩
化カルシりム含有CaCO3ずしお750ppmする
急速撹拌氎に぀いお怜した以䞋第四の゚マルゞ
ペンずいう。䞊蚘第䞉郚分の転化を基準ずしお
箄93の転化性胜を有する。 䞊蚘第䞉および第四の転化埌の詊料は宀枩に24
時間攟眮しおもほずんど又は党く分離しない。即
ち氎盞䞭の油の分散は極めお良奜であるこずを瀺
す。 実斜䟋および 実斜䟋の方法によるが、(3)53.5郚のアクリル
酞および158郚のアクリルアミドモノマヌおよび
(4)74.5郚のアクリル酞および137郚のアクリルア
ミドモノマヌを甚いた。この堎合でも凍結―解凍
安定性、枩床安定性、転化率およびカルシりム耐
性がいずれもすぐれおいた。宀枩で24時間攟眮し
お転化゚マルゞペンの分離は芋られなか぀た。 実斜䟋  再び実斜䟋によるが、゚チレンオキシド―鎖
匏アルコヌルの反応生成物の含有率を3.2に増
加させる。炭酞カルシりムを750ppm含有する
塩化カルシりムずしお添加氎を溶媒ずしお甚
いるも本質的に完党な転化が埗られる。 実斜䟋  実斜䟋の゚チレンオキシド―鎖匏アルコヌル
反応生成物をモルのC18鎖匏アルコヌルず10モ
ルの゚チレンオキシドの反応生成物の圓量で眮き
換える。ほずんど同様な結果が埗られる。 比范䟋 実斜䟋によるがその手順におけるアクリル酞
の䞭和率を87に増加させる。埗た゚マルゞペン
を転化させるず生成した共重合䜓溶液の粘床は
0.2溶液でも極めお取扱い難いような粘床であ
る。 実斜䟋  再び実斜䟋の手順によるが、その堎合のアク
リル酞の䞭和率を玄50にたで枛らす。埗れらる
結果はほずんど同じであ぀た。 実斜䟋  アクリル酞の䞭和率を60にした以倖は再び実
斜䟋の手順による。この堎合の凍結―解凍詊隓
結果を䞋蚘第衚に瀺す。
[Table] A part of the emulsion of Example 1 was subjected to high temperature treatment together with a second emulsion having a neutralization rate of 10%, and the stability was measured by measuring the degree of molecular weight reduction using standard viscosity. At 50°C and 60°C, the emulsion of Example 1 is stable for 6 weeks and 2-3 weeks, respectively, while the sample with 10% neutralization is stable for 3-4 weeks and 1-2 weeks, respectively. A portion of the emulsion of Example 1 was poured into water that was being rapidly stirred, and the conversion performance was examined. This sample is approximately
Almost complete conversion occurred within 30 minutes (hereinafter referred to as tertiary emulsion). The conversion performance of a portion of the emulsion of Example 1 was tested on rapidly stirred water containing calcium chloride (750 ppm as CaCO 3 ) (hereinafter referred to as the fourth emulsion). It has a conversion performance of about 93% based on the conversion of the third part. After the third and fourth conversions above, the samples were brought to room temperature for 24 hours.
Little or no separation occurs even after standing for a period of time. That is, it shows that the dispersion of oil in the aqueous phase is extremely good. Examples 2 and 3 According to the method of Example 1, but (3) 53.5 parts of acrylic acid and 158 parts of acrylamide monomer and
(4) 74.5 parts of acrylic acid and 137 parts of acrylamide monomer were used. In this case as well, freeze-thaw stability, temperature stability, conversion rate, and calcium tolerance were all excellent. No separation of the converted emulsion was observed after standing at room temperature for 24 hours. Example 4 Example 1 is again followed, but the content of the ethylene oxide-chain alcohol reaction product is increased to 3.2%. Essentially complete conversion is also obtained using water containing 750 ppm calcium carbonate (added as calcium chloride) as the solvent. Example 5 The ethylene oxide-chain alcohol reaction product of Example 1 is replaced by the equivalent of a reaction product of 1 mole of C 18 chain alcohol and 10 moles of ethylene oxide. Almost similar results are obtained. Comparative Example According to Example 1 but increasing the neutralization rate of acrylic acid in the procedure to 87%. The viscosity of the copolymer solution produced by converting the obtained emulsion is
Even a 0.2% solution has such a viscosity that it is extremely difficult to handle. Example 6 The procedure of Example 1 is again followed, but the neutralization rate of acrylic acid is reduced to about 50%. The results obtained were almost the same. Example 7 The procedure of Example 1 was repeated, except that the neutralization rate of acrylic acid was 60%. The freeze-thaw test results in this case are shown in Table 3 below.

【衚】【table】

【衚】【table】

Claims (1)

【特蚱請求の範囲】  䞋蚘およびより成り、埮现粒状
共重合䜓粒子の分散を内郚に保有する凍結―解凍
に察しお安定な自己転化粧の油䞭氎型゚マルゞペ
ン (A) およびの合蚈重量を基準ずしお75
乃至95範囲の量の䞋蚘およびよ
り成る氎盞 () の総重量の27乃至68を占める氎溶
性アクリルアミド―アクリル酞共重合䜓。た
だし該共重合䜓の総重量を基準ずしおその25
乃至35はアクリル酞、残郚はアクリルア
ミドであり、曎に該アクリル酞の50乃至75
は䞭和されおいるものずする、 () の総重量を基準ずしお32乃至73の
範囲の量の氎、 (B) およびの合蚈重量を基準ずしお
乃至25の範囲の量の液䜓炭化氎玠油、 (C) およびの合蚈重量を基準ずしお0.1
乃至15.0の濃床においお䞊蚘氎盞および䞊
蚘液䜓炭化氎玠の間に配眮された油䞭氎型乳化
剀、 (D) およびの合蚈重量を基準ずしお
2.0を超え3.2以䞋の量の範囲にあ぀お炭玠
原子数12〜18の脂肪族アルコヌルモルず゚チ
レンオキシド〜10モルの反応生成物より成る
転化性衚面掻性剀。  共重合䜓が70アクリルアミドず30のアク
リル酞より成る特蚱請求の範囲第項蚘茉の゚マ
ルゞペン。  アクリル酞の60が䞭和された特蚱請求範囲
第項蚘茉の゚マルゞペン。  転化性衚面掻性剀がモルの゚チレンオキシ
ドをモルのC12〜C14鎖匏アルコヌル類混合物ず
反応させお成る特蚱請求の範囲第項蚘茉の゚マ
ルゞペン。  氎盞が67の氎ず33の共重合䜓よりなる特
蚱請求範囲第項蚘茉の゚マルゞペン。  転化性衚面掻性剀の量が2.3である特蚱請
求範囲第項蚘茉の゚マルゞペン。  䞋蚘のおよびの各工皋により成
るこずを特城ずする凍結―解凍に安定な自己転化
性゚マルゞペンの調敎法 (A) 䞋蚘のむ、ロ、ハ及びニの成分を混合しお油
䞭氎型゚マルゞペンを圢成する工皋、 (ã‚€) む、ロ及びハの合蚈重量を基準ずしお75
乃至95の次の(a)および(b)の混合溶液、 (a) むの総重量を基準ずしお27乃至68に
圓たるアクリルアミドずアクリル酞混合
物、ただし該アクリル酞は50〜75䞭和さ
れ混合物党重量の25乃至35を占め、残
郚はアクリルアミドであるものずする、 (b) むの総重量を基準ずしお32乃至73の
範囲の氎、 (ロ) む、ロ及びハの合蚈重量を基準ずしお
乃至25の範囲の液状炭化氎玠油、 (ハ) む、ロ及びハの合蚈重量を基準ずしお0.1
乃至15.0の濃床の油䞭氎型乳化剀、 (ニ) メタ重亜硫酞ナトリりムずヒドロペルオキ
シドより成る遊離基開始前、 (B) 遊離基重合条件䞋に䞊蚘のモノマヌを重合し
お、䞊蚘アクリルアミドおよび䞭和されたアク
リル酞の共重合䜓の埮现粒子を内郚に分散しお
保有する油䞭氎型゚マルゞペンを圢成する工
皋、 (C) 䞊蚘の油䞭氎型゚マルゞペンに察し、転化性
衚面掻性剀を加える工皋、 ただし、該掻性剀はむ、ロ、ハ及び該掻性剀の
合蚈重量を基準ずしお2.0を超え䞔぀3.2以䞋
である量のモルの炭玠原子数12〜18の脂肪族ア
ルコヌルず〜10モルの゚チレンオキシドの反応
生成物。  モノマヌ混合物が70のアクリルアミドず30
のアクリル酞ずより成る特蚱請求の範囲第項
蚘茉の方法。  アクリル酞の60が䞭和されたものである特
蚱請求の範囲第項蚘茉の方法。
[Scope of Claims] 1. A self-rolling water-in-oil emulsion that is stable against freezing and thawing and contains a dispersion of finely granular copolymer particles therein, consisting of the following A, B, C, and D: ( A) 75% based on the total weight of A, B and C
An aqueous phase consisting of () and () in amounts ranging from 95% to 95%: () A water-soluble acrylamide-acrylic acid copolymer comprising 27% to 68% of the total weight of A. However, based on the total weight of the copolymer, 25
% to 35% is acrylic acid, the remainder is acrylamide, and further 50% to 75% of the acrylic acid is
% shall be neutralized; () water in an amount ranging from 32% to 73%, based on the total weight of A; (B) 5%, based on the total weight of A, B and C;
liquid hydrocarbon oil in an amount ranging from 25% to 25%; (C) 0.1 based on the total weight of A, B and C;
% to 15.0% of a water-in-oil emulsifier disposed between said aqueous phase and said liquid hydrocarbon; (D) based on the total weight of A, B, C and D;
A convertible surfactant comprising a reaction product of 1 mole of aliphatic alcohol having 12 to 18 carbon atoms and 6 to 10 moles of ethylene oxide in an amount ranging from more than 2.0% to less than 3.2%. 2. An emulsion according to claim 1, wherein the copolymer consists of 70% acrylamide and 30% acrylic acid. 3. The emulsion according to claim 1, in which 60% of the acrylic acid is neutralized. 4. An emulsion according to claim 1, wherein the convertible surfactant is formed by reacting 7 moles of ethylene oxide with 1 mole of a mixture of C12 to C14 chain alcohols. 5. The emulsion according to claim 1, wherein the aqueous phase comprises 67% water and 33% copolymer. 6. The emulsion according to claim 1, wherein the amount of convertible surfactant is 2.3%. 7. A method for preparing a self-converting emulsion stable upon freezing and thawing, characterized by comprising the following steps A, B, C, and C: (A) Mixing the following components A, B, C, and D. to form a water-in-oil emulsion, (a) 75% based on the total weight of a, b, and c.
A mixed solution of (a) and (b) in an amount of from 95% to 95%; (a) a mixture of acrylamide and acrylic acid representing 27% to 68% based on the total weight of (a), provided that the acrylic acid is neutralized by 50 to 75%; (b) water in the range of 32% to 73% based on the total weight of (a); (b) water in the range of 32% to 73% based on the total weight of 5% based on the total weight of
Liquid hydrocarbon oil in the range of 25% (C) 0.1 based on the total weight of A, B and C
(d) prior to free radical initiation consisting of sodium metabisulfite and a hydroperoxide; (B) polymerizing the above monomers under free radical polymerization conditions to form the acrylamide and (C) forming a water-in-oil emulsion containing fine particles of a neutralized copolymer of acrylic acid dispersed therein; (C) adding a convertible surfactant to the above-mentioned water-in-oil emulsion; a step of adding, provided that the activator is combined with 1 mole of an aliphatic alcohol having 12 to 18 carbon atoms in an amount exceeding 2.0% and not more than 3.2% based on the total weight of A, B, C and the activator; Reaction product of 6 to 10 moles of ethylene oxide. 8 Monomer mixture is 70% acrylamide and 30%
% of acrylic acid. 9. The method according to claim 7, wherein 60% of the acrylic acid is neutralized.
JP5133877A 1977-05-06 1977-05-06 Freezinggdefreezing stable self conversible waterrinnoil emulsion and manufacture Granted JPS53137875A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5133877A JPS53137875A (en) 1977-05-06 1977-05-06 Freezinggdefreezing stable self conversible waterrinnoil emulsion and manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5133877A JPS53137875A (en) 1977-05-06 1977-05-06 Freezinggdefreezing stable self conversible waterrinnoil emulsion and manufacture

Publications (2)

Publication Number Publication Date
JPS53137875A JPS53137875A (en) 1978-12-01
JPS6132047B2 true JPS6132047B2 (en) 1986-07-24

Family

ID=12884126

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5133877A Granted JPS53137875A (en) 1977-05-06 1977-05-06 Freezinggdefreezing stable self conversible waterrinnoil emulsion and manufacture

Country Status (1)

Country Link
JP (1) JPS53137875A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58180226A (en) * 1982-04-19 1983-10-21 Shiseido Co Ltd Water-in-oil type emulisified composition

Also Published As

Publication number Publication date
JPS53137875A (en) 1978-12-01

Similar Documents

Publication Publication Date Title
US4022736A (en) Freeze-thaw stable, self-inverting, water-in-oil emulsion
US4022731A (en) Freeze-thaw stable, self-inverting, water-in-oil emulsion
US3002960A (en) Polyacrylamide preparation
US3658772A (en) Acrylic acid polymers
US4800071A (en) Filtration aids for removal of calcium solids from aqueous phosphoric acid
JPS5982941A (en) Water in oil emulsion of water soluble cationic polymer and production thereof
JPS6369535A (en) Water in oil type emulsion and its production
EP0137728B1 (en) Water-in-oil emulsions having improved low temperature properties
JPS60122011A (en) Flocculation of coal particle and slime
JPS5916563B2 (en) Production method of water-soluble cationic polymer
JP3296580B2 (en) Method for producing ultra high molecular weight polymer emulsion
JP3886098B2 (en) Sludge dewatering agent and sludge dewatering method
Mehrotra et al. Graft copolymerization onto starch. II. Grafting of acrylonitrile to granular native potato starch by manganic pyrophosphate initiation. Effect of reaction conditions on grafting parameters
JPS6132047B2 (en)
US4115340A (en) Inversion of water-in-oil emulsions of polyacrylamide in hard water
JPS6132048B2 (en)
US2775579A (en) Low temperature polymerization process and composition
RU2447108C2 (en) Method of producing water self-dispersed metal oxide and hydroxide powder, powder and aqueous dispersion thus obtained, use thereof
JPS6254752A (en) Polymer composition in alkaline medium
JP4277124B2 (en) Drilling mud additive and drilling mud using the same
US3663490A (en) Acrylic acid-acrylamide-diacetone acrylamide terpolymer
JP2673428B2 (en) Low molecular weight acrylate-acrylamide copolymer, method for producing the same, and method for preventing formation of salt deposits from aqueous medium
AU615234B2 (en) Process for sulfoethylation of high molecular weight acrylamide containing polysoap latex polymers
CN111138592A (en) Carboxymethyl inulin graft polymer scale and corrosion inhibitor and preparation method thereof
CN106928407B (en) A kind of Early-strength polycarboxylate superplasticizer and preparation method thereof