JPS6131837B2 - - Google Patents

Info

Publication number
JPS6131837B2
JPS6131837B2 JP55032768A JP3276880A JPS6131837B2 JP S6131837 B2 JPS6131837 B2 JP S6131837B2 JP 55032768 A JP55032768 A JP 55032768A JP 3276880 A JP3276880 A JP 3276880A JP S6131837 B2 JPS6131837 B2 JP S6131837B2
Authority
JP
Japan
Prior art keywords
suppression pool
steam
blowdown
during
pool
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55032768A
Other languages
Japanese (ja)
Other versions
JPS56129890A (en
Inventor
Sunao Hayagumo
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP3276880A priority Critical patent/JPS56129890A/en
Publication of JPS56129890A publication Critical patent/JPS56129890A/en
Publication of JPS6131837B2 publication Critical patent/JPS6131837B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Structure Of Emergency Protection For Nuclear Reactors (AREA)

Description

【発明の詳細な説明】 本発明は、沸騰水型サプレツシヨン構造に於い
て、逃がし安全弁作動時、及び冷却材喪失事故時
等のブローダウン時の蒸気凝縮効率の向上、およ
び、ブローダウン時の格納容器および建屋側への
ブローダウン荷重の低減、更には地震時のサプレ
ツシヨンプール水の揺動防止に関して大幅な改善
をはかることが可能なサプレツシヨンプール構造
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention aims to improve steam condensation efficiency during blowdown such as when a relief safety valve is activated and during a coolant loss accident, and to prevent storage during blowdown in a boiling water type suppression structure. The present invention relates to a suppression pool structure that can significantly improve the reduction of blowdown loads on containers and buildings, as well as the prevention of shaking of suppression pool water during earthquakes.

従来の原子力発電所のサプレツシヨンプール構
造の一例を第1図および第2図にもとづき説明す
る。
An example of a conventional suppression pool structure for a nuclear power plant will be explained based on FIGS. 1 and 2.

第1図は原子力発電所原子炉建屋の断面図であ
るが、ドライウエル7によつて仕切られたドライ
ウエル空間部とサプレツシヨンプール8は格納容
器2内に含まれており、ドライウエル下部に放射
状にあけられたベント管9により連絡されてい
る。
FIG. 1 is a cross-sectional view of the reactor building of a nuclear power plant. The dry well space separated by the dry well 7 and the suppression pool 8 are contained within the containment vessel 2, and the lower part of the dry well The vent pipes 9 are connected to each other by vent pipes 9 that are radially opened.

主蒸気配管破断時等によるいわゆる冷却材喪失
事故時、ドライウエル空間部に放出された高温高
圧の蒸気および空気はベント管9を通つて急激に
サプレツシヨンプール8に放出され、プール水に
より冷却凝縮される構造となつている。
In the event of a so-called loss of coolant accident due to main steam piping rupture, etc., high-temperature, high-pressure steam and air released into the dry well space are suddenly released into the suppression pool 8 through the vent pipe 9, where they are cooled by pool water. It has a condensed structure.

冷却材喪失事故時等の蒸気ブローダウン時には
ドライウエル空間部の膨大な量の高温高圧蒸気が
ベント管9を通してプール水により、凝縮される
ためサプレツシヨンプール8の必要水量は3000ト
ン〜4000トンにも及びこのためサプレツシヨンプ
ール8は地震時にいわゆるプール水揺動が大きく
なり、このための動水圧によりドライウエル7お
よび格納容器2等の基部強度上の影響が大きいと
いわれている。
During steam blowdown such as in the event of a loss of coolant accident, a huge amount of high-temperature, high-pressure steam in the dry well space is condensed by pool water through the vent pipe 9, so the amount of water required for the suppression pool 8 is 3000 to 4000 tons. For this reason, the suppression pool 8 undergoes large so-called pool water fluctuations during an earthquake, and the resulting dynamic water pressure is said to have a large effect on the strength of the base of the dry well 7, containment vessel 2, etc.

第2図には第1図におけるA−A断面を示す
が、原子炉建屋1の中心より放射状に設置された
ベント管9より蒸気ブローダウン時に高圧凝縮流
が直接的に格納容器2側に放出されるため格納容
器2に動的荷重が伝わり、格納容器の設計荷重と
して大きな影響を与えていた。又、逃がし安全弁
は原子炉の異常な圧力上昇を防止する為に、主蒸
気管に逃し安全弁が設置されており、その排気管
はサプレツシヨンプール8の水中にのび、排気装
置10を介して蒸気を水中に放出するようになつ
ている。排気装置としては、水平に向いた2個の
開口を有するものが用いられていたが、この様な
構造では気泡圧力脈動が大きいという欠点を有し
ていた。
Figure 2 shows the A-A cross section in Figure 1, and high-pressure condensed flow is directly discharged to the containment vessel 2 side during steam blowdown from the vent pipes 9 installed radially from the center of the reactor building 1. As a result, dynamic loads were transmitted to the containment vessel 2, which had a large impact on the design load of the containment vessel. In addition, a relief safety valve is installed in the main steam pipe in order to prevent an abnormal pressure rise in the reactor, and its exhaust pipe extends into the water of the suppression pool 8 and is passed through the exhaust system 10. It is designed to release steam into the water. As an exhaust device, one having two horizontally oriented openings has been used, but such a structure has the drawback of large bubble pressure pulsations.

本発明は、上記の点にかんがみ、サプレツシヨ
ンプール水の地震時の揺動防止と蒸気ブローダウ
ン荷重の低減、さらには蒸気凝縮作用の効率向上
をはかれるようなサプレツシヨンプール構造を提
供することを目的とする。
In view of the above-mentioned points, the present invention provides a suppression pool structure that can prevent the water in the suppression pool from shaking during an earthquake, reduce the steam blowdown load, and improve the efficiency of steam condensation. The purpose is to

以下、本発明の一実施例を図面に基づいて説明
する。第3図は本発明の一実施例を示すサプレツ
シヨンプール部平面図、第4図は本発明を示す詳
細図、第5図は本発明の一実施例を示す断面図で
ある。図に於いて、10は逃がし安全弁排気装
置、11は分流板、12は蒸気放出開口である。
Hereinafter, one embodiment of the present invention will be described based on the drawings. FIG. 3 is a plan view of a suppression pool portion showing one embodiment of the present invention, FIG. 4 is a detailed view showing the present invention, and FIG. 5 is a sectional view showing one embodiment of the present invention. In the figure, 10 is a relief safety valve exhaust device, 11 is a flow divider plate, and 12 is a steam release opening.

本発明のサプレツシヨンプール構造に於いて
は、原子炉建屋1の中心より放射状にドライウエ
ル7に配置されたベント管9の中心線上に蒸気ブ
ローダウン時及び逃がし安全弁作動時の蒸気流を
2方向に分流させる機能を有する2重の分流板1
1を有し、かつ、分流板の間に逃がし安全弁排気
装置10を有した構造となつている。
In the suppression pool structure of the present invention, the steam flow during steam blowdown and when the safety relief valve is activated is directed onto the center line of the vent pipe 9 which is arranged radially in the dry well 7 from the center of the reactor building 1. Double flow divider plate 1 that has the function of diverting flow in different directions
1, and has a relief safety valve exhaust device 10 between the flow divider plates.

ドライウエル空間部より冷却材喪失事故時放出
される高温高圧蒸気及び逃がし安全弁作動時の高
温高圧蒸気はベント管9及び逃がし安全弁排気装
置10を通り、第4図に示す破線の如くサプレツ
シヨンプール内に放出され凝縮されるが、破線で
示すように格納容器2に取付けられた分流板11
によつてその流線は大きく2分される。お互いに
隣接したベント管9、分流板11、逃がし安全弁
排気装置11の上記機能により分流された凝縮流
はぶつかり合い施回しつつかく拌される。この
為、高温高圧蒸気の凝縮効率が向上すると共に、
蒸気ブローダウン時及び逃がし安全弁作動時の放
出流は分流板11によつて2分され、隣接流同志
がぶつかり合うことによつて放出流のエネルギー
が軽減される効果をもち、この為格納容器2側へ
のブローダウン等の動荷重は大幅に軽減される。
High-temperature, high-pressure steam released from the dry well space in the event of a loss of coolant accident and high-temperature, high-pressure steam when the relief safety valve is activated passes through the vent pipe 9 and the relief safety valve exhaust system 10, and is discharged into the suppression pool as shown by the broken line in Fig. 4. However, as shown by the broken line, the flow dividing plate 11 attached to the containment vessel 2
The streamline is roughly divided into two by . Due to the above functions of the vent pipe 9, the flow dividing plate 11, and the relief safety valve exhaust device 11, which are adjacent to each other, the divided condensed flows collide with each other and are stirred. For this reason, the condensation efficiency of high-temperature, high-pressure steam improves, and
The discharge flow during steam blowdown and when the relief safety valve is activated is divided into two by the flow divider plate 11, and the energy of the discharge flow is reduced by the collision of adjacent flows. Dynamic loads such as blowdown to the sides are significantly reduced.

又、一方、本発明のサプレツシヨンプール構造
によれば、従来構造と全く同一容量のプール水の
ままサプレツシヨンプール部が分流板11によつ
て部分的に間仕切りされた構造となるため、地震
時には分流板11が制振効果を有する制振板とし
て働き、プール水の揺動部分はあたかも格納容器
2の径が小さくなつた場合としてしか存在しなく
なる。従つて地震時のプール水揺動による動荷重
は大幅に軽減され、格納容器2及びドライウエル
7の設計荷重の低減に大きく貢献することとな
る。
On the other hand, according to the suppression pool structure of the present invention, the suppression pool part is partially partitioned by the flow divider plate 11, with the same capacity of pool water as in the conventional structure. In the event of an earthquake, the flow divider plate 11 acts as a damping plate having a damping effect, and the swinging portion of the pool water only exists as if the diameter of the containment vessel 2 had become smaller. Therefore, the dynamic load caused by the shaking of the pool water during an earthquake is significantly reduced, which greatly contributes to reducing the design loads of the containment vessel 2 and dry well 7.

又、逃がし安全弁作動時に於ける蒸気凝縮効果
は上記の如く従来構造と大差なく確保出来、か
つ、逃がし安全弁作動時の動荷重についても、前
記の如く大幅に軽減出来る。
Furthermore, the steam condensation effect when the safety relief valve is activated can be ensured as described above, not much different from that of the conventional structure, and the dynamic load when the safety relief valve is activated can be significantly reduced as described above.

以上のように、本発明のサプレツシヨンプール
構造によれば、従来構造のサプレツシヨンプール
の容量、形状を変更することなく、分流板11と
逃がし安全弁排気装置10との組合せによつて容
易にその機能効上と安全対策を発揮する事の出来
る特徴を有している。又、冷却材喪失事故時、逃
がし安全弁排気装置10に直接ブローダウン荷重
が加わらず、逃がし安全弁排気装置10の機能が
維持出来るというメリツトを有している。
As described above, according to the suppression pool structure of the present invention, the combination of the flow divider plate 11 and the relief safety valve exhaust device 10 can be easily performed without changing the capacity or shape of the suppression pool of the conventional structure. It has characteristics that allow it to demonstrate its functional effectiveness and safety measures. Further, in the event of a loss of coolant accident, there is an advantage that no blowdown load is directly applied to the safety relief valve exhaust system 10, and the function of the safety safety valve exhaust system 10 can be maintained.

本発明のサプレツシヨンプール構造によれば、
冷却材喪失事故時の蒸気ブローダウン時及び逃が
し安全弁作動時の蒸気放出時の蒸気凝縮効率の向
上、ブローダウン時等の動荷重の大幅低減、更に
は地震時のサプレツシヨンプール水の揺動防止に
よる動水荷重の低減が可能となり、又、冷却材喪
失事故時、逃がし安全弁排気装置に直接ブローダ
ウン荷重が作用しなくなるというメリツトを有
し、極めて高機能でかつ安全性を有するサプレツ
シヨンプール構造を得ることが出来る。
According to the suppression pool structure of the present invention,
Improved steam condensation efficiency during steam blowdown during coolant loss accidents and when steam is released when the safety relief valve is activated, significantly reduces dynamic loads during blowdown, and furthermore, shakes suppression pool water during earthquakes. This is an extremely highly functional and safe suppression system that has the advantage of reducing hydraulic loads through prevention, and also prevents blowdown loads from acting directly on the safety relief valve exhaust system in the event of a loss of coolant accident. You can get a pool structure.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図および第2図は、従来のサプレツシヨン
プール構造を説明する図、第3図は本発明による
サプレツシヨンプール構造を説明する図、第4図
は本発明によるサプレツシヨンプール構造の詳細
と効果を説明する図、第5図は本発明の一実施例
を示す断面図である。 1……原子炉建屋、2……格納容器、3……ウ
エアウオール、4……圧力容器ペデスタル、5…
…熱しやへい壁、6……原子炉圧力容器、7……
ドライウエル、8……サプレツシヨンプール、9
……ベント管、10……逃がし安全弁排気装置、
11……分流板、12……蒸気放出開口。
1 and 2 are diagrams for explaining a conventional suppression pool structure, FIG. 3 is a diagram for explaining a suppression pool structure according to the present invention, and FIG. 4 is a diagram for explaining a suppression pool structure according to the present invention. FIG. 5 is a sectional view showing an embodiment of the present invention. 1... Reactor building, 2... Containment vessel, 3... Ware wall, 4... Pressure vessel pedestal, 5...
...heat-resistant wall, 6... reactor pressure vessel, 7...
Dry well, 8...Suppression pool, 9
...Vent pipe, 10...Relief safety valve exhaust device,
11...Broadcast plate, 12...Steam release opening.

Claims (1)

【特許請求の範囲】[Claims] 1 原子力発電所のサプレツシヨンプールを有す
る原子炉格納容器に於いて、ベント管の中心線上
の対応するサプレツシヨンプールに、2重の分流
板を設け、かつ、2重の分流板の間に逃がし安全
弁排気装置を設置する事を特徴とした原子力発電
所原子炉建屋のサプレツシヨンプール。
1. In a reactor containment vessel with a suppression pool in a nuclear power plant, a double flow divider plate is installed in the corresponding suppression pool on the center line of the vent pipe, and a relief valve is installed between the double flow divider plates. A suppression pool in a nuclear power plant reactor building that is characterized by the installation of a safety valve exhaust system.
JP3276880A 1980-03-17 1980-03-17 Suppression pool of nuclear power plant building Granted JPS56129890A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3276880A JPS56129890A (en) 1980-03-17 1980-03-17 Suppression pool of nuclear power plant building

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3276880A JPS56129890A (en) 1980-03-17 1980-03-17 Suppression pool of nuclear power plant building

Publications (2)

Publication Number Publication Date
JPS56129890A JPS56129890A (en) 1981-10-12
JPS6131837B2 true JPS6131837B2 (en) 1986-07-23

Family

ID=12368015

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3276880A Granted JPS56129890A (en) 1980-03-17 1980-03-17 Suppression pool of nuclear power plant building

Country Status (1)

Country Link
JP (1) JPS56129890A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2985844B1 (en) * 2012-01-18 2014-03-14 Dcns IMMERSE ENERGY PRODUCTION MODULE
FR2985846B1 (en) * 2012-01-18 2014-03-14 Dcns IMMERSE MODULE OF GENERATION OF ELECTRIC ENERGY
FR2985843B1 (en) * 2012-01-18 2014-03-14 Dcns MODULE FOR GENERATING ELECTRICAL ENERGY
FR2985848B1 (en) * 2012-01-18 2014-03-14 Dcns SUBMARINE OR SUBMARINE MODULE FOR GENERATING ELECTRICAL ENERGY
FR2985847B1 (en) * 2012-01-18 2014-03-14 Dcns UNDERWATER MODULE FOR THE PRODUCTION OF ELECTRICAL ENERGY

Also Published As

Publication number Publication date
JPS56129890A (en) 1981-10-12

Similar Documents

Publication Publication Date Title
KR102597607B1 (en) Reactor effective core melt core catcher
US3937651A (en) Nuclear reactor facility
JPH09500207A (en) Core melt collection and cooling system
US4277309A (en) Nuclear reactor installation
US4698202A (en) Process for installation for the controlled discharge of activity from a reactor containment structure of a gas-cooled nuclear power plant
JPS6131837B2 (en)
US4061535A (en) Industrial technique
US4297167A (en) Nuclear reactor installation
US6173027B1 (en) Primary containment vessel
US3725198A (en) Nuclear containment system
US5301215A (en) Nuclear reactor building
JPS6321595A (en) Nuclear reactor container
US5442667A (en) Reactor pressure vessel with limited failure zones
JPS6133157B2 (en)
JP2004085234A (en) Facility for containing nuclear reactor
JPS6333115B2 (en)
RU2100854C1 (en) Nuclear reactor core trap
JP3658510B2 (en) Primary containment vessel
JPS6321594A (en) Nuclear reactor container
RU2106025C1 (en) Shielding system for water-moderated reactor containment
JP2592888B2 (en) Reactor containment vessel
RU2074423C1 (en) Face protection of nuclear channel-type reactors
JPH02129590A (en) Nuclear reactor storage containment
JPS59174788A (en) Main steam escaping device
JPS6223276B2 (en)