JPS6130688A - Production of hydrocarbon - Google Patents

Production of hydrocarbon

Info

Publication number
JPS6130688A
JPS6130688A JP59151363A JP15136384A JPS6130688A JP S6130688 A JPS6130688 A JP S6130688A JP 59151363 A JP59151363 A JP 59151363A JP 15136384 A JP15136384 A JP 15136384A JP S6130688 A JPS6130688 A JP S6130688A
Authority
JP
Japan
Prior art keywords
hydrocarbon
oxygen
gas
electrode
solid electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59151363A
Other languages
Japanese (ja)
Other versions
JPH0338348B2 (en
Inventor
Kiyoshi Otsuka
潔 大塚
Akira Morikawa
陽 森川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Idemitsu Kosan Co Ltd
Original Assignee
Idemitsu Kosan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Idemitsu Kosan Co Ltd filed Critical Idemitsu Kosan Co Ltd
Priority to JP59151363A priority Critical patent/JPS6130688A/en
Publication of JPS6130688A publication Critical patent/JPS6130688A/en
Publication of JPH0338348B2 publication Critical patent/JPH0338348B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

PURPOSE:To produce easily hydrocarbon having many carbon atoms by heating a vessel which is segmented by a solid electrolyte formed with gas-permeable metallic electrodes on both surfaces to an adequate temp. and supplying lower hydrocarbon to one of the above-mentioned segmented chambers and oxygen to the other. CONSTITUTION:The vessel 1 is segmented to two chambers 5a, b by the solid electrode 2 such as stabilized zirconia and the gas-permeable metallic electrodes 3, 3' consisting of silver, platinum, etc. are formed on both surfaces thereof. A catalyst layer 4 for oxidizing dehydrogenation consisting of bismuth oxide, etc. is further formed on the electrode 3 if necessary. The vessel 1 is heated to 300-1,000 deg.C under or without the impression of voltage to the electrolyte 2 from a voltage impressing device 6 via the above- mentioned electrodes 3, 3'. The lower hydrocarbon such as methane or the gas contg. the same and oxygen or the gas contg. the same are admitted through introducing pipes 1c, d into the chambers 5a, b respectively. The oxygen passes the electrode 3' and arrives at the electrolyte 2, by which the oxygen is ionized to O<2->. The oxygen ions migrate toward the electrode 3 side and oxidizes and dehydrogenates the hydrocarbon. The hydrocarbon such as olefin having more carbon atoms than the carbon atoms of the lower hydrocarbon is thus formed.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は低級炭化水素から酸化脱水素反応によシその炭
化水素の炭素数よシ多い炭素数を有する炭化水素の製造
方法に関し、更に詳しくは、該酸化脱水素反応を固体電
解質の電極反応を利用して行なう新規な炭化水素の製造
方法に関する。
[Detailed Description of the Invention] [Technical Field of the Invention] The present invention relates to a method for producing a hydrocarbon having a carbon number greater than that of the hydrocarbon by an oxidative dehydrogenation reaction from a lower hydrocarbon. , relates to a novel method for producing hydrocarbons in which the oxidative dehydrogenation reaction is carried out using an electrode reaction of a solid electrolyte.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

メタン、エタンのような低級炭化水素を周知の酸化脱水
素用触媒又は酸化触媒の存在下で酸素と反応させて脱水
素し、炭素数がより多い炭化水素を製造する方法が知ら
れている。
A method is known in which lower hydrocarbons such as methane and ethane are reacted with oxygen in the presence of a well-known oxidative dehydrogenation catalyst or oxidation catalyst to dehydrogenate them to produce hydrocarbons with a larger number of carbon atoms.

また、これら低級炭化水素の酸化に関しては、例えば燃
料電池の分野における安定化ジルコニアのような酸素イ
オン導電性固体電解質の電極反応では、一方の燃料であ
る例えばメタン、エタンが酸化されて最終的には水と炭
酸ガスに変化するという事実が周知である。
Regarding the oxidation of these lower hydrocarbons, for example, in the electrode reaction of oxygen ion conductive solid electrolytes such as stabilized zirconia in the field of fuel cells, one of the fuels, such as methane and ethane, is oxidized and finally It is a well-known fact that gas changes into water and carbon dioxide.

更に最近では、酸素イオン導電性の固体電解質を用いて
エチレン、プロピレンのようなオレフィン類を酸化して
エポキサイドを生成せしめる方法が報告されている(E
lectrochemicalModificatio
n of the Activity and 5el
ecti−vity of 5ilver for I
、ight Qlefin 0xidation。
More recently, a method has been reported in which olefins such as ethylene and propylene are oxidized to produce epoxides using an oxygen ion conductive solid electrolyte (E
electrochemical modification
n of the Activity and 5el
ecti-vity of 5ilver for I
, light Qlefin Oxidation.

M、 5tonkides、 C,G、 Vayena
s、  8th、 Internati−onal C
ongress on Catalysis ’Vol
 IV 827 (1984))。
M, 5tonkides, C, G, Vayena
s, 8th, International-onal C
ongress on Catalysis 'Vol.
IV 827 (1984)).

このように、固体電解質の電極反応を利用してメタン、
エタンのような低級炭化水素を酸化する方法はよく知ら
れている。
In this way, methane,
Methods for oxidizing lower hydrocarbons such as ethane are well known.

しかしながら、固体電解質を用いて酸化脱水素反応を進
め、その結果として低級炭化水素から該炭化水素の炭素
数以上の炭素数を有する炭化水素を製造する方法は末だ
知られてい々い。
However, little is known of a method for proceeding with an oxidative dehydrogenation reaction using a solid electrolyte and, as a result, producing a hydrocarbon having a carbon number greater than that of the lower hydrocarbon from a lower hydrocarbon.

〔発明の目的〕[Purpose of the invention]

本発明は、固体電解質の電極反応を利用して低級炭化水
素からより炭素数の多い炭化水素、例えばメタンからオ
レフィン類を製造する新規な方法の提供を目的とする〇 〔発明の概要〕 本発明の炭化水1の製造方法は、低級炭化水素の酸化脱
水素反応によって該低級炭化水素の炭素数以上の炭素数
を有する炭化水素を製造する方法であって、両面にガス
透過性の金属電極が形成されている固体電解質によって
2室に画分された容器内で、該固体電解質に電圧を印加
する又は印加することなく、300〜1000 Cの温
度下において、一方の画分室には該低級炭化水素又は低
級炭化水素含有ガスを流入し、他方の画分室には酸素又
は酸素含有ガスを流入して反応を進めることを特徴とす
る。この場合、酸素は固体電解質によってイオン化され
、炭化水素は酸素イオンにより酸化される。
The present invention aims to provide a novel method for producing olefins from lower hydrocarbons to hydrocarbons with a larger number of carbon atoms, such as methane, by utilizing the electrode reaction of a solid electrolyte. [Summary of the Invention] The present invention The method for producing hydrocarbon 1 is a method for producing a hydrocarbon having a carbon number greater than or equal to that of the lower hydrocarbon by an oxidative dehydrogenation reaction of the lower hydrocarbon, and includes gas-permeable metal electrodes on both sides. In a container divided into two compartments by the formed solid electrolyte, one compartment contains the lower carbonization at a temperature of 300 to 1000 C with or without applying a voltage to the solid electrolyte. It is characterized in that hydrogen or a lower hydrocarbon-containing gas is introduced into the fraction chamber, and oxygen or an oxygen-containing gas is introduced into the other fraction chamber to proceed with the reaction. In this case, oxygen is ionized by the solid electrolyte and hydrocarbons are oxidized by oxygen ions.

以下に、本発明方法を行なうときに用いる第1図の装置
例によシ、本発明方法を更に詳細に説明する。
The method of the present invention will be explained in more detail below using the example of the apparatus shown in FIG. 1 used when carrying out the method of the present invention.

第1図で、1は全体の反応容器で1aは後述の反応の結
果生成した炭化水素ガスの導出管。
In FIG. 1, 1 is the entire reaction vessel, and 1a is a pipe for discharging hydrocarbon gas produced as a result of the reaction described below.

1bは反応に用いる酸素又は酸素含有ガスの導出管であ
り、それぞれには弁機構(図示しない)が付設されてい
る。
1b is a lead-out pipe for oxygen or oxygen-containing gas used in the reaction, and a valve mechanism (not shown) is attached to each pipe.

容器1は、固体電解質2.ガス透過性の金属電極3.3
’、酸化脱水素用の触媒層4が一体的に積層されて成る
電極部によって、5a、5bの2室に画分されている。
Container 1 contains solid electrolyte 2. Gas permeable metal electrode 3.3
', the catalyst layer 4 for oxidative dehydrogenation is divided into two chambers 5a and 5b by an electrode section formed by integrally stacking them.

画分室5aには、流量弁(図示しない)を備えた低級炭
化水素導入管1cから酸化脱水素させるべき低級炭化水
素又はそれを含有する気体が流入され、また、画分室5
bには流量弁(図示しない)を備えた酸素導入管1dか
ら酸素又はそれを含有する気体が流入されるようになっ
ている。
A lower hydrocarbon to be oxidized and dehydrogenated or a gas containing it flows into the fraction chamber 5a from a lower hydrocarbon inlet pipe 1c equipped with a flow valve (not shown).
Oxygen or a gas containing oxygen is introduced into the tube b from an oxygen introduction pipe 1d equipped with a flow valve (not shown).

上記電極部において、その要部である固体電解質として
は、イオン導電性を備えるものであれば何であってもよ
いが、例えば、ジルコニア。
In the above-mentioned electrode section, the solid electrolyte which is the main part thereof may be of any material as long as it has ionic conductivity, for example, zirconia.

トリア、酸化ビスマス、酸化ノ・フニウム、安定化ジル
コニアをあげることができる。とくに、(ZrOz)(
1,6(Y2O2) 6.1 で示される安定化ジルコ
ニアは高温(800tll’)におけるイオン導電率が
大きい(2X10−2Ω−’cWL−”)ので好適であ
る。
Examples include thoria, bismuth oxide, nitride oxide, and stabilized zirconia. In particular, (ZrOz)(
Stabilized zirconia represented by 1,6(Y2O2) 6.1 is suitable because it has high ionic conductivity (2X10-2Ω-'cWL-'') at high temperatures (800tll').

この固体電解質2の両面にはガス透過性の金属電極3,
3′が添着され、各電極間は、例えば白金線を導線とし
て電圧印加装置6に接続されている。電極に用いる金属
としては、例えば銀。
On both sides of this solid electrolyte 2, gas permeable metal electrodes 3,
3' is attached, and the electrodes are connected to the voltage applying device 6 using, for example, a platinum wire as a conducting wire. Examples of metals used for electrodes include silver.

白金が好適である。その添着方法としては、例えば銀の
場合、酸化釧の粉末をアセトンなどに懸濁せしめ、この
懸濁液を固体電解質の両面に塗布したのち、全体を20
0C以上で加熱して銀を焼付ける方法を例示できる。還
元雰囲気で行なうことも好ましい。
Platinum is preferred. For example, in the case of silver, the impregnation method is to suspend oxidized powder in acetone or the like, apply this suspension to both sides of the solid electrolyte, and then apply the entire solid electrolyte to a
An example is a method of baking silver by heating at 0C or higher. It is also preferable to carry out the reaction in a reducing atmosphere.

画分室5a側にある金属電極3の上には活性及び選択性
を制御するために酸化脱水素用の触媒層4を形成するこ
とができる。この層に用いる触媒としては従来から知ら
れているものであってよく、例えば、ビスマス、スズ、
鉛、アンチモン、タリウム、コバルト、カドミウム、マ
ンガン、モリブデン、鉄、クロム、マグネシウム及びそ
れらの複合酸化物をあげることができる。触媒層の形成
は、上記した金属の水溶液や有機溶媒にとかしたものを
塗布したのち焼きつけるなどの方法で実施できる。
A catalyst layer 4 for oxidative dehydrogenation can be formed on the metal electrode 3 on the side of the fraction chamber 5a in order to control activity and selectivity. The catalyst used in this layer may be any conventionally known catalyst, such as bismuth, tin,
Examples include lead, antimony, thallium, cobalt, cadmium, manganese, molybdenum, iron, chromium, magnesium, and composite oxides thereof. The catalyst layer can be formed by applying a solution of the above-mentioned metal in an aqueous solution or an organic solvent and then baking it.

反応を進めるに当っては、装置全体とりわけ電極部の温
度を300〜1000C,好ましくは400〜750C
に維持する。温度が300C未満の場合には固体電解質
のイオン導電性が低くなり後述の反応が迅速に進行せず
、また、1000Cを超えると固体電解質が劣化してそ
のイオン導電性がまたもや消失するようになる。
In proceeding with the reaction, the temperature of the entire apparatus, especially the electrode part, should be kept at 300 to 1000C, preferably 400 to 750C.
maintain it. If the temperature is less than 300C, the ionic conductivity of the solid electrolyte will be low and the reaction described below will not proceed quickly, and if it exceeds 1000C, the solid electrolyte will deteriorate and its ionic conductivity will disappear again. .

つぎに、画分室5a及び5bにそれぞれ反応ガスを流入
する。画分室5aに流入せしめるガスは、メタン、エタ
ンのような低級炭化水素又はこれらを例えばヘリウムの
ような不活性ガスで稀釈して成る混合ガスである。また
、画分室5bに流入せしめるガスは、酸素又は乾燥空気
のような酸素含有ガスである。これらガスの流入量は、
各導入管、各導出管の弁機構をそれぞれ作動して調節す
る。とりわけ、画分室5aの圧が常圧〜10 kg/c
m”になるように調節することが好ましい。
Next, reaction gases are introduced into the fraction chambers 5a and 5b, respectively. The gas flowing into the fraction chamber 5a is a lower hydrocarbon such as methane or ethane, or a mixed gas prepared by diluting these with an inert gas such as helium. Further, the gas flowing into the fraction chamber 5b is oxygen or an oxygen-containing gas such as dry air. The inflow amount of these gases is
The valve mechanisms of each inlet pipe and each outlet pipe are operated and adjusted. Particularly, the pressure in the fraction chamber 5a is normal pressure to 10 kg/c.
It is preferable to adjust it so that it becomes m''.

画分室5bに流入された酸素は、ガス透過性の金属電極
3′を通過して固体電解質2に到達し、そこでイオン化
して該固体電解質内を他の金属電極3側に向かって移動
する。すなわちOのイオン伝導が始まる。このとき、金
属電極3゜3′間には、画分室5a、5b内に存在する
低級炭化水素及び酸素の各化学ポテンシャルの差に相当
する起電力が発生する。その結果、金属電極3が■極、
金属電極3′がθ極になる。そして両電極間を接続する
リード線及び電圧印加装置には所定の電流が流れる。
The oxygen flowing into the fraction chamber 5b passes through the gas-permeable metal electrode 3' and reaches the solid electrolyte 2, where it is ionized and moves within the solid electrolyte toward the other metal electrode 3. That is, ion conduction of O begins. At this time, an electromotive force corresponding to the difference in chemical potential between lower hydrocarbons and oxygen present in the fraction chambers 5a and 5b is generated between the metal electrodes 3° and 3'. As a result, the metal electrode 3 becomes
The metal electrode 3' becomes the θ pole. A predetermined current flows through the lead wire and the voltage application device that connect the two electrodes.

金属電極3側に移動した酸素イオンは、該金属電極の作
用、あるいは該金属電極3に形成されている触媒層4の
作用を媒介にして、画分室5a内の低級炭化水素を酸化
脱水素して他の炭化水素を生成せしめて消費されていく
◎この反応は金属電極3.3′間に電圧を印加しなくて
も進行するが、両電極間に所定の電圧を印加してもよい
。後者の場合には、生成する炭化水素の量が変動する。
The oxygen ions that have moved to the metal electrode 3 side oxidize and dehydrogenate the lower hydrocarbons in the fraction chamber 5a through the action of the metal electrode or the action of the catalyst layer 4 formed on the metal electrode 3. This reaction proceeds without applying a voltage between the metal electrodes 3 and 3', but a predetermined voltage may be applied between the two electrodes. In the latter case, the amount of hydrocarbons produced varies.

これは、電圧印加によって、固体電解質2内を移動する
酸素イオンの量、速さなどが変化し、画分室5a内での
酸化脱水素反応の状態が微妙に影醤されるためであろう
と考えられる。
We believe that this is because the amount and speed of oxygen ions moving within the solid electrolyte 2 change due to voltage application, and the state of the oxidation and dehydrogenation reaction within the fraction chamber 5a is subtly affected. It will be done.

なお、以上の説明は第1図の装置例に基づいて行なった
が、本発明方法に用いる装置は、これに限定されるもの
ではない。
Although the above explanation has been made based on the example of the apparatus shown in FIG. 1, the apparatus used in the method of the present invention is not limited to this.

例えば、第2図に示したような構造であってもよい。For example, a structure as shown in FIG. 2 may be used.

〔発明の実施例〕[Embodiments of the invention]

実施例1〜3 内径30■長さ300酵肉厚2.5■の安定化ジルコニ
ア族の片封じ管を用意した。この片封じ管の封じ部から
80mの長さに亘シ、その内外面に、酸化銀粉末のアセ
トン懸濁液を塗布した。
Examples 1 to 3 A single-sealed tube of stabilized zirconia group having an inner diameter of 30 mm, a length of 30 mm, and a wall thickness of 2.5 mm was prepared. An acetone suspension of silver oxide powder was applied to the inner and outer surfaces of this single-sealed tube over a length of 80 m from the sealed portion.

ついで、250Cの空気中で2時間処理し、内外面に銀
電極を形成した。管外面の銀電極の上に酸化ビスマス粉
末な被着せしめて触媒層とした。
Then, it was treated in air at 250C for 2 hours to form silver electrodes on the inner and outer surfaces. Bismuth oxide powder was deposited on the silver electrode on the outer surface of the tube to form a catalyst layer.

これを実施例1試料とする。This is referred to as Example 1 sample.

酸化ビスマスに代えて触媒層が酸化ビスマス−酸化モリ
ブデンのもの、酸化コバルト−酸化マグネシウムのもの
を同様にして製作し、それぞれを実施例2試料、実施例
3試料とした。なお、触媒層を有しないものも製作しこ
れを実施例4とした。
In place of bismuth oxide, catalyst layers of bismuth oxide-molybdenum oxide and cobalt oxide-magnesium oxide were produced in the same manner, and these were used as Example 2 samples and Example 3 samples, respectively. Note that a sample without a catalyst layer was also produced and designated as Example 4.

これら4種類の電極部を使って、第2図に例示したよう
な装置を組立て、管の内側(画分室5b)には乾燥空気
20 cc/ mを流入し、管の外側(画分室5a)に
は、メタン2DvoQ % 、  ヘリウム8QvoQ
%の混合ガスを20CC/ml11で流入し、全体の温
度を700t:’に維持した。
Using these four types of electrode sections, a device as illustrated in Fig. 2 was assembled, and 20 cc/m of dry air was introduced into the inside of the tube (fraction chamber 5b), and the outside of the tube (fraction chamber 5a). include methane 2DvoQ%, helium 8QvoQ
% mixed gas was flowed in at 20 CC/ml11 and the overall temperature was maintained at 700 t:'.

導出管1aから得られた生成ガスを分析し、転化率を算
出しあわせてエタン、エチレンへの選択率を測定した。
The generated gas obtained from the outlet pipe 1a was analyzed, the conversion rate was calculated, and the selectivity to ethane and ethylene was measured.

以上の結果を第1表に示した。The above results are shown in Table 1.

第  1  表 実施例5 実施例1において、温度を650Cに維持して、銀電極
間に種々の電圧を印加して反応を行なった。そのときの
結果を第2表に示した。
Table 1 Example 5 In Example 1, the reaction was carried out by maintaining the temperature at 650C and applying various voltages between the silver electrodes. The results are shown in Table 2.

第  2  表 実施例6 実施例1において銀電極間に種々の電圧を印加シテ反応
を行った。結果を第3表に示す。
Table 2 Example 6 In Example 1, a shite reaction was carried out by applying various voltages between the silver electrodes. The results are shown in Table 3.

第  3  表゛ 〔発明の効果〕 以上の説明で明らかなように、本発明方法は固体電解質
の電極反応を利用して低級炭化水素からその炭素数以上
の炭素数を有する炭化水素を製造する新規な方法であっ
て、例えば、メタンからC1以上の炭化水累製造法とし
てその有用性が期待でき工業的価値は大きい。
Table 3 [Effects of the Invention] As is clear from the above explanation, the method of the present invention is a novel method for producing hydrocarbons having a carbon number greater than that of lower hydrocarbons from lower hydrocarbons by utilizing the electrode reaction of a solid electrolyte. This method is expected to be useful as a method for cumulatively producing C1 or higher hydrocarbons from methane, for example, and has great industrial value.

【図面の簡単な説明】[Brief explanation of drawings]

第1図、第2図はいずれも本発明方法で用いる装置の例
を示す。
FIG. 1 and FIG. 2 both show examples of apparatus used in the method of the present invention.

Claims (1)

【特許請求の範囲】[Claims] 低級炭化水素の酸化脱水素反応によつて該低級炭化水素
の炭素数以上の炭素数を有する炭化水素を製造する方法
であつて、両面にガス透過性の金属電極が形成されてい
る固体電解質によつて2室に画分された容器内で、該固
体電解質に電圧を印加する又は印加することなく、30
0〜1000℃の温度下において、一方の画分室には該
低級炭化水素又は低級炭化水素含有ガスを流入し、他方
の画分室には酸素又は酸素含有ガスを流入して反応を進
めることを特徴とする炭化水素の製造方法。
A method for producing a hydrocarbon having a carbon number greater than that of the lower hydrocarbon by an oxidative dehydrogenation reaction of the lower hydrocarbon, the method comprising using a solid electrolyte having gas-permeable metal electrodes formed on both sides. Therefore, in a container divided into two chambers, the solid electrolyte was heated for 30 minutes with or without applying a voltage.
At a temperature of 0 to 1000°C, the lower hydrocarbon or lower hydrocarbon-containing gas is flowed into one fraction chamber, and oxygen or an oxygen-containing gas is flowed into the other fraction chamber to proceed with the reaction. A method for producing hydrocarbons.
JP59151363A 1984-07-23 1984-07-23 Production of hydrocarbon Granted JPS6130688A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59151363A JPS6130688A (en) 1984-07-23 1984-07-23 Production of hydrocarbon

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59151363A JPS6130688A (en) 1984-07-23 1984-07-23 Production of hydrocarbon

Publications (2)

Publication Number Publication Date
JPS6130688A true JPS6130688A (en) 1986-02-12
JPH0338348B2 JPH0338348B2 (en) 1991-06-10

Family

ID=15516902

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59151363A Granted JPS6130688A (en) 1984-07-23 1984-07-23 Production of hydrocarbon

Country Status (1)

Country Link
JP (1) JPS6130688A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4802958A (en) * 1987-03-17 1989-02-07 The Standard Oil Company Process for the electrocatalytic oxidation of low molecular weight hydrocarbons to higher molecular weight hydrocarbons
JPH0665773A (en) * 1990-01-31 1994-03-08 Intevep Sa Electrocatalyst and method for electrocatalysis
US5693212A (en) * 1987-03-13 1997-12-02 The Standard Oil Company Solid multi-component membranes, electrochemical reactor components, electrochemical reactors and use of membranes, reactor components, and reactor for oxidation reactions
US5723035A (en) * 1987-03-13 1998-03-03 The Standard Oil Company Coated membranes
US6488739B1 (en) 1987-03-13 2002-12-03 Bp Corporation North America Inc. Oxygen production process
JP2014522356A (en) * 2011-03-26 2014-09-04 本田技研工業株式会社 Raw material and design method used in electrocatalyst apparatus and method for producing carbon nanotube and hydrocarbon for transportation fuel

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5693212A (en) * 1987-03-13 1997-12-02 The Standard Oil Company Solid multi-component membranes, electrochemical reactor components, electrochemical reactors and use of membranes, reactor components, and reactor for oxidation reactions
US5723035A (en) * 1987-03-13 1998-03-03 The Standard Oil Company Coated membranes
US5744015A (en) * 1987-03-13 1998-04-28 Mazanec; Terry J. Solid multi-component membranes, electrochemical reactor components, electrochemical reactors and use of membranes, reactor components, and reactor for oxidation reactions
US6019885A (en) * 1987-03-13 2000-02-01 The Standard Oil Company Solid multi-component membranes, electrochemical reactor components, electrochemical reactors and use of membranes, reactor components, and reactor for oxidation reactions
US6488739B1 (en) 1987-03-13 2002-12-03 Bp Corporation North America Inc. Oxygen production process
US4802958A (en) * 1987-03-17 1989-02-07 The Standard Oil Company Process for the electrocatalytic oxidation of low molecular weight hydrocarbons to higher molecular weight hydrocarbons
JPH0665773A (en) * 1990-01-31 1994-03-08 Intevep Sa Electrocatalyst and method for electrocatalysis
JP2014522356A (en) * 2011-03-26 2014-09-04 本田技研工業株式会社 Raw material and design method used in electrocatalyst apparatus and method for producing carbon nanotube and hydrocarbon for transportation fuel

Also Published As

Publication number Publication date
JPH0338348B2 (en) 1991-06-10

Similar Documents

Publication Publication Date Title
US4793904A (en) Process for the electrocatalytic conversion of light hydrocarbons to synthesis gas
US4329208A (en) Method and apparatus for converting ethylene to ethylene oxide
US4802958A (en) Process for the electrocatalytic oxidation of low molecular weight hydrocarbons to higher molecular weight hydrocarbons
US4933054A (en) Electrocatalytic oxidative dehydrogenation of saturated hydrocarbons to unsaturated hydrocarbons
Margolis Catalytic oxidation of hydrocarbons
US6730808B2 (en) Oxidative reactions using membranes that selectively conduct oxygen
JP3129451B2 (en) Solid multi-component membranes, electrochemical reactor components, electrochemical reactors, and use of membranes, reactor components, and reactors for oxidation reactions
EP0345393A1 (en) Ceramic membrane and use thereof for hydrocarbon conversion
Michaels et al. Styrene production from ethylbenzene on platinum in a zirconia electrochemical reactor
Michaels et al. Kinetics of vapor-phase electrochemical oxidative dehydrogenation of ethylbenzene
EP0480116B1 (en) Use of Metal-solid electrolyte catalysts
JPS6130688A (en) Production of hydrocarbon
US3239382A (en) Fuel cell catalysts
Sato et al. Partial oxidation of CH4 to synthesis gas using an Rh| YSZ| Ag electrochemical membrane reactor
Otsuka et al. The partial oxidation of methanol using a fuel cell reactor
Metcalfe Stabilised-zirconia solid electrolyte membranes in catalysis
Hamakawa et al. Design of one-component ceramic membrane-reactor for natural gas conversion
US4048029A (en) Manufacture of hydrogen
JPH0448487B2 (en)
US4404068A (en) Solid state method for synthesis reactions
Tsunoda et al. Alkene oxidation over the Au| yttria-stabilized zirconia| Ag system
Andersen et al. Electrochemical methane conversion over SrFeO 3− δ perovskite on an yttrium stabilized zirconia membrane
US5175064A (en) Fuel cells based on oxidation of organics over metal exchanged β-aluminas
US20030215697A1 (en) Electrode catalyst for H2S fuel cells
Zemichael et al. Propene partial oxidation over Au–Ag Alloy and Ag catalysts using electrochemical oxygen