JPS6130607B2 - - Google Patents

Info

Publication number
JPS6130607B2
JPS6130607B2 JP57059678A JP5967882A JPS6130607B2 JP S6130607 B2 JPS6130607 B2 JP S6130607B2 JP 57059678 A JP57059678 A JP 57059678A JP 5967882 A JP5967882 A JP 5967882A JP S6130607 B2 JPS6130607 B2 JP S6130607B2
Authority
JP
Japan
Prior art keywords
coil
electromagnetic
power supply
power
divided
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57059678A
Other languages
Japanese (ja)
Other versions
JPS58177116A (en
Inventor
Kazu Furukawa
Juhei Tamura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP5967882A priority Critical patent/JPS58177116A/en
Publication of JPS58177116A publication Critical patent/JPS58177116A/en
Publication of JPS6130607B2 publication Critical patent/JPS6130607B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Supply And Distribution Of Alternating Current (AREA)
  • Magnetically Actuated Valves (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、電磁過器に係り、コイル電源断な
どの磁界喪失による捕捉固形物の流出を防止する
安全機能の強化を計つた電磁過装置に関するも
のである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to an electromagnetic overflow device, and is an electromagnetic overflow device that is designed to enhance the safety function of preventing trapped solid matter from flowing out due to loss of magnetic field due to coil power cutoff, etc. It is related to.

〔従来の技術〕[Conventional technology]

容器に原液を通し、器内の過層を通過させて
過を行なう過器と、過器廻りの系統を含め
た過装置の概略系統を第1図に示す。
Figure 1 shows a schematic system of the filtration device, including a filtration device in which the stock solution is passed through a container and passed through an overlayer in the container, and the system around the filtration device.

ここで、原液の処理容量が多く、且つ連続的に
過運転を行なう必要がある場合、予備の過塔
も含めて部分容量のものを複数基並列設置するの
が普通であり、ここでは一例として2系列の場合
で説明する。1a,1bは過器である。原液は
入口管11から、a系列の過器入口管12a、
入口弁13aを通り、過器1aで過処理され
た後、出口管15a、出口弁16aを通る。同様
としてb系列で入口管12b、入口弁13b、
過器1b、出口管15b、出口弁16bを経て処
理された処理液と分流して出口管18に至る。入
口管11と出口管18の間には過器バイパスラ
インとして、バイパス管19,21及びバイパス
弁20が設けられているが、過処理運転中はバ
イパス弁20を閉止する。過器1a,1bは通
液処理運転を経過するにつれて過層の差圧上昇
又は処理水質の悪化を来たすので、逆洗によつて
過層の洗浄を行なう必要がある。この逆洗時
は、当該過器の入口弁13,13b及び出口弁
16a,16bを閉止して過器を隔離し、逆洗
用水又は空気を管22、弁24を経由して過器
1a,1bに導入し、逆洗流によつて目詰まりを
生じた過層を洗浄する。洗浄後の排水は弁26
a,26b、及び管27a,27bから装置外に
排出される。
Here, if the processing capacity of the raw solution is large and it is necessary to perform continuous over-operation, it is common to install multiple partial-capacity units in parallel, including a spare filter tower. The case of two series will be explained. 1a and 1b are overboards. The stock solution is transferred from the inlet pipe 11 to the a series filter inlet pipe 12a,
After passing through the inlet valve 13a and being overtreated in the strainer 1a, it passes through the outlet pipe 15a and the outlet valve 16a. Similarly, in the b series, the inlet pipe 12b, the inlet valve 13b,
It separates from the treated liquid through the filter 1b, the outlet pipe 15b, and the outlet valve 16b, and reaches the outlet pipe 18. Bypass pipes 19 and 21 and a bypass valve 20 are provided as a filter bypass line between the inlet pipe 11 and the outlet pipe 18, and the bypass valve 20 is closed during overtreatment operation. As the filter units 1a and 1b pass through the liquid flow treatment operation, the pressure difference in the overlayer increases or the quality of the treated water deteriorates, so it is necessary to wash the overlayer by backwashing. During this backwashing, the inlet valves 13, 13b and outlet valves 16a, 16b of the filter unit are closed to isolate the filter unit, and backwash water or air is passed through the pipe 22 and valve 24 to the filter unit 1a, 1b, and the clogged superlayer is washed by the backwash flow. Drainage after cleaning is done through valve 26.
a, 26b and pipes 27a, 27b to the outside of the device.

逆洗操作は過器1a,1bの隔離に始まり、
逆洗洗浄、過器通水開始迄を一定の操作手順に
従つて実施するので、一般にはシーケンシヤルな
自動操作が行なわれ、過器出入口弁13a,1
3b,16a,16bを始めとして関連する弁は
電動機駆動又は空気作動など、自動操作弁とされ
る。
The backwashing operation begins with isolation of filter units 1a and 1b,
Since backwashing and the start of water flow to the filter are carried out according to a fixed operating procedure, sequential automatic operation is generally performed, and the filter inlet and outlet valves 13a, 1
3b, 16a, 16b and other related valves are automatically operated valves, such as motor-driven or pneumatically operated valves.

次に過器として電磁過器を使用する場合の
系統構成は、第1図の過器1a,1bの型式が
電磁過器に置き替わるのみで、原液の入口側、
出口側及び逆洗関係系統など主要系統は、第1図
による一般的過器使用の場合と全く同一の基本
方針に基づいて設計されており、通常の通液運転
や逆洗操作時では何ら問題はない。
Next, the system configuration when using an electromagnetic filter as the overflow device is as follows: The types of overflow devices 1a and 1b in Fig. 1 are simply replaced with the electromagnetic overflow device, and the inlet side of the raw solution,
The main systems such as the outlet side and backwash-related systems are designed based on the same basic policy as in the case of using a general filter unit as shown in Figure 1, and there are no problems during normal liquid flow operation or backwash operation. There isn't.

電磁過器1は第2図にその断面を示す様に、
電源103に接続されたコイル102によつて生
じた磁界内に置かれている磁性充填物7によつて
原液中の磁性不溶解固形物を捕捉する。磁性充填
物7の目開きは固形物の粒径の比較してはるかに
大きく、機械的な過ではない。従つて、逆洗時
には、コイル102への通電を停止し、磁性充填
物7を消磁させることによつて少量の逆洗流と数
秒程度の極めて短時間の内に逆洗効果を得られる
ことが最大の特色となつている。
As the cross section of the electromagnetic device 1 is shown in Fig. 2,
Magnetic undissolved solids in the stock solution are captured by the magnetic packing 7 which is placed in the magnetic field generated by the coil 102 connected to the power source 103. The opening of the magnetic filler 7 is much larger than the particle size of the solid material, and is not a mechanical problem. Therefore, during backwashing, by stopping the power supply to the coil 102 and demagnetizing the magnetic filler 7, it is possible to obtain a backwashing effect with a small amount of backwashing flow and within an extremely short time of about a few seconds. It has become its biggest feature.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

このことは逆に、装置内の一部にコイル電源喪
失など過器1内の磁界を消失せしめる非常事態
が発生した場合には、磁性充填物7に捕捉されて
いた固形物を、一時に過器下流系統に流出させ
てしまう可能性を有するもので、重大な欠点の一
つとなつている。電磁過器1の適用個所は種々
考えられるが、例えば火力発電プラントや原子力
発電プラントの如き動力プラントに於ても、復水
系統の脱塩装置の上流側に設置する前置過器と
して使用する場合、あるいは、ボイラ又は原子炉
入口などの給水系統の量下流設置の場合などの適
用個所がある。前者の場合に前述の捕捉固形物流
出を生ずると、後置されている脱塩装置内のイオ
ン交換樹脂層で一部は再捕捉されるであろうが、
後者の場合は、直接ボイラ又は原子炉へ流入する
ので、重大な影響を及ぼすこととなる。
Conversely, if an emergency situation occurs that causes the magnetic field in the overheater 1 to disappear, such as a loss of coil power in a part of the device, the solid matter trapped in the magnetic filler 7 will be temporarily removed. This has the potential to leak into the downstream system, which is one of the major drawbacks. There are various possible applications for the electromagnetic filter 1, but for example, in power plants such as thermal power plants and nuclear power plants, it is used as a prefilter installed upstream of a desalination device in a condensate system. Applications include installations downstream of water supply systems such as boilers or reactor inlets. In the former case, if the aforementioned trapped solids flow out, some of them will be recaptured in the ion exchange resin layer in the desalination equipment installed later;
In the latter case, it will flow directly into the boiler or reactor, which will have a serious impact.

従つて、このような一次事故に対する防護技術
を確立し、信頼性の向上を計ることが、電磁過
器の適用に当つては不可欠である。
Therefore, it is essential to establish protection technology against such primary accidents and improve reliability when applying electromagnetic overload devices.

本発明の目的は、電磁過器内の磁界喪失の場
合、磁性充填物に捕捉されている固形物の離脱防
止策を講じた電磁過装置を提供することにあ
る。
SUMMARY OF THE INVENTION An object of the present invention is to provide an electromagnetic flux device that takes measures to prevent solid matter trapped in a magnetic filling from separating in the event of a loss of magnetic field within the electromagnetic flux device.

〔問題点を解決するための手段〕[Means for solving problems]

上記問題点は、電磁コイルを複数に分割し、そ
れぞれの分割されたコイルの異常を検出する手段
と、異常検出回路からの信号により、異常が生じ
ている分割コイルゆ電源から遮断するスイツチを
備えることにより解決される。
The above problem is solved by dividing the electromagnetic coil into a plurality of parts, detecting an abnormality in each of the divided coils, and using a signal from the abnormality detection circuit to cut off the power supply to the divided coil in which the abnormality is occurring. This is solved by

〔作用〕[Effect]

上記構成によれば、分割されたコイルに断線、
短絡などの事故が生じた場合、異常検出手段によ
りその異常を検出し、異常の生じているコイルの
みを電源から切りはなすので、電磁過装置は残
りの正常なコイルにより運転を続けることができ
電磁コイルの磁界は若干弱くなるが、吸着した固
形物を離脱させることなく運転を続けることがで
きる。
According to the above configuration, disconnection occurs in the divided coils.
If an accident such as a short circuit occurs, the abnormality is detected by the abnormality detection means and only the abnormal coil is disconnected from the power supply, so the electromagnetic overflow device can continue operating with the remaining normal coils. Although the magnetic field of the coil becomes slightly weaker, operation can be continued without detaching the adsorbed solids.

〔実施例〕〔Example〕

以下、本発明の一実施例を第3図について説明
する。
An embodiment of the present invention will be described below with reference to FIG.

電磁過器の分割された電磁コイル102a〜
eに供給する電源母線103は、105aの遮断
器、106aの接触器、107aの変圧器108
aのダイオードからなる交流電源から整流された
a電源系と同じく105a,106b,107
b,108bから構成されるb電源系更にバツテ
リー110、接触器111からなる直流系の3種
の電源で構成する多重源方式とし、一種の電源系
の異常による電源喪失の防止を計る。電磁コイル
は102a〜eの如く分割し各コイルでの短絡、
地絡によつて発生する過電流、コイル温度高及
び、電源喪失を各々異常検出回路113a〜eに
より検出し、異常検出回路の出力により、それぞ
れ対応する電磁コイルに直列に挿入したスイツチ
112a〜eを開路する構成となつている。
Divided electromagnetic coil 102a of the electromagnetic device
The power supply bus 103 that is supplied to
105a, 106b, 107 as in the a power supply system rectified from the AC power supply consisting of the diode a.
A multi-source system is used, which consists of three types of power supplies: a power system b, which is composed of the power supply system b, 108b, a battery 110, and a contactor 111, and is designed to prevent loss of power due to an abnormality in the power supply system. The electromagnetic coil is divided into 102a to 102e, and each coil is short-circuited.
Overcurrent, high coil temperature, and power loss caused by a ground fault are detected by abnormality detection circuits 113a to 113e, respectively, and the outputs of the abnormality detection circuits are used to trigger switches 112a to 112e inserted in series in the corresponding electromagnetic coils. It is configured to open the circuit.

この実施例では、電源母線103は、交流電源
から整流されたa系、b系2つの電源系に加えて
バツテリー110から常時給電されており、電源
系の故障に対する影響を少なくしている。そして
電源母線から各分割されたコイル102a〜e
は、それぞれ給電線104a〜e、スイツチ11
2a〜eを介して給電されている。
In this embodiment, the power supply bus 103 is constantly supplied with power from a battery 110 in addition to the two power supply systems A and B rectified from the AC power supply, thereby reducing the influence of failures in the power supply systems. The coils 102a to 102e are each divided from the power supply bus.
are the power supply lines 104a to 104e and the switch 11, respectively.
Power is supplied via 2a to 2e.

コイル102aに短絡事故が生じた場合、異常
検出回路113aがコイル過電流を検出して異常
信号を発生し、スイツチ112aを開く。残りの
コイル102b〜eは、正常であるので、これら
のコイルには、引き続き給電されているため磁性
充填物7に作用する磁界の強さは、若干弱くなる
が、吸着した異物が下流側に流出する程の磁界の
低下には至らず、引き続き運転が可能となる。
When a short-circuit accident occurs in the coil 102a, the abnormality detection circuit 113a detects the coil overcurrent, generates an abnormal signal, and opens the switch 112a. Since the remaining coils 102b to 102e are normal, the strength of the magnetic field acting on the magnetic filling 7 will be slightly weaker because these coils continue to be supplied with power, but the attracted foreign matter will not flow downstream. The magnetic field does not drop enough to cause an outflow, allowing continued operation.

第4図に実施例は、過装置として常用系と予
備系とを備えた2系列の場合であり、常用系の故
障の程度により予備系への切り換えパターンを変
化させて、下流側への吸着異物の流出を極力少な
くしたシステムを示している。すなわち、常用系
に生じた故障がそのまゝ運転を続けても吸着異物
が流出しない程度の軽いものであるときには、予
備器を記動し、予備系が完全に立ち上るまで運転
を継続し、その後に常用系を修理するために停止
させる切換パターンと、常用系の故障がそのまゝ
運転すると吸着物が離脱する程ひどい場合には、
バイパスを開いて常用系を即停止し、その後予備
系の起動を待つてバイパスを閉じる切換パターン
とを自動的に選択できるようにした。
The example shown in Fig. 4 is a two-line system with a normal system and a standby system as overflow devices, and the switching pattern to the standby system is changed depending on the degree of failure in the normal system, and adsorption to the downstream side is performed. This shows a system that minimizes the outflow of foreign matter. In other words, if the failure that occurs in the regular system is so minor that the adsorbed foreign matter will not flow out even if the system continues to operate, set up the backup device, continue operation until the backup system is fully activated, and then The switching pattern is such that the regular system is stopped for repair, and if the malfunction of the regular system is so severe that the adsorbed object will come off if the system continues to operate,
It is now possible to automatically select a switching pattern in which the bypass is opened, the regular system is stopped immediately, and the bypass is closed after waiting for the standby system to start up.

第4図の実施例では、電磁過器1aが常用
器、1bが予備器であり、それぞれのコイルは分
割され、スイツチA112a〜e,B112a〜
eを介して図示しない電源母線に接続されてい
る。常用器のコイルA102a〜eには、それぞ
れ異常検出回路が設けられ、各異常検出回路の信
号により、それぞれのコイルに対応したスイツチ
A112a〜eを開くように動作する。スイツチ
A112a〜eが開かれると判断回路109にそ
の信号が取り込まれる。判断回路109は、常用
器1aでの故障の程度を判定するもので、第4図
の実施例では分割されたコイルの2個までの故障
では、継続運転可能という信号31を発し、それ
以上の故障では、継続運転不可信号32を発す
る。
In the embodiment shown in FIG. 4, the electromagnetic overload device 1a is a regular device and 1b is a spare device, each coil is divided and switches A112a to e, B112a to
It is connected to a power supply bus (not shown) via e. The coils A102a to 102e of the regular appliance are each provided with an abnormality detection circuit, and the signals from each abnormality detection circuit operate to open the switches A112a to 112e corresponding to the respective coils. When the switches A112a to A112e are opened, the determination circuit 109 receives the signal. The determination circuit 109 determines the degree of failure in the regular appliance 1a, and in the embodiment shown in FIG. In the event of a failure, a signal 32 indicating that continued operation is not possible is issued.

この判定は、常用器で吸着した異物が流出する
限界を示し、この例では、分割コイルが3個故障
するともはや継続運転すると吸着異物が流出する
場合である。
This determination indicates the limit to which the foreign matter adsorbed by the regular device will flow out. In this example, if three split coils fail, the adsorbed foreign matter will no longer flow out if the device is continued to operate.

次に、その切換動作について説明する。 Next, the switching operation will be explained.

常用器1aでの運転時、常用器コイルA102
a〜eのいずれかに故障が発生すると異常検出回
路により検出されたコイルの電源が、電源スイツ
チ112a〜eによつて開路され故障コイルは電
源から切りはなされる。それとともに電源スイツ
チの開路された数によつて判定する判断回路10
9で、運転継続が可能であるかを判定する。
When operating with common use device 1a, common use device coil A102
When a failure occurs in any one of a to e, the power to the coil detected by the abnormality detection circuit is opened by the power switches 112a to 112e, and the failed coil is disconnected from the power. At the same time, a judgment circuit 10 makes a judgment based on the number of opened power switches.
In step 9, it is determined whether or not continued operation is possible.

開路されたスイツチの数が2個以下の場合には
運転継続可能と判断し、コイル異常の警報を発生
すると同時に常用器1aを運転状態としたまま、
予備器1bへの切替指令31を出し予備過器入
口弁13bを全開後に電磁コイル電源B112a
〜eを投入、一定時間後に電磁弁33を励磁し、
過器出口弁16bを全開し、予備器1bを運転
状態にし、その後に常用器1aの出口弁16aを
全閉し、入口弁13aを全閉して、予備過器1
bとの切替を行なう。
If the number of open switches is 2 or less, it is determined that operation can be continued, and a coil abnormality alarm is generated while the service unit 1a remains in operation.
After issuing a switching command 31 to the reserve unit 1b and fully opening the reserve unit inlet valve 13b, the electromagnetic coil power supply B112a
~ e is input, and after a certain period of time, the solenoid valve 33 is energized,
The filter outlet valve 16b is fully opened to put the reserve device 1b into operation, and then the outlet valve 16a of the regular device 1a is fully closed, the inlet valve 13a is fully closed, and the reserve device 1 is turned on.
b.

この切換パターンでは、常用器での故障は軽度
であるため、予備器1bが立ち上るまで、常用器
1aの運転を継続し、過ユニツト下流側へ与え
る流量変動を極力小さくしている。
In this switching pattern, since failures in the regular unit are minor, the regular unit 1a continues to operate until the standby unit 1b starts up, thereby minimizing fluctuations in the flow rate applied to the downstream side of the over-unit.

また判断回路109によつて継続運転不可能と
判定された場合は、切替指令32により電磁弁3
5を励磁し過器バイパス弁20を全開、過器
バイパス弁全開以外と切替指令32によつて、電
磁弁34を励磁して過器出口弁16aを全閉し
吸着異物の流出を防ぎバイパス運転としてユニツ
トの運転を継続させる。引き続き予備過器入口
弁13bを全開させ、スイツチB112a〜eを
投入、一定時間後に過器出口弁16bを全開さ
せ予備過器20を全閉させて定常運転とする一
連の操作を行ないバイパス運転の極少化を計りユ
ニツトの汚染の低減を計る。以上の操作をブロツ
ク図により表現すると第5図に示す通りである。
If the judgment circuit 109 determines that continued operation is impossible, the switching command 32 causes the solenoid valve 3 to
5 is energized to fully open the excess device bypass valve 20, and when the excess device bypass valve is not fully open, the solenoid valve 34 is energized and the excess device outlet valve 16a is fully closed by switching command 32 to prevent the flow of adsorbed foreign matter and perform bypass operation. The unit continues to operate as follows. Subsequently, the reserve filter inlet valve 13b is fully opened, the switches B112a to 112e are turned on, and after a certain period of time, the filter outlet valve 16b is fully opened, the reserve filter 20 is fully closed, and a series of operations are performed to achieve steady operation, and bypass operation is started. Measures to minimize contamination of the unit. The above operation is expressed in a block diagram as shown in FIG.

また第6図には第3図の実施例の変形例を示す
本方式は過器の電磁コイルを分割、それに対応
する電源を母線構成とせず、単独に設けるもので
ある。構成と機能は次の通りである。105aの
遮断器、106aの接触器、107aの変圧器、
108aのダイオードからなる交流を整流したも
のを電磁コイル102aに供給する。
In addition, FIG. 6 shows a modification of the embodiment shown in FIG. 3. In this system, the electromagnetic coil of the overloader is divided, and the corresponding power source is not provided in a busbar configuration, but is provided independently. The configuration and functions are as follows. 105a circuit breaker, 106a contactor, 107a transformer,
The rectified alternating current formed by the diode 108a is supplied to the electromagnetic coil 102a.

電磁コイル102bには同様の構成からなるb
系から、電磁コイル102cには110のバツテ
リーから、106cの接触器を介して供給する多
重電源方式とするもので、電磁コイルでの異常に
ついては異常検出回路113a〜cによつて行な
い、検出されたコイルに対応した接触器106a
〜cを開路させる。
The electromagnetic coil 102b has a similar configuration.
The electromagnetic coil 102c is supplied with multiple power from a battery 110 through a contactor 106c, and any abnormality in the electromagnetic coil is detected by abnormality detection circuits 113a to 113c. Contactor 106a compatible with the coil
~c is opened.

本発明によれば、電磁過装置のコイルの軽い
故障によつてコイル電源および過器内の全磁界
喪失がなくなり、過器内の磁性充填物に捕捉さ
れていた固形物を流出させることが防止できる。
According to the present invention, a slight failure of the coil of the electromagnetic overload device eliminates the loss of the coil power supply and the total magnetic field in the overloader, and prevents the solid matter trapped in the magnetic filling inside the overloader from flowing out. can.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は過装置の系統構成を示す系統図、第
2図は電磁過器の構造を示す断面図、第3図、
第4図、第5図及び第6図は多重電源構成電磁
過装置説明図である。 1a,1b……電磁過器、7……磁性充填
物、13a,13b……過器入口弁、16a,
16b……過器出口弁、20……過器バイパ
ス弁、102a〜e……電磁コイル、103……
電源母線、105……遮断器、106……接触
器、107……変圧器、108……ダイオード、
109……判断回路、110……バツテリー、1
11……接触器、112a〜e……電磁コイルス
イツチ、113a〜c……異常検出回路。
Fig. 1 is a system diagram showing the system configuration of the electromagnetic converter, Fig. 2 is a sectional view showing the structure of the electromagnetic converter, Fig. 3,
FIG. 4, FIG. 5, and FIG. 6 are explanatory diagrams of an electromagnetic overflow device having a multiple power supply configuration. 1a, 1b...Electromagnetic device, 7...Magnetic filling, 13a, 13b...Device inlet valve, 16a,
16b...supercharger outlet valve, 20...supercharger bypass valve, 102a-e...electromagnetic coil, 103...
Power busbar, 105... Breaker, 106... Contactor, 107... Transformer, 108... Diode,
109...Judgment circuit, 110...Battery, 1
DESCRIPTION OF SYMBOLS 11... Contactor, 112a-e... Electromagnetic coil switch, 113a-c... Abnormality detection circuit.

Claims (1)

【特許請求の範囲】[Claims] 1 容器外周部に設置されている電磁コイルに通
電して発生する磁力によつて、容器内部に充填さ
れている材を磁化し、容器入口から導入する原
液から磁性固形物を除去処理する電磁過器にお
いて、前記電磁コイルを複数個に分割し、各分割
されたコイルをそれぞれスイツチを介して電源に
接続し、前記各分割されたコイルの異常検出回路
を設け、異常検出回路の出力により、異常の発生
したコイルに対応する前記スイツチを開路して、
電源から切り離すようにしたことを特徴とする電
磁過装置。
1 Electromagnetic overflow that magnetizes the material filled inside the container using the magnetic force generated by energizing an electromagnetic coil installed on the outer periphery of the container, and removes magnetic solids from the stock solution introduced from the container entrance. In the device, the electromagnetic coil is divided into a plurality of pieces, each divided coil is connected to a power supply via a switch, and an abnormality detection circuit is provided for each divided coil, and an abnormality is detected by the output of the abnormality detection circuit. Open the switch corresponding to the coil where .
An electromagnetic overflow device characterized by being disconnected from a power source.
JP5967882A 1982-04-12 1982-04-12 Electromagnetic filter apparatus Granted JPS58177116A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5967882A JPS58177116A (en) 1982-04-12 1982-04-12 Electromagnetic filter apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5967882A JPS58177116A (en) 1982-04-12 1982-04-12 Electromagnetic filter apparatus

Publications (2)

Publication Number Publication Date
JPS58177116A JPS58177116A (en) 1983-10-17
JPS6130607B2 true JPS6130607B2 (en) 1986-07-15

Family

ID=13120090

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5967882A Granted JPS58177116A (en) 1982-04-12 1982-04-12 Electromagnetic filter apparatus

Country Status (1)

Country Link
JP (1) JPS58177116A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58137417A (en) * 1982-02-09 1983-08-15 Fuji Electric Co Ltd Electromagnetic filter

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58137417A (en) * 1982-02-09 1983-08-15 Fuji Electric Co Ltd Electromagnetic filter

Also Published As

Publication number Publication date
JPS58177116A (en) 1983-10-17

Similar Documents

Publication Publication Date Title
US3976541A (en) Secondary coolant purification system with demineralizer bypass
US6939470B2 (en) Automatic shut-off for water treatment system
US5566709A (en) Fluid plant and its operating method
KR20180125336A (en) Nuclear power plant digital protection system
JPS59157590A (en) Reactivity control device and its operation system
JPH0893995A (en) Monitoring device of drain trap for steam piping
JPS6130607B2 (en)
JP3093919B2 (en) Method and apparatus for chemical decontamination of pressurized water reactor coolant system
JP2989119B2 (en) Alternating operation control system for water softener
JP3915629B2 (en) Automatic control device
CN209428252U (en) A kind of water circuit system of purifier
JP2008232880A (en) Fuel pool cooling facility, and fuel pool cooling method
CN219434725U (en) Pure water monitoring device
CN107740728A (en) Diesel engine stops in emergency Electromagnetic Valve Circuit failover, warning circuit and its method
JPH04200223A (en) Protective relay unit
JPS58216712A (en) System for detecting disconnection of electric source in electromagnetic filter
JPH0213758B2 (en)
JPH06170361A (en) Condensation purification device
JPS62140612A (en) Method for operating filter device
CN107630753A (en) Diesel engine stops in emergency Electromagnetic Valve Circuit failover, warning circuit and its method
JPH02181695A (en) Nuclear reactor protection device
JPS59125097A (en) Device for controlling transportion of radioactive liquid waste
JPS59150394A (en) Waste processing system for atomic power plant
JPH0470600B2 (en)
JPH0862373A (en) Heat eliminating device of reactor container