JPS6131048B2 - - Google Patents

Info

Publication number
JPS6131048B2
JPS6131048B2 JP20648281A JP20648281A JPS6131048B2 JP S6131048 B2 JPS6131048 B2 JP S6131048B2 JP 20648281 A JP20648281 A JP 20648281A JP 20648281 A JP20648281 A JP 20648281A JP S6131048 B2 JPS6131048 B2 JP S6131048B2
Authority
JP
Japan
Prior art keywords
dithionite
reaction
liquid
oxide
methanol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP20648281A
Other languages
Japanese (ja)
Other versions
JPS58110407A (en
Inventor
Satoshi Arakawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Gas Chemical Co Inc
Original Assignee
Mitsubishi Gas Chemical Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Gas Chemical Co Inc filed Critical Mitsubishi Gas Chemical Co Inc
Priority to JP20648281A priority Critical patent/JPS58110407A/en
Publication of JPS58110407A publication Critical patent/JPS58110407A/en
Publication of JPS6131048B2 publication Critical patent/JPS6131048B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は亜二チオン酸塩の製造方法に関し、詳
言すれば亜二チオン酸塩の結晶を分離した液又
は結晶の洗浄液を亜二チオン酸塩の製造に循環し
て有効に再使用する方法に関する。 水−有機溶媒中でギ酸化合物、アルカリ化合物
及び無水亜硫酸から亜二チオン酸塩を製造する所
謂ギ酸塩法において未反応原料を有効に利用する
ため反応後亜二チオン酸塩の結晶を分離した液
を再使用することが試みられたが、得られる亜二
チオン酸塩の収率及び純度が著しく低下し実用不
可能だつた。そこで、液中に残存するギ酸塩を
ギ酸メチルとして回収する方法が提案されたが、
この場合酸処理下で加熱しながら蒸留するため装
置の材質に高度のものを必要とし、またギ酸メチ
ル回収後に装置内に多量の固形物が残留して取扱
いが困難となり、設備費の負担が非常に大きいの
で実用化には不向きである。 一方、前述した液の再使用を困難にしている
原因が亜二チオン酸塩の分解によつて副生するチ
オ硫酸塩が液に溶存しておりこれが亜二チオン
酸塩の生成を阻害し分解を促進することにあるこ
とから液中のチオ硫酸塩を除去する方法が堤案
されている。例えば、チオ硫酸塩を酸化分解する
方法があるが、この場合液を酸性にしたり蒸発
乾固したりする等の単位操作が多いので設備費が
嵩み加熱用エネルギーを多消費し実用的でない。 本発明はこれらの欠点を克服すべく研究した結
果完成したものであり、その構成は、水−有機溶
媒中でギ酸化合物、アルカリ化合物および無水亜
硫酸から亜二チオン酸塩を製造するに当り、反応
の最終段階において反応液にエポキシ化合物また
は式R−Xで表わされるハロゲン化炭化水素また
はそれらの2種以上からなる混合物を添加し、次
いで亜二チオン酸塩の結晶を分離した液または
有機溶媒で洗浄した結晶の洗浄液またはそれらの
混合液を前記亜二チオン酸塩の製造に循環して再
使用することを特徴とする。 本発明に係る亜二チオン酸塩の製造方法を詳細
に説明する。先ず、ギ酸塩法においては通常水−
有機溶媒中でギ酸塩、アルカリ化合物及び無水亜
硫酸を反応させて亜二チオン酸塩を合成し、反応
の最終段階(例えば反応液の冷却直前または冷却
中)にエポキシ化合物またはハロゲン化炭化水素
またはそれらの2種以上からなる混合物を反応液
に添加し、亜二チオン酸塩の結晶を分離する。本
発明で用いられるギ酸化合物としては例えばギ酸
塩、ギ酸、ギ酸エステルなどがあげられ、アルカ
リ化合物としては例えば水酸化ナトリウム、炭酸
ナトリウム、亜硫酸ナトリウムなどが挙げられ、
有機溶媒としてはメタノール、エタノール、イソ
プロパノールなどで例示されるアルコール類、ジ
オキサンで例示されるエーテル類、ジメチルホル
ムアミドで例示される酸アミド類が挙げられ、そ
の中でもアルコール類、特にメタノールが好まし
い。この結晶を分離した液又は結晶の洗浄液中
には未反応のギ酸塩及び亜硫酸水素塩が残存して
いるが、亜二チオン酸塩の分解によつて副生した
チオ硫酸塩は反応の最終段階において反応液中の
チオ硫酸塩と選択的に反応する化合物の添加によ
つて亜二チオン酸塩の生成阻害及び分解に何等関
与しない謂ば無害物質に転換されている。 反応の最終段階において反応液に添加する化合
物としてはエポキシ化合物または式R−Xで表わ
されるハロゲン化炭化水素が用いられる。エポキ
シ化合物としてはエチレンオキシド、プロピレン
オキシド、ブチレンオキシド、イソブチレンオキ
シド、スチレレンオキシド、シクロヘキセンオキ
シド、エピクロルヒドリン、エピブロモヒドリン
等があるが、むろんこれら以外の化合物を用いて
も良い。また、式R−Xで表わされるハロゲン化
炭化水素としては式中、Rが炭素数1〜8の第一
級又は第二級アルキル基、アリル基、2−メチル
又は2−エチルアリル基のうちの1つであり、X
がハロゲンで示される化合物等である。 上記化合物は何れも前記反応液中においてチオ
硫酸塩と選択的に反応し、液中のチオ硫酸塩を
ほゞ完全に除去することができる。また上記の処
理は反応温度近辺、通常60℃以上で行なうので、
常温で行なう場合に比べて処理速度が増大し、極
めて処理時間を短縮することができる。また添加
量は反応液中に含まれるチオ硫酸塩に対して通常
1〜3倍モル量が適当であり、好ましくは1〜2
倍モル量である。 上記化合物を添加してチオ硫酸塩を無害物質に
転化させた液中には亜二チオン酸塩の生成阻害或
いは分解を起こさせる物質は殆ど含まれておら
ず、従つてこの液を亜ニチオン酸塩の製造に循環
して再使用することができ、この場合純度の高い
製品を高収率で得ることができる。なお、ギ酸塩
法による亜二チオン酸塩の製造においては、原料
モル比、溶媒組成、溶媒量等の条件の影響が大き
いので液又は洗浄液を循環使用する場合は循環
液中のギ酸塩、亜硫酸水素塩、有機溶媒、水等の
含有量を測定して次回の反応に使用する各原料の
量を決定し、常に同じ条件で反応させる必要があ
る。 上述の様に本発明に係る亜二チオン酸塩の製造
方法においては反応器内にて液中に溶存するチオ
硫酸塩を短時間のうちにほゞ完全に処理できるば
かりではなく、反応器内は亜二チオン酸塩の製造
によつて副生された炭酸ガス雰囲気下になつてい
るので、液に添加する化合物による危険性を抑制
することができ、しかも、反応器内でチオ硫酸塩
を処理できるので、新たにチオ硫酸塩を処理する
ための容器を必要としない等工業的に適用する場
合にその取扱いが非常に容易である。更に、液中
のチオ硫酸塩をほぼ完全に除去できるのでこれら
の液を循環使用した場合も純度の高い製品を高収
率で得ることができ、原料を循環使用するので資
源の有効利用が図れる。また、従来は液及び洗
浄液の全量を蒸留してメタノール回収を行なつて
いたが、本発明ではこれらの液を循環使用するの
で循環液についてはメタノールの回収蒸留が不要
となりエネルギーを節約できる。また更に、未反
応のギ酸塩及び亜硫酸水素塩を廃棄しないので廃
液処理負担が著しく軽減される。 次に、実施例を挙げて本発明に係る亜二チオン
酸塩の製造方法を更に詳細に説明する。 実施例 1 (1) 第1回反応 ギ酸ナトリウム81部を熱水74部に溶解し、更
にメタノール105部を加えたスラリーを撹拌
機、温度計、還流冷却器、低沸点物捕集用深冷
コンデンサー及び原料滴下用タンクを有するジ
ヤケツト付反応器に入れ、反応器内の液を撹拌
しながら1.0Kg/cm2ゲージの加圧下で82℃に加
温する。更に、メタノール276部とギ酸メチル
16部からなる液に105部の無水亜硫酸を溶解さ
せた液及び50%苛性ソーダ溶液69部を90分間に
亘つて並行して滴下し、温度、圧力を維持して
更に150分間撹拌を続けた。次に、反応液を20
分間かけて73℃まで冷却することを開始すると
ともに表1に記載する化合物が反応液中に供給
されるように反応液下部に達する導入管を介し
て化合物を反応液に添加することを開始し、5
分以内に添加を終える。反応液の冷却完了後、
亜二チオン酸塩の結晶を炭酸ガスで加圧過し
て結晶と液を分離した、続いて結晶をメタノー
ル120部で洗浄した。洗浄後結晶を減圧下で75
〜90℃に90分間保持して乾燥した。反応の最終
段階において添加した各化合物に反応する各製
品の収量と亜二チオン酸ナトリウムの純度を表
1に併記する。 (2) 第2回反応 第1回反応において回収された液中のメタ
ノール組成は68%であつた。この液中のメタ
ノールが第1回反応開始時のメタノールと同量
に相当する液154部を循環液とした、第1回
反応開始時のメタノールのかわりにこの循環液
を使用して第1回反応と同様の反応をくり返し
た。この循環液中に溶解しているギ酸ナトリウ
ム及び亜硫酸水素ナトリウムと等モル量の苛性
ソーダ及び無水亜硫酸は第1回の反応仕込量か
ら循環液中のそれらの溶解量を差し引いて反応
器に供給した。また、ギ酸ナトリウムを溶解す
る水は循環液中に存在する水を差し引いた量と
した。反応の最終段階において第1回反応と同
様に表1に記載する化合物を反応液に添加し、
常法に従つて亜二チオン酸ナトリウムの結晶と
液を分離し、続いて結晶をメタノールで洗浄
し、結晶を減圧下で75〜90℃で乾燥した。製品
の収量及び亜二チオン酸ナトリウムの純度を表
1に記載する。
The present invention relates to a method for producing dithionite, and more specifically, a method for effectively reusing a liquid from which dithionite crystals are separated or a crystal washing solution for the production of dithionite. Regarding. In order to effectively utilize unreacted raw materials in the so-called formate method, which produces dithionite from a formic acid compound, an alkali compound, and anhydrous sulfite in a water-organic solvent, dithionite crystals are separated after the reaction. Attempts were made to reuse the dithionite, but the yield and purity of the resulting dithionite were significantly reduced, making it impractical. Therefore, a method was proposed to recover the formate remaining in the liquid as methyl formate.
In this case, since distillation is carried out while heating under acid treatment, the material of the equipment needs to be of a high quality, and a large amount of solid matter remains in the equipment after recovering methyl formate, making it difficult to handle, and the equipment cost is extremely high. It is unsuitable for practical use because of its large size. On the other hand, the reason why it is difficult to reuse the solution mentioned above is that thiosulfate, which is a by-product from the decomposition of dithionite, is dissolved in the solution, which inhibits the production of dithionite and decomposes it. A method of removing thiosulfate from the liquid has been proposed because the purpose is to promote the For example, there is a method of oxidatively decomposing thiosulfate, but in this case there are many unit operations such as making the liquid acidic and evaporating it to dryness, which increases equipment costs and consumes a lot of heating energy, making it impractical. The present invention was completed as a result of research to overcome these drawbacks, and its structure is based on a reaction process for producing dithionite from a formic acid compound, an alkali compound, and anhydrous sulfite in a water-organic solvent. In the final step, an epoxy compound, a halogenated hydrocarbon represented by the formula R-X, or a mixture of two or more thereof is added to the reaction solution, and then the dithionite crystals are separated in a solution or an organic solvent. It is characterized in that the washing solution for the washed crystals or a mixed solution thereof is recycled and reused in the production of the dithionite salt. The method for producing dithionite according to the present invention will be explained in detail. First, in the formate method, water is usually
Dithionite is synthesized by reacting formate, an alkali compound, and anhydrous sulfite in an organic solvent, and in the final stage of the reaction (for example, just before or during cooling of the reaction solution), an epoxy compound or a halogenated hydrocarbon or A mixture of two or more of these is added to the reaction solution, and the dithionite crystals are separated. Examples of the formic acid compound used in the present invention include formate salts, formic acid, and formic acid esters; examples of the alkali compounds include sodium hydroxide, sodium carbonate, and sodium sulfite;
Examples of organic solvents include alcohols such as methanol, ethanol, and isopropanol, ethers such as dioxane, and acid amides such as dimethylformamide. Among these, alcohols, particularly methanol, are preferred. Unreacted formate and hydrogen sulfite remain in the liquid from which the crystals are separated or in the crystal washing solution, but thiosulfate, which is a by-product from the decomposition of dithionite, is present in the final stage of the reaction. By adding a compound that selectively reacts with thiosulfate in the reaction solution, it is converted into a so-called harmless substance that does not participate in any way in inhibiting the production or decomposition of dithionite. As the compound added to the reaction solution in the final stage of the reaction, an epoxy compound or a halogenated hydrocarbon represented by the formula RX is used. Examples of the epoxy compound include ethylene oxide, propylene oxide, butylene oxide, isobutylene oxide, styrene oxide, cyclohexene oxide, epichlorohydrin, and epibromohydrin, but of course compounds other than these may also be used. Further, as the halogenated hydrocarbon represented by the formula R-X, R is a primary or secondary alkyl group having 1 to 8 carbon atoms, an allyl group, a 2-methyl group, or a 2-ethylallyl group. One, X
is a compound in which halogen is used. All of the above compounds selectively react with thiosulfate in the reaction solution, and can almost completely remove thiosulfate from the solution. In addition, the above treatment is carried out near the reaction temperature, usually above 60°C, so
The processing speed is increased compared to the case where the processing is carried out at room temperature, and the processing time can be extremely shortened. The addition amount is usually 1 to 3 times the molar amount, preferably 1 to 2 times the amount of thiosulfate contained in the reaction solution.
This is twice the molar amount. The liquid obtained by adding the above compound to convert thiosulfate into a harmless substance contains almost no substance that inhibits the production or decomposition of dithionite. It can be recycled and reused in salt production, in which case a product with high purity can be obtained in high yield. In addition, in the production of dithionite by the formate method, conditions such as raw material molar ratio, solvent composition, and amount of solvent have a large influence, so when the liquid or cleaning liquid is recycled, the formate and sulfite in the circulating liquid are It is necessary to measure the contents of hydrogen salts, organic solvents, water, etc., determine the amount of each raw material to be used in the next reaction, and always perform the reaction under the same conditions. As mentioned above, in the method for producing dithionite according to the present invention, not only can the thiosulfate dissolved in the liquid in the reactor be almost completely treated in a short time, but also the thiosulfate dissolved in the solution in the reactor can be completely treated. Because the reactor is under an atmosphere of carbon dioxide gas, which is a by-product from the production of dithionite, it is possible to suppress the dangers caused by compounds added to the liquid. Since it can be processed, it is very easy to handle in industrial applications, such as not requiring a new container for processing thiosulfate. Furthermore, since thiosulfate in the liquid can be almost completely removed, even if these liquids are recycled, highly pure products can be obtained at a high yield, and raw materials can be recycled, making effective use of resources. . Furthermore, in the past, methanol was recovered by distilling the entire amount of liquid and cleaning liquid, but in the present invention, these liquids are recycled and used, so there is no need to recover and distill methanol from the circulating liquid, which saves energy. Furthermore, since unreacted formate and hydrogen sulfite are not disposed of, the burden of waste liquid treatment is significantly reduced. Next, the method for producing dithionite according to the present invention will be explained in more detail with reference to Examples. Example 1 (1) First reaction A slurry of 81 parts of sodium formate dissolved in 74 parts of hot water and 105 parts of methanol was added using a stirrer, thermometer, reflux condenser, and deep cooling for collecting low-boiling substances. The mixture is placed in a jacketed reactor equipped with a condenser and a tank for dropping raw materials, and the liquid in the reactor is heated to 82°C under a pressure of 1.0 Kg/cm 2 gauge while stirring. Furthermore, 276 parts of methanol and methyl formate
A solution prepared by dissolving 105 parts of anhydrous sulfurous acid and 69 parts of 50% caustic soda solution were added dropwise in parallel over 90 minutes to the 16 parts of the solution, and stirring was continued for an additional 150 minutes while maintaining the temperature and pressure. Next, add the reaction solution to 20
Start cooling to 73°C over a period of minutes, and at the same time start adding the compounds listed in Table 1 to the reaction solution via the inlet tube reaching the bottom of the reaction solution so that the compounds listed in Table 1 are supplied into the reaction solution. ,5
Finish adding within minutes. After cooling the reaction solution,
The dithionite crystals were filtered under pressure with carbon dioxide gas to separate the crystals and the liquid, and then the crystals were washed with 120 parts of methanol. After washing the crystals were dried under reduced pressure for 75 minutes.
Dry by holding at ~90°C for 90 minutes. The yield of each product reacting with each compound added in the final stage of the reaction and the purity of sodium dithionite are also listed in Table 1. (2) Second reaction The methanol composition in the liquid recovered in the first reaction was 68%. The circulating liquid was 154 parts, which is the same amount of methanol as the methanol at the start of the first reaction.This circulating liquid was used instead of methanol at the start of the first reaction. The same reaction was repeated. Equimolar amounts of caustic soda and sulfurous anhydride as sodium formate and sodium hydrogen sulfite dissolved in the circulating fluid were supplied to the reactor by subtracting their dissolved amounts in the circulating fluid from the first reaction charge amount. Furthermore, the amount of water for dissolving sodium formate was determined by subtracting the amount of water present in the circulating fluid. At the final stage of the reaction, the compounds listed in Table 1 are added to the reaction solution in the same manner as in the first reaction,
The crystals of sodium dithionite and the liquid were separated according to a conventional method, and then the crystals were washed with methanol, and the crystals were dried at 75 to 90°C under reduced pressure. The product yield and purity of sodium dithionite are listed in Table 1.

【表】 実施例 2 前記実施例1の第1回反応において洗浄液が
120部回収された。この洗浄液中のメタノール組
成は92%であつた。洗浄液中のメタノールが第1
回反応開始時のメタノールと同量になるように洗
浄液114部を循環液とした。この循環液に溶解し
ているギ酸ナトリウム及び亜硫酸水素ナトリウム
と等モル量の苛性ソーダ及び無水亜硫酸は第1回
の反応仕込量から循環液中のそれらの溶解量を差
し引いて反応器に供給し、ギ酸ナトリウムを溶解
する水は循環液中に存在する水を差引いた量とし
た。反応の最終段階において第1回反応と同様に
表2に記載する化合物を反応液に添加し、常法に
従つて亜二チオン酸ナトリウムの結晶と液を分離
し、続いて結晶をメタノールで洗浄し、結晶を減
圧下で75〜90℃にて乾燥した。製品の収量及び亜
二チオン酸ナトリウムの純度を表2に記載する。
[Table] Example 2 In the first reaction of Example 1, the washing liquid was
120 copies were collected. The methanol composition in this cleaning solution was 92%. Methanol in the cleaning solution is the first
114 parts of the washing liquid was used as a circulating liquid so that the amount was the same as that of methanol at the start of the reaction. Equimolar amounts of caustic soda and sulfurous anhydride as sodium formate and sodium hydrogen sulfite dissolved in this circulating fluid are supplied to the reactor by subtracting their dissolved amounts in the circulating fluid from the amount charged in the first reaction. The amount of water that dissolves sodium was determined by subtracting the amount of water present in the circulating fluid. In the final stage of the reaction, the compounds listed in Table 2 were added to the reaction solution in the same manner as in the first reaction, and the crystals of sodium dithionite and the liquid were separated according to a conventional method, and then the crystals were washed with methanol. The crystals were dried at 75-90°C under reduced pressure. The product yield and purity of sodium dithionite are listed in Table 2.

【表】 実施例 3 実施例1に記載された第1回反応を行ない、反
応で生成した亜二チオン酸ナトリウムの結晶を反
応液から分離し、続いて結晶をメタノール120部
で洗浄した。結晶はメタノールで浸され、過機
内の液を炭酸ガスで加圧して洗浄液120部を回収
した。 この洗浄液中のメタノール組成は92%であつ
た。 次に、第1回反応において無水亜硫酸を溶解さ
せるために用いたメタノール276部のかわりに上
記の洗浄液全量とメタノール165.6部およびギ酸
メチルを使用して無水亜硫酸を溶解させ、洗浄液
に溶解しているギ酸ナトリウム及び亜硫酸水素ナ
トリウムと等モル量の苛性ソーダ及び無水亜硫酸
は第1回の反応仕込量から洗浄液中のそれらの溶
解量を差し引いて反応器に供給し、苛性ソーダを
溶解する水は洗浄液中に存在する水を差引いた量
として、第1回の反応と同様な反応を行ない、反
応の最終段階において表3に記載する化合物を反
応液に添加し、常法に従つて亜二チオン酸ナトリ
ウムの結晶と液を分離し、続いて結晶をメタノー
ルで洗浄し、結晶を減圧下で75〜90℃にて乾燥し
た。製品の収量及び亜二チオン酸ナトリウムの純
度を表3に記載する。
[Table] Example 3 The first reaction described in Example 1 was carried out, and the crystals of sodium dithionite produced in the reaction were separated from the reaction solution, and then the crystals were washed with 120 parts of methanol. The crystals were soaked in methanol, and the liquid in the filter was pressurized with carbon dioxide gas to recover 120 parts of the cleaning liquid. The methanol composition in this cleaning solution was 92%. Next, in place of the 276 parts of methanol used to dissolve sulfurous anhydride in the first reaction, the entire amount of the above washing liquid, 165.6 parts of methanol, and methyl formate were used to dissolve sulfurous anhydride, and the sulfurous anhydride was dissolved in the washing liquid. Caustic soda and anhydrous sulfurous acid in equimolar amounts as sodium formate and sodium hydrogen sulfite are supplied to the reactor by subtracting their dissolved amount in the washing liquid from the first reaction charge, and the water that dissolves the caustic soda is present in the washing liquid. The same reaction as in the first reaction was carried out by subtracting the amount of water used in the reaction, and in the final stage of the reaction, the compounds listed in Table 3 were added to the reaction solution, and sodium dithionite crystals were prepared according to a conventional method. The liquid was separated and the crystals were subsequently washed with methanol and dried at 75-90°C under reduced pressure. The product yield and purity of sodium dithionite are listed in Table 3.

【表】【table】

Claims (1)

【特許請求の範囲】 1 水−有機溶媒中でギ酸化合物、アルカリ化合
物および無水亜硫酸を反応させて亜二チオン酸塩
を製造するに当り、反応の最終段階において反応
液にエポキシ化合物または式R−Xで表わされる
ハロゲン化炭化水素またはそれらの2種以上から
なる混合物を添加し、次いで亜二チオン酸塩の結
晶を分離した液または有機溶媒で洗浄した結晶
の洗浄液またはそれらの混合液を前記亜二チオン
酸塩の製造に循環して再使用することを特徴とす
る亜二チオン酸塩の製造方法。 2 エポキシ化合物がエチレンオキシド、プロピ
レンオキシド、ブチレンオキシド、イソブチレン
オキシド、スチレレンオキシド、シクロヘキセン
オキシド、エピクロルヒドリンまたはエピブロモ
ヒドリンである特許請求の範囲第1項記載の方
法。 3 式R−Xで表わされるハロゲン化炭化水素の
Rが炭素数1〜8の第1級又は第2級アルキル
基、アリル基、2−メチル又は2−エチルアリル
基のうちの1つであり、Xがハロゲンである特許
請求の範囲第1項記載の方法。
[Claims] 1. When producing a dithionite salt by reacting a formic acid compound, an alkali compound, and anhydrous sulfite in a water-organic solvent, an epoxy compound or a formula R- A halogenated hydrocarbon represented by A method for producing dithionite, characterized by recycling and reusing it in the production of dithionite. 2. The method according to claim 1, wherein the epoxy compound is ethylene oxide, propylene oxide, butylene oxide, isobutylene oxide, styrene oxide, cyclohexene oxide, epichlorohydrin or epibromohydrin. 3 R of the halogenated hydrocarbon represented by the formula RX is one of a primary or secondary alkyl group having 1 to 8 carbon atoms, an allyl group, 2-methyl or 2-ethylallyl group, 2. The method of claim 1, wherein X is halogen.
JP20648281A 1981-12-21 1981-12-21 Manufacture of dithionite Granted JPS58110407A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20648281A JPS58110407A (en) 1981-12-21 1981-12-21 Manufacture of dithionite

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20648281A JPS58110407A (en) 1981-12-21 1981-12-21 Manufacture of dithionite

Publications (2)

Publication Number Publication Date
JPS58110407A JPS58110407A (en) 1983-07-01
JPS6131048B2 true JPS6131048B2 (en) 1986-07-17

Family

ID=16524100

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20648281A Granted JPS58110407A (en) 1981-12-21 1981-12-21 Manufacture of dithionite

Country Status (1)

Country Link
JP (1) JPS58110407A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4622216A (en) * 1985-08-06 1986-11-11 Virginia Chemicals, Inc. Treatment of sodium dithionite reaction mixture
CA2016353A1 (en) * 1989-05-23 1990-11-23 Charles E. Winslow, Jr. Method for re-use of aqueous co-product from manufacture of sodium dithionite

Also Published As

Publication number Publication date
JPS58110407A (en) 1983-07-01

Similar Documents

Publication Publication Date Title
JP2008280353A (en) Method for producing 2,2,2-trifluoroethanol
EP0297647B1 (en) Process for the production of alkylene carbonate
US4381222A (en) Process for the distillative separation of tertiary alkyl hydroperoxides and ditertiary alkyl peroxides
JPS6131048B2 (en)
US4952542A (en) Process for the production of alkylene carbonate and recovery of catalyst
EP0068248B1 (en) Process for the production of dithionites
US3991110A (en) Preparation of hexamethylphosphoramide
US4604277A (en) Production of ammonium tetrathiotungstate
CN113999198A (en) Method for synthesizing ethylene carbonate
JPS6018603B2 (en) Method for producing dithionite
US2205885A (en) Preparation of acetylenic acids
JPS58110406A (en) Manufacture of dithionite
CN111018656A (en) Preparation method of chloromethane
US4622216A (en) Treatment of sodium dithionite reaction mixture
JPS59176225A (en) Manufacture of dihydroxyaromatic compound anhydride
US2776972A (en) Recovery of morpholine from aqueous solutions thereof
US5283046A (en) Method for re-use of aqueous co-product from manufacture of sodium dithionite
US3948985A (en) Method of producing carboxymethyloxysuccinic acid
US4399311A (en) Process for producing aromatic aldehydes
JPH0912534A (en) Recovery of dmso
US2683750A (en) Purification of vinyl ethers
JPS5941925B2 (en) Method for producing dithionite
JPS5891004A (en) Production of dithionite
US2753376A (en) Preparation of aminoacetophenones
US4510334A (en) Method of preparing alkalihalide free oligomeric, brominous xylylene bisphenol ethers