JPS6131931A - Measuring method of oscillation wavelength of semiconductor laser - Google Patents
Measuring method of oscillation wavelength of semiconductor laserInfo
- Publication number
- JPS6131931A JPS6131931A JP15322184A JP15322184A JPS6131931A JP S6131931 A JPS6131931 A JP S6131931A JP 15322184 A JP15322184 A JP 15322184A JP 15322184 A JP15322184 A JP 15322184A JP S6131931 A JPS6131931 A JP S6131931A
- Authority
- JP
- Japan
- Prior art keywords
- semiconductor laser
- wavelength
- oscillation wavelength
- laser
- light
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000010355 oscillation Effects 0.000 title claims abstract description 32
- 239000004065 semiconductor Substances 0.000 title claims abstract description 27
- 238000000034 method Methods 0.000 title claims description 13
- 238000003384 imaging method Methods 0.000 claims description 7
- 230000008878 coupling Effects 0.000 claims description 6
- 238000010168 coupling process Methods 0.000 claims description 6
- 238000005859 coupling reaction Methods 0.000 claims description 6
- 238000005259 measurement Methods 0.000 claims description 2
- 238000007493 shaping process Methods 0.000 abstract description 2
- 238000010586 diagram Methods 0.000 description 6
- 230000003287 optical effect Effects 0.000 description 4
- 108091008695 photoreceptors Proteins 0.000 description 3
- 230000007274 generation of a signal involved in cell-cell signaling Effects 0.000 description 2
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical group [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- 230000004397 blinking Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 239000004570 mortar (masonry) Substances 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J9/00—Measuring optical phase difference; Determining degree of coherence; Measuring optical wavelength
Landscapes
- Physics & Mathematics (AREA)
- Spectroscopy & Molecular Physics (AREA)
- General Physics & Mathematics (AREA)
- Spectrometry And Color Measurement (AREA)
Abstract
Description
【発明の詳細な説明】
技術分野
本発明はレーザプリンタ等に使用される半導体レーザか
ら出射される光の波長測定方法に関する。DETAILED DESCRIPTION OF THE INVENTION Technical Field The present invention relates to a method for measuring the wavelength of light emitted from a semiconductor laser used in a laser printer or the like.
従来技術
レーザプリンタ等において、半導体レーザより、画像情
報信号に応じて音響光学変調器で変調されて出射された
画像情報再生用レーザ光で感光体表面を走査して、画像
情報信号に対応した画像を形成する場合、主走査は上記
再生光を画像幅に対応した角度の範囲偏向させることに
よって行なわれる。そのための偏向手段の1つとして、
ディスク上に円周方向に段階的に格子間隔を変化させた
ホログラム回折格子のファセットを複数個、円周上に配
列して成るホログラフィックスキャナ(通常ホロスキャ
ナと云う)が最近利用されるようになった。ホロスキャ
ナで画像情報を再生する場合は、ホロスキャナーを一定
の角速度で回転させながら再生光t=一定の入射角で一
定の位置でホログラム回折格子の7アセツトに入射させ
ると、回折格子の間隔に応じた回折角度で回折光が出射
し、ボロスキャナの回転に伴い回折格子間隔が順次変化
することにより回折光の出射方向が順次変化し、一つの
ファセット毎に回折光は一定の角度範囲を偏向し、その
光路に設けたf−θレンズによりf−θ特性が補正され
、結像点は感光体表面を等速度で直線的に移動し、所定
の画像幅の主走査が行なわれる。Conventional technology In laser printers and the like, the surface of a photoconductor is scanned with a laser beam for image information reproduction, which is emitted from a semiconductor laser after being modulated by an acousto-optic modulator according to the image information signal, thereby creating an image corresponding to the image information signal. When forming an image, main scanning is performed by deflecting the reproduction light in an angular range corresponding to the image width. As one of the deflection means for that purpose,
Recently, holographic scanners (usually called holoscanners) have come into use, which consist of multiple facets of hologram diffraction gratings arranged circumferentially on a disk with lattice spacing varying stepwise in the circumferential direction. became. When reproducing image information with a hologram scanner, when the hologram scanner is rotated at a constant angular velocity and the reproduced beam t is incident on the 7 assets of the hologram diffraction grating at a constant angle of incidence and a constant position, the interval between the diffraction gratings The diffracted light is emitted at the corresponding diffraction angle, and as the diffraction grating interval changes sequentially as the Boro scanner rotates, the emitting direction of the diffracted light changes sequentially, and the diffracted light is deflected within a certain angular range for each facet. However, the f-theta characteristic is corrected by an f-theta lens provided in the optical path, and the imaging point moves linearly on the surface of the photoreceptor at a constant speed, so that main scanning of a predetermined image width is performed.
ところで、半導体レーザ(1aser diode 、
以下LDと略す)は個々の製品毎に発振波長にバラツキ
がある。例えば可視光のJ、Dでは780nmがら80
0nm位の間に分布している。波長が変化すると、回折
格子による回折角が変化し、走査幅が変化する。したが
って、所定の画像幅からはみ出したり、縮まったりして
、通常の複写機における倍率誤差に相当する誤差が発生
する。これを補・正するために、画像情報信号を音響光
学変調器でレーザ光に打込むクロックの周波数(ドツト
に対する信号の間隔)を、LDの発振波長に応じて変化
させ、感光体上に書込まれるドツト間隔が常に一定にな
るようにして、走査幅が所定の画像幅に一致するように
している。したがって、この補正制御を行なうためにL
Dの発振波長を検知することが不可欠となる。By the way, semiconductor laser (1aser diode,
(hereinafter abbreviated as LD) has variations in oscillation wavelength for each individual product. For example, visible light J and D range from 780 nm to 80 nm.
It is distributed between about 0 nm. When the wavelength changes, the diffraction angle by the diffraction grating changes, and the scanning width changes. Therefore, the image may protrude from a predetermined image width or be shrunk, resulting in an error equivalent to the magnification error in a normal copying machine. In order to correct this, the frequency of the clock (interval of the signal with respect to the dots) at which the image information signal is injected into the laser beam by the acousto-optic modulator is changed according to the oscillation wavelength of the LD, and the image information signal is written on the photoreceptor. The interval between the inserted dots is always constant so that the scanning width matches a predetermined image width. Therefore, in order to perform this correction control, L
It is essential to detect the oscillation wavelength of D.
又、LDの発振波長は、個々の製品毎のバラツキ以外に
、LDの温度の変化によっても発信波長が変化すること
が文献等により知られている。現実にはLD自体の温度
は検知できないので、その周囲の温度を検知する。周囲
温度の変化とLDの発振波長の関係を示すと、第1図に
示す如く、周囲温度の変化に対して波長は階段的にシフ
トする。Further, it is known from literature that the oscillation wavelength of an LD changes not only due to variations among individual products but also due to changes in the temperature of the LD. In reality, the temperature of the LD itself cannot be detected, so the temperature of its surroundings is detected. The relationship between the change in ambient temperature and the oscillation wavelength of the LD is shown in FIG. 1, where the wavelength shifts stepwise with respect to the change in ambient temperature.
つまり、周囲温度がある温度の所では温度が極く僅か変
動しても波長が不連続的に変化する。この現像は波長と
び(波長のモードジャンプ)と云われる。波長のシフト
する範囲は、例えば周囲温度1℃の変化に対して0.3
n m程度と非常に狭いが、感光体上に書き込まれる
ドツトの間隔が不規則になったり、甚しい場合はドツト
が抜けたりする。In other words, at a certain ambient temperature, the wavelength changes discontinuously even if the temperature changes very slightly. This development is called wavelength skipping (wavelength mode jump). For example, the wavelength shift range is 0.3 for a 1°C change in ambient temperature.
Although the dots are very narrow, on the order of nm, the intervals between dots written on the photoreceptor may become irregular, or in severe cases, dots may fall out.
したがって、LDは波長のモードジャンプを考慮して波
長とびの起る温度の中間の安定な温度範囲で利用するこ
とが必要である。Therefore, it is necessary to consider the wavelength mode jump and use the LD in a stable temperature range between the temperature at which the wavelength jump occurs.
ところが、第1図に示したLDの周囲温度と波長のモー
ドジャンプの曲線は、レーザ光を変調する画像情報の画
像周波数によっても変化することが知られている。レー
ザプリンタによる画像は白黒ドツトの連続で画かれる。However, it is known that the curve of the LD ambient temperature and wavelength mode jump shown in FIG. 1 changes depending on the image frequency of image information that modulates the laser beam. Images produced by a laser printer are created as a series of black and white dots.
黒ベタ部ではドツトは全部黒であり、地の部分はドツト
は全部臼でLDは点滅しないのでDC(直流)であり周
波数は低い、1ドツト置きに白黒の繰返しになる場合は
周波数が最も高く、これを基本周波数と云う。実際の画
像情報では、種々の周波数が入り混ったものになる。画
像周波数が低いDCの場合はLDに電流を流し放しの状
態になるので、LDの周囲温度は低くてもLD内部の温
度は上昇し、第2図中の曲線の波長とび部にAで示す如
く、波長とびの起る点は周囲温度の低い方にずれること
になる。In the black solid area, all dots are black, and in the ground area, all dots are mortar and the LD does not blink, so it is DC (direct current) and the frequency is low. If black and white repeats every other dot, the frequency is the highest. , this is called the fundamental frequency. Actual image information contains a mixture of various frequencies. In the case of DC with a low image frequency, the current is left flowing through the LD, so even if the ambient temperature of the LD is low, the temperature inside the LD rises, as shown by A in the wavelength jump part of the curve in Figure 2. Thus, the point at which the wavelength jump occurs will shift toward the lower ambient temperature.
逆に、画像周波数が高い場合はLDは点滅を繰返し、電
流が頻繁に流れたり切れたりするのでLDの温度があま
り上らず、第2図中にBで示す如く、若干周囲温度の高
い所で波長とびが起る。したがってAとBとの間のハツ
チングを施した部分でLDを使用することは非常に危険
であり、隣合う2つの波長とび範囲の間の安定領域で使
用しなければならない。On the other hand, when the image frequency is high, the LD repeats blinking and the current flows on and off frequently, so the temperature of the LD does not rise very much. Wavelength skipping occurs. Therefore, it is very dangerous to use an LD in the hatched area between A and B, and it must be used in a stable region between two adjacent wavelength jump ranges.
LDの設定温度の判定基準は次の通りである。The criteria for determining the set temperature of the LD are as follows.
(a) 安定領域幅が広いこと。(温度制御が容易な
ため。)
(b) 同じ安定領域幅であれば温度が低いこと。(a) The stability region width is wide. (Because temperature control is easy.) (b) If the width of the stable region is the same, the temperature is low.
(周囲温度が低い程LDの寿命が長くなるため。)目的
本発明は、ホロスキャナを使用して走査を行なうレーザ
プリンタのLDの発振波長の変動の上記の実情にかんが
み、簡単な装置で精度高(LDの発振波長を測定する方
法及びLDの発振波長のモードジャンプの温度特性を得
るための周囲温度を変化させた発振波長測定方法を提供
することを目的とする。(The lower the ambient temperature, the longer the life of the LD.) Purpose: In view of the above-mentioned situation of fluctuations in the oscillation wavelength of the LD of a laser printer that performs scanning using a holo scanner, the present invention aims to improve accuracy with a simple device. The present invention aims to provide a method for measuring the oscillation wavelength of an LD and a method for measuring the oscillation wavelength by changing the ambient temperature in order to obtain the temperature characteristics of the mode jump of the LD's oscillation wavelength.
構成
本発明は上記目的を達成させるため、半導体レーザから
発散された光をカップリングレンズでは!平行なビーム
に整形し、このビームを回折格子に入射させ、得られた
回折ビームの結像位置の、発振波長が既知の半導体レー
ザからの光の同一手段による回折ビームの結像位置から
の偏倚量を検知することにより半導体レーザの発振波長
を測定す゛ることを特徴とする。Structure In order to achieve the above object, the present invention uses a coupling lens to capture light emitted from a semiconductor laser! Shaping the beam into a parallel beam, making this beam incident on a diffraction grating, and deflecting the imaging position of the obtained diffracted beam from the imaging position of the diffracted beam by the same means as that of light from a semiconductor laser with a known oscillation wavelength. It is characterized by measuring the oscillation wavelength of a semiconductor laser by detecting the amount.
上記の測定を半導体レーザの周囲温度を変化させて行な
うことにより、半導体レーザの発振波長の波長とびの温
度特性が得られる。By performing the above measurements while changing the ambient temperature of the semiconductor laser, the temperature characteristics of the wavelength jump of the oscillation wavelength of the semiconductor laser can be obtained.
以下、本発明を図面に基いて詳細に説明する。Hereinafter, the present invention will be explained in detail based on the drawings.
第3図は本発明の方法の理論を説明する図であるd
LDlから出射されたレーザ光を格子間隔dの回折格子
2に入射角αで入射させた・場合回折角βで回折光が出
射したとする。その場合、レーザ光の波長をλとすれば
、回折格子の基本的な関係式%式%
回折光の光路の回折格子2による回折位置から遠く離れ
た位置にポジションセンサ(又はC0D)3を配置し、
上記(1)式により測定された発振波長が夫々2つの値
例えば780nmと800nmを有する2つのレーザ光
の回折格子2による回折光の夫々の入射点をP、Qとし
、その間を等分してリニアーに波長の目盛を打っておけ
ば、発振波長を測定しようとするLDより発せられたレ
ーザ光線の回折格子2によ名回折ビームがポジションセ
ンサ3に入射する点の上記の目盛りを読み取ることによ
りそのLDの発振波長は直ちに測定される。FIG. 3 is a diagram explaining the theory of the method of the present invention. When the laser light emitted from the LD1 is incident on the diffraction grating 2 with the grating spacing d at an incident angle α, the diffracted light is emitted at a diffraction angle β. Suppose we did. In that case, assuming that the wavelength of the laser beam is λ, the position sensor (or C0D) 3 is placed at a position far away from the diffraction position by the diffraction grating 2 on the optical path of the diffracted light. death,
The incident points of the diffracted light by the diffraction grating 2 of two laser beams whose oscillation wavelengths measured by the above equation (1) have two values, for example, 780 nm and 800 nm, respectively, are defined as P and Q, and the points between them are equally divided. If you have a linear wavelength scale, you can measure the oscillation wavelength by reading the scale at the point where the diffraction beam of the laser beam emitted from the LD enters the position sensor 3. The oscillation wavelength of the LD is immediately measured.
線分P、Qの回折格子20回折点に対して張る角度は非
常に小さいので、上記の方法で誤差は実際上ないと云っ
て差支えない。Since the angles of the line segments P and Q with respect to the 20 diffraction points of the diffraction grating are very small, it is safe to say that there is practically no error in the above method.
LDの発振波長の波長とびの温度特性を得るには上記の
方法で温度を変化させて測定すればよい。In order to obtain the temperature characteristics of the wavelength jump of the LD's oscillation wavelength, the temperature may be varied and measured using the method described above.
さらに、画像周波数が波長とびの温度特性に及ぼす影響
を検べるには、LDに画像情報に相当する変調信号を与
える装置を付加して、変調しないDCの場合と変調した
場合とについて温度を変化させて測定すればよい。Furthermore, in order to examine the influence of the image frequency on the temperature characteristics of wavelength skipping, a device that provides a modulation signal corresponding to the image information is added to the LD, and the temperature is measured for the case of unmodulated DC and the case of modulation. All you have to do is change it and measure it.
第4図は、上記の理論に基いてLD発振波長及びその温
度特性を計測する装置の一例を図式的に示すものである
。FIG. 4 schematically shows an example of an apparatus for measuring the LD oscillation wavelength and its temperature characteristics based on the above theory.
LDlはカップリングレンズ4、LDの周囲温度を制御
するペルチェ素子5、LD周囲温度を計測するサーミス
タ6、これらを収納するケーシング7及び放熱器8とと
もにLDユニット20を構成している。さらに、LDl
には画像情報信号に相当する変調信号を与えるだめの変
調信号発生ボード9がLD駆動ボード10を介して接続
されている。The LD1 constitutes an LD unit 20 together with a coupling lens 4, a Peltier element 5 that controls the ambient temperature of the LD, a thermistor 6 that measures the ambient temperature of the LD, a casing 7 that houses these, and a radiator 8. Furthermore, L.D.L.
A modulation signal generation board 9 for providing a modulation signal corresponding to an image information signal is connected via an LD drive board 10 to.
LDlより発散し、カップリングレンズ4では!平行な
光束に整形されたレーザ光の光路には光量調整用のニュ
ートラルデンシティフィルタ11及び回折格子2が設け
られている。回折格子2により回折された回折光の光路
にはf−θレンズ12が設けられ、その結像位置にはポ
ジションセンサ6が設けられている。LDユニット中に
設けられたサーミスタ6の出力とポジションセンサ3の
出力はデータロガ−13に入力されその出力は出力部1
4よりディスプレイ15に表示されるとともにプリント
アウトされるようになっている。Divergent than LDl, with coupling lens 4! A neutral density filter 11 for adjusting the amount of light and a diffraction grating 2 are provided in the optical path of the laser beam that has been shaped into a parallel beam. An f-theta lens 12 is provided on the optical path of the diffracted light diffracted by the diffraction grating 2, and a position sensor 6 is provided at the imaging position thereof. The output of the thermistor 6 and the position sensor 3 provided in the LD unit are input to the data logger 13, and the output is sent to the output section 1.
4, it is displayed on the display 15 and printed out.
変調信号発生ボード9により発生される変調信号は例え
ばIM−HzとDCとを一定のピッチPで繰返し、通常
の画像情報を代表しうる信号とされている。The modulation signal generated by the modulation signal generation board 9 is a signal that repeats, for example, IM-Hz and DC at a constant pitch P, and can represent normal image information.
なおデータロガ13以下の表示装置の代りに、図中に破
線で示したようにXYレコーダ16を使用し、廿−ミス
タ6の出力をサーミスタ電圧変換ボード17を介してX
Yレコーダ1乙のX軸に入力し、ポジションセンサ3の
出力をXYレコーダ16のY軸に入力し、LD周囲温度
に対するLD発振波長の関係を表示するようにすること
もできる0
なお、前記の変調信号のピッチPは、使用するデータロ
ガやX−Yレコーダの仕様に応じて、例えばデータロガ
−使用時には1秒、X−Yレコーダ使用時には輪から1
秒の間の任意の値に設定する等適宜選定すればよい。Note that instead of the display device below the data logger 13, an XY recorder 16 is used as shown by the broken line in the figure, and the output of the mister 6 is transferred to the XY recorder 16 via the thermistor voltage conversion board 17.
It is also possible to input the output of the position sensor 3 to the X axis of the Y recorder 1B and input the output of the position sensor 3 to the Y axis of the XY recorder 16 to display the relationship of the LD oscillation wavelength to the LD ambient temperature. The pitch P of the modulation signal depends on the specifications of the data logger or X-Y recorder used, for example, 1 second when using a data logger, and 1 second from the ring when using an X-Y recorder.
It may be selected as appropriate, such as setting it to an arbitrary value between seconds.
この変調信号でLDから出射されるレーザ光を変調させ
、その間ペルチェ素子5にある一定の電流を流し、LD
の周囲温度を例えば25℃から40℃に序々に上げて行
き、周囲温度をサーミスタ6で波長をポジションセンサ
3で検出し両者の出力をデータロガ16又はXYレコー
ダ16に画かせることにより、被検LDの発振周波数及
び波長とびの温度特性及びそれに対する画像周波数の影
響を測定することができる。This modulation signal modulates the laser light emitted from the LD, and during this period a certain current is passed through the Peltier element 5, and the LD
By gradually increasing the ambient temperature of the LD from 25°C to 40°C, for example, detecting the ambient temperature with the thermistor 6 and the wavelength with the position sensor 3, and recording the outputs of both on the data logger 16 or the XY recorder 16, It is possible to measure the temperature characteristics of the oscillation frequency and wavelength jump, and the influence of the image frequency on them.
効果
以上の如く、本発明によれば簡単な操作で、レーザプリ
ンタ等に使用される半導体レーザの発振波長とその波長
とびの温度特性を精度高く測定することができる。Effects As described above, according to the present invention, the oscillation wavelength of a semiconductor laser used in a laser printer or the like and the temperature characteristics of the wavelength jump can be measured with high accuracy by simple operations.
第1図は半導体レーザの周囲゛温度の変化と半導体レー
ザの発振波長の変化の関係を定性的に示す曲線図、第2
図は画像周波数が半導体レーザの発振波長の波長とびに
及ぼす影響を示す曲線図、第3図は本発明の方法の理論
を説明するための図式図、第4図は本発明の方法を実施
するための測定装置の構成の一例を示す図式図である。
1・・・半導体レーザ 2・・・回折格子6・・・
ポジションセンサ(回折光結像位置検知手段)4・・・
カップリングレンズ
9・・・レーザビーム変調手段
13・・・データロガ
16・・・XYレコーダ
第1図
周囲温度
第3図
半導体レーザ
第2図
周囲温度Figure 1 is a curve diagram qualitatively showing the relationship between changes in the ambient temperature of a semiconductor laser and changes in the oscillation wavelength of the semiconductor laser.
The figure is a curve diagram showing the influence of the image frequency on the wavelength jump of the oscillation wavelength of the semiconductor laser, Figure 3 is a schematic diagram for explaining the theory of the method of the present invention, and Figure 4 is a diagram showing the method of the present invention being implemented. 1 is a schematic diagram showing an example of the configuration of a measuring device for 1... Semiconductor laser 2... Diffraction grating 6...
Position sensor (diffraction light imaging position detection means) 4...
Coupling lens 9...Laser beam modulation means 13...Data logger 16...XY recorder Figure 1 Ambient temperature Figure 3 Semiconductor laser Figure 2 Ambient temperature
Claims (3)
ンズでほゞ平行なビームに整形し、このビームを回折格
子に入射させ、得られた回折ビームの結像位置の、発振
波長が既知の半導体レーザからの光の同一手段による回
折ビームの結像位置からの偏倚量を検知することにより
、半導体レーザの発振波長を測定することを特徴とする
半導体レーザの発振波長測定方法。(1) The light emitted from the semiconductor laser is shaped into a nearly parallel beam using a coupling lens, and this beam is made incident on a diffraction grating. 1. A method for measuring an oscillation wavelength of a semiconductor laser, characterized in that the oscillation wavelength of the semiconductor laser is measured by detecting the amount of deviation of the diffracted beam from the imaging position of the light from the laser by the same means.
ンズでほゞ平行なビームに整形し、このビームを回折格
子に入射させ、得られた回折ビームの結像位置の、発振
波長が既知の半導体レーザからの光の同一手段による結
像位置からの偏倚量を検知することにより半導体レーザ
の発振波長の測定を行ないこの測定を半導体レーザの周
囲温度を変化させて行なつて、半導体レーザの発振波長
の波長とびの温度特性を得るようにしたことを特徴とす
る半導体レーザの発振波長測定方法。(2) Shape the light diverging from the semiconductor laser into a nearly parallel beam using a coupling lens, make this beam incident on a diffraction grating, and place the image of the resulting diffracted beam on a semiconductor whose oscillation wavelength is known. The oscillation wavelength of the semiconductor laser is measured by detecting the amount of deviation of the light from the laser from the imaging position by the same means.This measurement is performed while changing the ambient temperature of the semiconductor laser, and the oscillation wavelength of the semiconductor laser is determined by A method for measuring the oscillation wavelength of a semiconductor laser, characterized in that the temperature characteristics of the wavelength jump are obtained.
てレーザ光を発振し、半導体レーザの発振波長のモード
ジャンプの温度特性を得ることを特徴とする特許請求の
範囲第2項に記載の方法。(3) The method according to claim 2, characterized in that the semiconductor laser is modulated by changing the image frequency to oscillate laser light, and the temperature characteristics of the mode jump of the oscillation wavelength of the semiconductor laser are obtained. Method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP15322184A JPS6131931A (en) | 1984-07-25 | 1984-07-25 | Measuring method of oscillation wavelength of semiconductor laser |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP15322184A JPS6131931A (en) | 1984-07-25 | 1984-07-25 | Measuring method of oscillation wavelength of semiconductor laser |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS6131931A true JPS6131931A (en) | 1986-02-14 |
Family
ID=15557697
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP15322184A Pending JPS6131931A (en) | 1984-07-25 | 1984-07-25 | Measuring method of oscillation wavelength of semiconductor laser |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6131931A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02124435A (en) * | 1988-07-06 | 1990-05-11 | Kuraray Co Ltd | Peak wavelength detector, light-source selecting apparatus provided with said detector and peak-wavelength detecting method |
JPH02253126A (en) * | 1989-03-27 | 1990-10-11 | Kuraray Co Ltd | Device and method for detecting wavelength of light |
JP2005062201A (en) * | 2004-10-29 | 2005-03-10 | Yokogawa Electric Corp | Spectroscope |
-
1984
- 1984-07-25 JP JP15322184A patent/JPS6131931A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02124435A (en) * | 1988-07-06 | 1990-05-11 | Kuraray Co Ltd | Peak wavelength detector, light-source selecting apparatus provided with said detector and peak-wavelength detecting method |
JPH02253126A (en) * | 1989-03-27 | 1990-10-11 | Kuraray Co Ltd | Device and method for detecting wavelength of light |
JP2005062201A (en) * | 2004-10-29 | 2005-03-10 | Yokogawa Electric Corp | Spectroscope |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4279472A (en) | Laser scanning apparatus with beam position correction | |
US4375067A (en) | Semiconductor laser device having a stabilized output beam | |
US5291318A (en) | Holographic member for a real-time clock in a raster output scanner | |
EP0193742B1 (en) | Wavelength scanning interferometry and interferometer employing laser diode | |
US4733253A (en) | Apparatus and method for detecting and eliminating diode laser mode hopping | |
JPH01500226A (en) | scanning device | |
JP5151443B2 (en) | Optical scanning device, optical scanning method, and image forming apparatus | |
JPS625677A (en) | Frequency-stabilized semiconductor laser element | |
JPS6131931A (en) | Measuring method of oscillation wavelength of semiconductor laser | |
JP4438300B2 (en) | Optical scanning apparatus, image forming apparatus, and image forming system | |
CA2077813C (en) | Apparatus and method for spot position control in an output device employing a linear array of light sources | |
JP2008153379A (en) | Wavelength detecting device, and wavelength detecting method | |
JP2547826B2 (en) | Interferometer using multimode semiconductor laser | |
US4868835A (en) | Energy modulatable laser unit | |
JP2002019184A (en) | Laser beam printer and its manufacturing method | |
JPS6135328A (en) | Optical device for adjustement and oscillation wavelength measurement of laser diode unit | |
JP2911523B2 (en) | Laser doppler speedometer | |
KR940011274B1 (en) | Wave change measuring apparatus of laser diode | |
JPS6022329Y2 (en) | optical scanning device | |
EP0528543A1 (en) | A method and apparatus for controlling the position of a spot of light | |
JPH04235520A (en) | Optical scanning device | |
JPS6250810A (en) | Photoscanning method | |
JPS61162023A (en) | Device for correcting error of magnification | |
JP2877986B2 (en) | Optical scanning device and bar code reader | |
JPH03149515A (en) | Optical scanner |