JPS6130694B2 - - Google Patents

Info

Publication number
JPS6130694B2
JPS6130694B2 JP53070612A JP7061278A JPS6130694B2 JP S6130694 B2 JPS6130694 B2 JP S6130694B2 JP 53070612 A JP53070612 A JP 53070612A JP 7061278 A JP7061278 A JP 7061278A JP S6130694 B2 JPS6130694 B2 JP S6130694B2
Authority
JP
Japan
Prior art keywords
container
vortex generator
flow rate
manufacturing
vortex
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53070612A
Other languages
Japanese (ja)
Other versions
JPS54161968A (en
Inventor
Takehiro Sawayama
Ichizo Ito
Toshio Aga
Tetsuo Ando
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokogawa Electric Corp
Original Assignee
Yokogawa Hokushin Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokogawa Hokushin Electric Corp filed Critical Yokogawa Hokushin Electric Corp
Priority to JP7061278A priority Critical patent/JPS54161968A/en
Publication of JPS54161968A publication Critical patent/JPS54161968A/en
Publication of JPS6130694B2 publication Critical patent/JPS6130694B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Transmission And Conversion Of Sensor Element Output (AREA)

Description

【発明の詳細な説明】 本発明はカルマン渦を利用した流速流量測定装
置の製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method of manufacturing a flow rate measuring device using Karman vortices.

更に詳述すれば、カルマン渦により渦発生体に
生ずる交番力を検出した、渦信号として取り出し
流速流量を測定する流速流量測定装置の製造方法
に関するものである。
More specifically, the present invention relates to a method of manufacturing a flow rate measuring device that detects the alternating force generated in a vortex generating body by Karman vortices and extracts it as a vortex signal to measure the flow rate.

従来より一般に使用されているカルマン渦を利
用した流速流量測定装置においては、管路に渦発
生体を抜き差し自在に固定するのが一般的であ
る。而して、検出器を渦発生体、あるいは渦発生
体の下流に配置して渦発生体により発生した渦発
生周波数を検出する。
In conventional flow rate measuring devices that utilize Karman vortices, a vortex generator is generally fixed to a pipe line so that it can be inserted and removed. Thus, a detector is placed at the vortex generator or downstream of the vortex generator to detect the vortex generation frequency generated by the vortex generator.

このようなものにおいては、管路に渦発生体を
固定、支持するための固定、支持機構が必要であ
り、抜き差し出来るようにするための、たとえ
ば、シール機構等の構成が複雑になり、価格も高
くなる。また頑丈さに欠け、小型化するにもおの
ずと制約がある。また、被測定流体に接する部分
において、管路と渦発生体との間に隙間や窪みが
生ずるので、腐食性流体に対する耐食性がよくな
い。
In such a device, a fixing and supporting mechanism is required to fix and support the vortex generator in the pipe, and the structure of the sealing mechanism, etc. to enable insertion and removal becomes complicated and expensive. It also becomes more expensive. It also lacks robustness, and there are natural limitations to miniaturization. Furthermore, since a gap or a depression is formed between the pipe line and the vortex generating body in the portion in contact with the fluid to be measured, corrosion resistance against corrosive fluids is poor.

而して、このようなものを製作する場合の一実
施例として、たとえば、柱状の渦発生体の一端側
に固定された容器に圧電素子をガラス封着し、こ
の渦発生体を管体に取付けるような例について述
べると、第1図に示すごとく、素材1から容器2
を切削によつて形成し、この容器2内に圧電素子
部3を挿入し、ガラス4を容器2内に容器2より
圧電素子部3が絶縁されるように注入し、電気炉
5にてガラス4を熔融した後冷却して、容器2内
に圧電素子部3を封着固定する。一方、素材6よ
り柱状の渦発生体7を切削によつて形成し、渦発
生体7の一端側に容器2を熔接8する。素材9よ
り切削又は鋳物によつて管体10を形成し、渦発
生体7と管体10をねじ止め等により着脱自由に
組み立て装置を完成する。即ち、このようなもの
においては、容器部分(容器2+圧電素子部3+
ガラス4)と渦発生体7と管体10の3部分を別
個に作り、これらを組み立てて装置を完成する。
As an example of manufacturing such a device, for example, a piezoelectric element is glass-sealed to a container fixed to one end of a columnar vortex generator, and the vortex generator is attached to a tube body. To describe an example of mounting, as shown in Figure 1, from material 1 to container 2
is formed by cutting, the piezoelectric element part 3 is inserted into this container 2, the glass 4 is injected into the container 2 so that the piezoelectric element part 3 is insulated from the container 2, and the glass is heated in an electric furnace 5. 4 is melted and then cooled to seal and fix the piezoelectric element part 3 inside the container 2. On the other hand, a columnar vortex generator 7 is formed from the raw material 6 by cutting, and the container 2 is welded 8 to one end side of the vortex generator 7. The tube body 10 is formed by cutting or casting from the material 9, and the vortex generator 7 and the tube body 10 are assembled with screws or the like so that they can be freely attached and detached to complete the apparatus. That is, in such a device, the container portion (container 2 + piezoelectric element portion 3 +
Three parts, the glass 4), the vortex generator 7, and the tube body 10, are made separately and assembled to complete the device.

したがつて、このような方法では、素材からの
各部品の加工工数・組立工数が掛る、また、工程
も複雑である。
Therefore, in such a method, it takes many man-hours to process and assemble each part from the raw material, and the process is also complicated.

本発明はこれらの問題点を解決したものであ
る。
The present invention solves these problems.

本発明の目的は容器部分と渦発生体部分と管体
部分とを一体的に作り、加工工数・組立工数・製
造工程を削減して、シンプルで、製作が容易で、
安価かつ頑丈な流速流量測定装置の製造方法を提
供するにある。
The object of the present invention is to integrally manufacture the container part, the vortex generator part, and the tube part, to reduce the number of processing steps, assembly steps, and manufacturing steps, making it simple and easy to manufacture.
An object of the present invention is to provide a method of manufacturing an inexpensive and robust flow rate measuring device.

第2図A,B,Cは本発明の一実施例の構成説
明図で、Aは縦断面図、Bは側断面図、Cは要部
構成説明図である。
FIGS. 2A, 2B, and 2C are explanatory diagrams of the configuration of an embodiment of the present invention, where A is a longitudinal sectional view, B is a side sectional view, and C is an explanatory diagram of the main part configuration.

図において、1は円筒状の管体、2は管体1に
直角に配置された、この場合は台形柱状の渦発生
体である。3は力検出部で、検出センサ部31、
封着体32と底を有する円筒状の容器33よりな
り、一端は渦発生体2に接続され他端は管体1に
固定されている。而して、管体1、渦発生体2と
容器33は一体的に構成されている。検出センサ
部31はこの場合はC図に示如く、円板状の素子
本体311と電極312,313,314よりな
る。電極312は薄円板状をなし、素子本体31
1の一面端に設けられている。一方、電極31
3,314はほぼ弓形をなし、素子本体311の
他面側に素子本体311の中心を挾んで対称形に
設けられ、渦発生体2の軸心をはさんで流路方向
と直角方向に対称になるように配置されている。
素子本体311はこの場合はニオブ酸リチウム
(LiNbO3)よりなる圧電素子が使用されている。
封着体32は絶縁材よりなり、検出センサ部31
を容器33内に容器33より絶縁して封着する封
着体で、この場合はガラス材が用いられている。
In the figure, 1 is a cylindrical tube body, and 2 is a trapezoidal columnar vortex generator arranged at right angles to the tube body 1. 3 is a force detection section, which includes a detection sensor section 31;
It consists of a sealed body 32 and a cylindrical container 33 having a bottom, one end of which is connected to the vortex generator 2 and the other end fixed to the tube body 1. Thus, the tube body 1, the vortex generator 2, and the container 33 are integrally constructed. In this case, the detection sensor section 31 consists of a disk-shaped element body 311 and electrodes 312, 313, and 314, as shown in Figure C. The electrode 312 has a thin disk shape and is connected to the element body 31.
It is provided at one end of 1. On the other hand, the electrode 31
3 and 314 are approximately arch-shaped, and are provided on the other side of the element body 311 in a symmetrical shape across the center of the element body 311, and are symmetrical in the direction perpendicular to the flow path direction across the axis of the vortex generator 2. It is arranged so that
In this case, the element body 311 is a piezoelectric element made of lithium niobate (LiNbO 3 ).
The sealed body 32 is made of an insulating material, and the detection sensor section 31
A sealing body that seals the inside of the container 33 insulatingly from the container 33, and in this case, a glass material is used.

以上の構成において、管体1内に被測定流体が
流れると渦発生体2にはカルマン渦により第2図
Bに示す矢印Xのような交番力が作用する。この
交番力は容器33、封着体32を介して検出セン
サ部31に伝達される。この場合、渦発生体2に
は第2図Bに示す如く、渦発生体2の中心軸をは
さんで逆方向の応力変化が発生する。而して、検
出センサ部31の電極312−電極313、電極
312−電極314間にはこの応力変化に対応し
た電気信号(たとえば電圧の変化)が生ずる。こ
の変化の回数を検出することにより渦発生周波数
が検出できる。而して、電極312−電極31
3、電極312−電極314間の電気出力を差動
的に処理すれば、2倍の電気出力を得ることでき
る。
In the above configuration, when the fluid to be measured flows in the tube body 1, an alternating force as indicated by the arrow X shown in FIG. 2B acts on the vortex generator 2 due to the Karman vortex. This alternating force is transmitted to the detection sensor section 31 via the container 33 and the sealed body 32. In this case, stress changes occur in the vortex generator 2 in opposite directions across the central axis of the vortex generator 2, as shown in FIG. 2B. Therefore, an electric signal (for example, a change in voltage) corresponding to this stress change is generated between the electrodes 312 and 313 and between the electrodes 312 and 314 of the detection sensor section 31. By detecting the number of times this change occurs, the vortex generation frequency can be detected. Therefore, electrode 312-electrode 31
3. If the electrical output between the electrodes 312 and 314 is processed differentially, twice the electrical output can be obtained.

このような、本実施例の装置は、第3図に示す
ごとく、管体1と渦発生体2と容器33とを一体
に精密鋳造により作り、この容器33内に圧電素
子部31を挿入し、ガラス32を容器33内に容
器33より圧電素子部31が絶縁されるように注
入し、電気炉4にてガラス32を熔融した後冷却
して、容器33内に圧電素子部31を封着固定す
る。
As shown in FIG. 3, the device of this embodiment is constructed by integrally manufacturing the tube body 1, vortex generating body 2, and container 33 by precision casting, and inserting the piezoelectric element portion 31 into the container 33. , the glass 32 is poured into the container 33 so that the piezoelectric element part 31 is insulated from the container 33, the glass 32 is melted in the electric furnace 4, and then cooled to seal the piezoelectric element part 31 inside the container 33. Fix it.

なお、上述の実施例においては、管体1と渦発
生体2と容器33を一体に精密鋳造により作ると
説明したが、これに限ることはなく、たとえば、
鍛造でもよく、要するに、精密成形されればよ
い。
In addition, in the above-mentioned embodiment, it was explained that the tube body 1, the vortex generator 2, and the container 33 are made integrally by precision casting, but the invention is not limited to this, and for example,
Forging may be used, and in short, precision molding is sufficient.

なお、従来より一般に使用されている渦信号の
検出方法としての感熱方式、歪み検出方式、容量
方式等では渦発生体の形状が複雑になり、或は、
その内部構造が複雑になり、管体1と渦発生体2
と容器33を一体的に製造することは困難であ
る。
It should be noted that in the heat-sensitive method, strain detection method, capacitive method, etc., which have conventionally been commonly used methods for detecting vortex signals, the shape of the vortex generating body becomes complicated, or
Its internal structure becomes complicated, and the tube body 1 and vortex generator 2
It is difficult to manufacture the container 33 and the container 33 integrally.

以上説明したように、本発明によれば第1図と
第3図との比較からも明らかなように、加工工
数、組立工数、製造工程が削減され、シンプル
で、製作が容易で、安価かつ頑丈な流速流量測定
装置の製造方法が実現できる。
As explained above, according to the present invention, as is clear from the comparison between FIG. 1 and FIG. A method for manufacturing a robust flow rate measuring device can be realized.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来装置の製造方法の工程説明図、第
2図は本発明装置の一実施例の構成説明図、第3
図は本発明の製造方法の工程説明図である。 1……管体、2……渦発生体、3……力検出
部、31……検出センサ部、32……封着体、3
3……容器。
Fig. 1 is a process explanatory diagram of a conventional method for manufacturing the device, Fig. 2 is an explanatory diagram of the configuration of an embodiment of the device of the present invention, and Fig. 3
The figure is a process explanatory diagram of the manufacturing method of the present invention. DESCRIPTION OF SYMBOLS 1... Tube body, 2... Vortex generator, 3... Force detection part, 31... Detection sensor part, 32... Sealing body, 3
3... Container.

Claims (1)

【特許請求の範囲】 1 カルマン渦により渦発生体に作用する交番力
を検出して流速流量を測定する流速流量測定装置
の製造方法において、管路に挾持される管体と該
管体に直角に配置され該管体に一端が固定された
剛性の高い柱状の渦発生体と該渦発生体の他端に
固定された容器とを一体成形により形成した後、
圧電素子よりなる検出センサ部を前記容器内に前
記交番力に基づき該容器の断面内に生ずる応力変
化を検出するように前記渦発体の軸に垂直方向に
配置され該容器より絶縁して絶縁材よりなる封着
体により封着固定するようにしたことを特徴とす
る流速流量測定装置の製造方法。 2 封着体としてガラスを用いた事を特徴とする
特許請求の範囲第1項記載の流速流量測定装置の
製造方法。
[Claims] 1. A method for manufacturing a flow rate measuring device that measures flow rate by detecting the alternating force acting on a vortex generator due to a Karman vortex, which includes a pipe body held in a pipe line and a pipe perpendicular to the pipe body. After integrally forming a columnar vortex generator with high rigidity, which is arranged in a tube and has one end fixed to the tube body, and a container fixed to the other end of the vortex generator,
A detection sensor section made of a piezoelectric element is disposed in the container in a direction perpendicular to the axis of the vortex generator so as to detect stress changes occurring in the cross section of the container based on the alternating force, and is insulated from the container. 1. A method for manufacturing a flow rate measuring device, characterized in that the device is sealed and fixed with a sealing body made of material. 2. A method for manufacturing a flow rate measuring device according to claim 1, characterized in that glass is used as the sealed body.
JP7061278A 1978-06-12 1978-06-12 Production of flow velocity and flow rate measuring device Granted JPS54161968A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7061278A JPS54161968A (en) 1978-06-12 1978-06-12 Production of flow velocity and flow rate measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7061278A JPS54161968A (en) 1978-06-12 1978-06-12 Production of flow velocity and flow rate measuring device

Publications (2)

Publication Number Publication Date
JPS54161968A JPS54161968A (en) 1979-12-22
JPS6130694B2 true JPS6130694B2 (en) 1986-07-15

Family

ID=13436583

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7061278A Granted JPS54161968A (en) 1978-06-12 1978-06-12 Production of flow velocity and flow rate measuring device

Country Status (1)

Country Link
JP (1) JPS54161968A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4718283A (en) * 1987-01-30 1988-01-12 Itt Corporation Vortex meter body
ATE356974T1 (en) * 2003-11-03 2007-04-15 Grundfos As UNIT FOR A COMPACT HEATING SYSTEM

Also Published As

Publication number Publication date
JPS54161968A (en) 1979-12-22

Similar Documents

Publication Publication Date Title
US4258565A (en) Force detector
US4357576A (en) Conductivity cell
GB2084324A (en) Vortex Shedding Fluid Flowmeter
JPS6130694B2 (en)
JPS63193018A (en) Vortex meter sensor
JPH07198434A (en) Current meter
JPS5832335B2 (en) Manufacturing method of flow rate measuring device
KR890000690B1 (en) Piezoelectric sensor
JPS6244337Y2 (en)
JPS6032809B2 (en) Flow velocity flow measuring device
JPS584967B2 (en) Flow velocity flow measuring device
JPS5953489B2 (en) Flow velocity flow measuring device
JPH0612498Y2 (en) Capacitive sensor
JPS5832334B2 (en) Flow velocity flow measuring device
JP3481220B2 (en) Piezoelectric sensor for eddy flow meter and method of manufacturing the same
KR830000453Y1 (en) Flow rate flow measuring device
JPS6244338Y2 (en)
JPS592324B2 (en) Flow velocity flow measuring device
JPH0613449Y2 (en) Vortex flowmeter
JP2002054959A (en) Differential pressure type flow rate meter
JPS6166122A (en) Electrode structure of electromagnetic flowmeter
JPS5928342Y2 (en) force detector
JPS60210753A (en) Method and device for measuring channel average void fraction of gas-liquid two-phase flow
JPH0755462Y2 (en) Vortex detector
JPS6032808B2 (en) Flow velocity flow measuring device