JPS6130604B2 - - Google Patents

Info

Publication number
JPS6130604B2
JPS6130604B2 JP14226182A JP14226182A JPS6130604B2 JP S6130604 B2 JPS6130604 B2 JP S6130604B2 JP 14226182 A JP14226182 A JP 14226182A JP 14226182 A JP14226182 A JP 14226182A JP S6130604 B2 JPS6130604 B2 JP S6130604B2
Authority
JP
Japan
Prior art keywords
solid
solids
liquid
screw blade
return
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP14226182A
Other languages
Japanese (ja)
Other versions
JPS5932910A (en
Inventor
Seiichi Morisawa
Hiromichi Irifuji
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP14226182A priority Critical patent/JPS5932910A/en
Publication of JPS5932910A publication Critical patent/JPS5932910A/en
Publication of JPS6130604B2 publication Critical patent/JPS6130604B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は水処理装置において沈澱固形物と液分
とを分離し、固形物のみを系外に搬出する装置に
関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an apparatus for separating precipitated solids and liquids in a water treatment apparatus and transporting only the solids out of the system.

固液分離装置には種々あるが、重力式固液分離
装置には、分離された固形物の搬出に機械的方法
が最も多く用いられている。本発明は、その機械
的搬出装置において、固形物搬出筒内に回転自在
に収容した、立型螺施羽根と、この螺施羽根に形
成した返送用孔目および固形物搬出筒側面に形成
した返送用排出孔により、固形物の一部を固液分
離装置内と固液分離槽との間を循環させることに
より、有機性微粒子等の微粒子剥離効率を高め
て、固液分離を行なわせるようにしたものであ
る。
Although there are various types of solid-liquid separators, mechanical methods are most often used in gravity-type solid-liquid separators to transport the separated solids. The present invention provides a mechanical transport device that includes a vertical screw blade rotatably housed in a solid material transport cylinder, a return hole formed in the screw blade, and a return hole formed on the side surface of the solid material transport cylinder. By circulating a portion of the solids between the solid-liquid separator and the solid-liquid separation tank through the return discharge hole, the efficiency of removing organic particles and other particulates is increased and solid-liquid separation is performed. This is what I did.

沈澱固形物の搬出装置の一例を第1図に示す、
1は重力式固液分離槽である。被処理液は、流入
管2より流入し、液中の固形物は固液分離槽1に
て固液分離され、液分は流出口3より放出され
る。固形物分は、沈澱固形物として槽下部に堆積
され、索条4に懸垂された多数のバケツ5にて掻
寄搬出される。バケツ5によつて搬出された沈澱
固形物は、固液分離槽1上部に設置されたベルト
コンベヤ6にて系外に持出される。なお、搬出装
置の索条4の駆動は、伝達歯車7にて行い、その
索条4の案内が8の滑車である。また9は駆動装
置である。
An example of a device for discharging precipitated solids is shown in Figure 1.
1 is a gravity solid-liquid separation tank. The liquid to be treated flows in through the inflow pipe 2, the solids in the liquid are separated into solid and liquid in the solid-liquid separation tank 1, and the liquid is discharged from the outlet 3. The solid matter is deposited at the bottom of the tank as precipitated solid matter, and is scraped up and carried out by a number of buckets 5 suspended from cables 4. The precipitated solids carried out by the bucket 5 are carried out of the system by a belt conveyor 6 installed above the solid-liquid separation tank 1. The cable 4 of the unloading device is driven by a transmission gear 7, and the cable 4 is guided by a pulley 8. Further, 9 is a driving device.

上記従来の沈澱固形物の搬出装置においては、
装置の構造上、バケツ5は沈澱固形物分と液分の
分離が不可能なこと、また沈澱固形物に付着した
有機性微粒子をもそのまま搬出し、槽外において
別途微粒子剥離操作後、固形物を系外に搬出する
という二重の操作工程を必要とする欠点がある。
さらに搬出装置の必要動力は、沈澱固形物の掻き
寄せおよび、搬出用の動力ならびに有機性微粒子
剥離操作に必要な動力であるが、その殆んどが搬
出装置および微粒子剥離操作に消費されており、
特にバケツ5による固形物の搬出に際し、液分も
いつしよに搬出せざるを得ないので動力のロスが
大きい。
In the above-mentioned conventional precipitated solid material transport device,
Due to the structure of the device, the bucket 5 cannot separate the precipitated solids from the liquid, and the organic particles adhering to the precipitated solids are also carried out as they are, and the solids are removed after a separate particle separation operation outside the tank. This method has the disadvantage that it requires a double operation process of transporting it out of the system.
Furthermore, the power required for the unloading device is the power required for scraping up the precipitated solids, the power for transporting it, and the power required for the organic particulate peeling operation, but most of this is consumed by the unloading unit and the particulate peeling operation. ,
In particular, when carrying out the solids using the bucket 5, the liquid must also be carried out at the same time, resulting in a large loss of power.

本発明は上記従来の沈澱固形物の搬出装置の欠
点を除去し、単一の装置にて沈澱固形物の搬出と
固形物に付着した微粒子の除去という2つの機能
を同時に果すことを目的としてなされたものであ
る。
The present invention has been made for the purpose of eliminating the drawbacks of the conventional precipitated solid material transporting devices described above, and allowing a single device to perform the two functions of transporting precipitated solids and removing fine particles attached to the solid materials at the same time. It is something that

本発明にかかる沈澱固形物搬出装置は、下端部
に固液分離槽内の沈澱固形物層に接する開放端を
上端部に固形物搬出口をそれぞれ有する固形物搬
出筒を被処理液の液面にほぼ垂直方向に設置し、
この固形物搬出筒内に螺施羽根を配設し、この螺
施羽根上で固形物から液分を遠心分離させうる回
転速度で該螺施羽根を回転駆動する駆動装置を該
螺施羽根に連結し、適宜の高さにおける前記螺施
羽根に、固形物の一部、および剥離微粒子を含む
遠心分離された液分を落下させるために充分な孔
径を有する返送用孔目を形成するとともに、固形
物排出筒側面に、固形物の一部、および剥離微粒
子を含む遠心分離された液分を筒外に排出するた
めに充分な孔径を有する返送用排出孔を形成した
ことを特徴とするものである。上記の構成によ
り、螺施羽根を回転駆動することによつて液分お
よび固形物に付着した微粒子を遠心分離して分離
された液分および微粒子を返送用孔目および返送
用排出孔を通して固液分離槽内に戻し、固形物の
みを系外に搬出すると同時に、固形物の一部を返
送用孔目から下方に落しかつ返送用排出孔から固
液分離槽に戻して循環させることにより、微粒子
の剥離動作を繰り返し行い、固形物に付着した微
粒子の剥離効率を高めている。
The precipitated solids transport device according to the present invention includes a solids transport cylinder having an open end in contact with the precipitated solids layer in the solid-liquid separation tank at the lower end and a solids transport port at the upper end, at the liquid level of the liquid to be treated. installed almost vertically to
A screw blade is disposed in this solid material delivery cylinder, and a drive device is attached to the screw blade to rotate the screw blade at a rotational speed that allows centrifugal separation of the liquid from the solid material on the screw blade. forming a return hole having a sufficient pore diameter to allow a portion of the solid matter and the centrifuged liquid containing the exfoliated fine particles to fall in the screw blade connected to the screw blade at an appropriate height; A return discharge hole is formed on the side of the solid matter discharge tube and has a hole diameter sufficient to discharge a part of the solid matter and the centrifuged liquid containing exfoliated fine particles to the outside of the tube. It is. With the above configuration, by rotating the screw blade, the liquid and fine particles attached to the solid are centrifuged, and the separated liquid and fine particles are passed through the return hole and the return discharge hole to the solid and solid. By returning only the solids to the separation tank and transporting them out of the system, part of the solids are dropped downward through the return hole and returned to the solid-liquid separation tank through the return discharge hole for circulation. The peeling operation is repeated to increase the peeling efficiency of fine particles attached to solid objects.

以下本発明の第2図と第3図に示す実施例につ
いて詳細に説明する。
The embodiments of the present invention shown in FIGS. 2 and 3 will be described in detail below.

第2図に示す実施例においては重力式固液分離
槽11は槽下部を円錐形とし、沈澱固形物層12
の沈澱固形物を槽のほぼ中央に配置した本発明に
かかる搬出装置10により搬出するものである。
In the embodiment shown in FIG.
The precipitated solids are transported out by the transport device 10 according to the present invention, which is arranged approximately in the center of the tank.

搬出装置10は、固液分離槽11内において被
処理液の液面にほぼ垂直方向に設置された円筒形
の立型固形物搬出筒13を備え、この固形物搬出
筒13は下端が沈澱固形物層12に接する開放端
13Aとされ、上端部において固形物搬出口14
に連通している。図示の実施例においてこの固形
物搬出筒13は13a〜13dで示す各部分で構
成されている。この実施例では、これら各部13
a〜13dを分離構造として継ぎ合せて構成して
いるが、一本の鋼管で構成してもよいことは勿論
である。固形物搬出筒13内にはほぼその全長に
わたつて螺施羽根16を具えた回転軸17が配設
されている。螺施羽根16は沈澱固形物の物性に
見合う羽根角を有するように形成されている。
The unloading device 10 includes a cylindrical vertical solids unloading tube 13 that is installed in a direction substantially perpendicular to the liquid surface of the liquid to be treated in the solid-liquid separation tank 11. The open end 13A is in contact with the material layer 12, and the solid material outlet 14 is formed at the upper end.
is connected to. In the illustrated embodiment, the solid material delivery tube 13 is composed of parts 13a to 13d. In this embodiment, each of these parts 13
Although a to 13d are constructed by joining them together as separate structures, it goes without saying that they may be constructed from a single steel pipe. A rotary shaft 17 provided with a threaded blade 16 is disposed within the solid material delivery tube 13 over substantially its entire length. The screw blades 16 are formed to have a blade angle that matches the physical properties of the precipitated solids.

ところで、固形物搬出筒13において、いちば
ん下の13aで示した部分は開放端13Aから沈
澱固形物を上方に送り込む、固形物搬出部であ
る。また13cは上方に送られる固形物の一部およ
び固形物の固液分離操作により分離された微粒子
を含む液分を固液分離槽11に戻す返送用排出孔
15を具えた返送部である。この返送部13cに
おける螺施羽根16には、第3図に示すように孔
(返送用孔目)16aが形成されており、固液分
離操作中、固形物の一部および固液分離された微
粒子を含む液分をこの孔16aを通して落下さ
せ、その一部を返送用排出孔15を通して固液分
離槽11に戻すようにしている。固形物搬出筒1
3の13dで示した部分は固液分離された固形物
を螺施羽根にて搬送し固形物搬出口14から搬出
する固形物搬出部である。また、固形物送込部1
3aと返送部13cとの間に挟まれた部分13b
は、螺施羽根16の回転軸17の軸受18を保持
する部分である。回転軸17の上端は適宜の伝達
機構19を介して螺施羽根上で固形物から液分を
遠心分離させうる回転速度で螺施羽根を回転駆動
する駆動装置20に連結されている。なお21は
流入管、22は流出口、23はベルトコンベヤで
ある。
By the way, in the solid material delivery tube 13, the lowest portion indicated by 13a is a solid material delivery portion that sends the precipitated solids upward from the open end 13A. Further, 13c is a return section provided with a return discharge hole 15 for returning a portion of the solids sent upward and a liquid containing fine particles separated by the solid-liquid separation operation to the solid-liquid separation tank 11. As shown in FIG. 3, holes (holes for return) 16a are formed in the threaded blade 16 in this return portion 13c, and during solid-liquid separation operation, part of the solids and solid-liquid separated A liquid containing fine particles is allowed to fall through this hole 16a, and a portion thereof is returned to the solid-liquid separation tank 11 through a return discharge hole 15. Solid material delivery tube 1
The part indicated by 13d in FIG. 3 is a solid material discharge section that transports the solid material separated into solid and liquid using a screw blade and carries it out from the solid material discharge port 14. In addition, the solid material feeding section 1
Portion 13b sandwiched between 3a and return section 13c
is a portion that holds the bearing 18 of the rotating shaft 17 of the screw blade 16. The upper end of the rotating shaft 17 is connected via a suitable transmission mechanism 19 to a drive device 20 that rotates the screw blade at a rotational speed that allows centrifugal separation of liquid from solid matter on the screw blade. Note that 21 is an inflow pipe, 22 is an outlet, and 23 is a belt conveyor.

次に、操作工程について説明する。重力式固液
分離槽11の沈澱固形物は槽下部が円錐形のため
槽下部中央に集り、液分とともに固形物搬出筒1
3の固形物送込部13aに送り込まれる。送り込
まれた沈澱固形物と液分は、螺施羽根16の面上
において、遠心分離されながら垂直方向に移動す
る。この遠心分離動作の間において、沈澱固形物
に付着している有機性微粒子等の微粒子は遠心力
および固形物の塊りや粒子同志の衝突・摩擦によ
り固形物から剥離される。固形物の一部および分
離された液分は垂直方向移動工程中、返送部13
cにおいて螺施羽根16に設けられた返送用孔目
16aよりその下のピツチの螺施羽根16上に落
下し、かくして落下した固形物は再度遠心分離動
作にかけられる。即ち返送部13c内における固
形物の滞留時間は増加することとなりそれだけ微
粒子の剥離される度合が増大する。
Next, the operation process will be explained. Since the lower part of the gravity-type solid-liquid separation tank 11 is conical, the precipitated solids gather at the center of the lower part of the tank, and are transferred to the solids transport tube 1 along with the liquid.
The solid material is fed into the solid material feeding section 13a of No.3. The fed precipitated solids and liquid move vertically on the surface of the screw blade 16 while being centrifuged. During this centrifugal separation operation, fine particles such as organic fine particles adhering to the precipitated solid are separated from the solid by centrifugal force and collision/friction between solid particles and particles. A part of the solids and the separated liquid are transferred to the return section 13 during the vertical movement process.
At c, the solids fall through the return holes 16a provided in the screw blade 16 onto the screw blade 16 in the pitch below, and the solids thus fallen are subjected to centrifugal separation again. That is, the residence time of the solids in the return section 13c increases, and the degree to which the fine particles are peeled off increases accordingly.

返送部13c下部に設けられた返送用排出孔1
5からは固形物の一部および返送部13cにおい
て固液分離された液分と剥離された微粒子が固液
分離槽11に排出される。遠心分離動作され排出
孔15から排出された固形物は操作が進むにつれ
て固形物返込部13aから再び筒内に送り込まれ
再び遠心分離動作が繰り返されるので、返送部1
3cにおける固形物の一部落下による繰り返し遠
心分離動作に加えて付着微粒子剥離効果を一層増
大する。
Return discharge hole 1 provided at the bottom of the return section 13c
5, a part of the solid matter, the liquid separated from the solid-liquid in the return section 13c, and the separated fine particles are discharged into the solid-liquid separation tank 11. As the operation progresses, the solids that have been centrifuged and discharged from the discharge hole 15 are sent into the cylinder again from the solids return section 13a and the centrifugation operation is repeated again.
In addition to the repeated centrifugal separation operation due to part of the solid matter falling in step 3c, the effect of peeling off the adhered fine particles is further increased.

以上のようにして沈澱固形物中の微粒子と微分
を除去した固形物は螺施羽根16で上方に運ばれ
て固形物搬出口14から排され、ベルトコンベヤ
ー23で固液分離槽11の外に持ち出される。
The solids from which the fine particles and differentials in the precipitated solids have been removed in the manner described above are transported upward by the screw blades 16 and discharged from the solids discharge port 14, and then transferred to the outside of the solid-liquid separation tank 11 by the belt conveyor 23. brought out.

本発明における操作実験の一例を都市下水につ
いて使用した結果を説明する。
The results of using an example of a manipulation experiment in the present invention on urban sewage will be explained.

既知のごとく、下水の処理装置は、下水に含ま
れる固形物除去操作において固形物粒径0.2mm以
上の細砂分およびそれ以外の粒子分に分類し、こ
れ等の固形物除去処理を一次処理工程と呼んでい
る。
As is known, sewage treatment equipment removes solids contained in sewage by classifying them into fine sand with a particle size of 0.2 mm or more and other particles, and performs primary treatment to remove these solids. It's called a process.

上記の処理工程のうち、除砂操作において、砂
に付着した有機性微粒子が系外搬出後に腐敗をお
こし、処理装置上の大きな弊害となつている。よ
つて本実験においては、螺施羽根16の羽根角お
よび回転数は除砂物の内部摩擦係数を15〜25度の
範囲の関数として取扱い、また、返送用孔目16
aを各ピツチごとに螺施羽根16の垂直方向送量
の50%前後の返送範囲に設定し、かつ返送用排出
穴15の排出量もその範囲とした。
Among the above-mentioned processing steps, during the sand removal operation, the organic fine particles adhering to the sand cause decomposition after being carried out of the system, which is a major problem on the processing equipment. Therefore, in this experiment, the blade angle and rotation speed of the screw blade 16 were treated as a function of the internal friction coefficient of the sand removal material in the range of 15 to 25 degrees, and the return hole 16
A was set to a return range of around 50% of the vertical feed amount of the screw blade 16 for each pitch, and the discharge amount of the return discharge hole 15 was also set within that range.

以上の条件による実験結果は、固形物排出口1
4より搬出された砂中の有機性微粒子の含有量は
殆んどなく、0.2mm径以下の固形物量も殆んど無
視できる結果であつた。
The experimental results under the above conditions are as follows:
The content of organic fine particles in the sand carried out from No. 4 was almost negligible, and the amount of solid matter with a diameter of 0.2 mm or less was almost negligible.

つぎに、下水の既知処理装置において、第1図
に示すベルトコンベヤ6により系外に持出された
沈澱固形物を試料として、本発明装置の固液分離
槽11の下部円錐状部分のみを製作したもので実
験を行つた。その結果、上述の実験ともほぼ一致
する良好な結果が得られた。
Next, using the precipitated solids taken out of the system by the belt conveyor 6 shown in FIG. 1 in a known sewage treatment device as a sample, only the lower conical portion of the solid-liquid separation tank 11 of the device of the present invention was fabricated. I conducted an experiment with this. As a result, good results were obtained that were almost consistent with the experiments described above.

なお、この実験の試料として系外に持出された
沈澱固形物は、A市に於ける下水処理場の沈砂池
の沈砂で、その物性はGaudinの式の粒子径300μ
m、指数:約3.0であり、沈砂洗浄用の水量を固
形物搬出口14より搬出される沈砂量の2〜6倍
の範囲とした。
The precipitated solids taken out of the system as samples for this experiment were sediment from the settling basin of the sewage treatment plant in City A, and its physical properties were as follows: particle size 300μ according to Gaudin's equation.
m, index: about 3.0, and the amount of water for settling and cleaning was set to be in the range of 2 to 6 times the amount of settled sand carried out from the solid material carrying out port 14.

以上述べたように本発明によれば、螺施羽根に
形成した返送用孔目から固形物の一部を下方の螺
施羽根上に落とし繰り返し遠心分離操作にかける
とともに、固形物搬出筒側面に形成した返送用排
出孔から固形物の一部を筒外にに排出した後再び
取込み遠心分離操作にかけるようにしたので、筒
内に取込まれる固形物は全体として循環的に繰り
返し遠心分離操作にかけられることになり、固形
物に付着した有機性微粒子等の微粒子を極めて高
い効率で固形物から剥離することができる。
As described above, according to the present invention, a portion of the solid material is dropped from the return hole formed in the screw blade onto the screw blade below and subjected to repeated centrifugal separation, and the solid material is transferred to the side surface of the solid material delivery tube. After some of the solids are discharged outside the cylinder through the formed return discharge hole, they are taken in again and subjected to centrifugation, so that the solids taken into the cylinder are cyclically and repeatedly centrifuged as a whole. As a result, fine particles such as organic fine particles attached to the solid material can be peeled off from the solid material with extremely high efficiency.

また、本発明によれば、適切なる羽根角および
羽根回転数の条件下において、立型螺施羽根の固
形物返送用孔目の螺施羽根半径方向のの位置を変
えることにより、搬出固形物の限界粒径、即ち、
固形物の分級を任意に設定できることとなる。ま
た、上述付着微粒子の剥離効率は、固形物返送用
孔目の大小と個数および返送用排出孔の大小によ
る返送固形物の各増減量によつて可能となる。さ
らに第1図および第2図から明らかなごとく、搬
出装置の構造的性格上、装置の設置面積が小さ
く、かつ装置全体が簡略化でき、設備費の低減が
期待出来るとともに、その簡略化の結果、総稼動
動力の減少は明らかである。
Further, according to the present invention, under the conditions of appropriate blade angle and blade rotation speed, by changing the position of the solid material return hole of the vertical screw blade in the radial direction of the screw blade, the solid material can be transported out. The critical particle size of
This means that the classification of solids can be set arbitrarily. Furthermore, the above-mentioned peeling efficiency of the adhered fine particles is made possible by varying the amount of the returned solids depending on the size and number of the solid material return holes and the size of the return discharge holes. Furthermore, as is clear from Figures 1 and 2, due to the structural characteristics of the unloading device, the installation area of the device is small, and the entire device can be simplified, and a reduction in equipment costs can be expected, and as a result of this simplification. , the reduction in total operating power is obvious.

なお、既述の実験結果からも明らかなごとく、
既設装置に本発明装置を設置することにより、従
来分離できなかつた沈澱固形物の有機性微粒子お
よび沈澱粒子に付着した有機物の剥離等、有機物
質除去操作が可能である。
Furthermore, as is clear from the experimental results mentioned above,
By installing the device of the present invention in an existing device, operations for removing organic substances, such as peeling off organic fine particles of precipitated solids and organic matter attached to precipitated particles, which could not be separated conventionally, are possible.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は固液分離槽操作の従来法の重力式固液
分離槽の一例を示す図である。第2図はこの発明
の一実施例を示す図、第3図は第2図の装置の一
部拡大縦断面図、第4図は第3図の横断面図であ
る。 10……固液分離装置、11……固液分離槽、
13……固形物搬出筒、14……固形物搬出口、
15……返送用排出孔、16……螺施羽根、16
a……返送用孔、17……回転軸、21……流入
口、22……流出口、23……ベルトコンベヤ。
FIG. 1 is a diagram showing an example of a conventional gravity-type solid-liquid separation tank for operation of the solid-liquid separation tank. FIG. 2 is a diagram showing an embodiment of the present invention, FIG. 3 is a partially enlarged vertical cross-sectional view of the apparatus shown in FIG. 2, and FIG. 4 is a cross-sectional view of FIG. 3. 10...Solid-liquid separation device, 11...Solid-liquid separation tank,
13...Solid material delivery tube, 14...Solid material delivery port,
15... Return discharge hole, 16... Screwed blade, 16
a... Return hole, 17... Rotating shaft, 21... Inlet, 22... Outlet, 23... Belt conveyor.

Claims (1)

【特許請求の範囲】[Claims] 1 下端部に固液分離槽内の沈澱固形物層に接す
る開放端を、上端部に固形物搬出口をそれぞれ有
する固形物搬出筒を被処理液の液面にほぼ垂直方
向に設置し、この固形物搬出筒内に螺施羽根を配
設し、この螺施羽根上で固形物から液分を遠心分
離させうる回転速度で該螺施羽根を回転駆動する
駆動装置を該螺施羽根に連結し、適宜の高さにお
ける前記螺施羽根に、固形物の一部、および剥離
微粒子を含む遠心分離された液分を落下させるた
めに充分な孔径を有する返送用孔目を形成すると
ともに、固形物排出筒側面に、固形物の一部、お
よび剥離微粒子を含む遠心分離された液分を筒外
に排出するために充分な孔径を有する返送用排出
孔を形成したことを特徴とする沈澱固形物搬出装
置。
1. A solids transport cylinder, which has an open end in contact with the precipitated solids layer in the solid-liquid separation tank at its lower end and a solids transport port at its upper end, is installed in a direction almost perpendicular to the surface of the liquid to be treated. A screw blade is disposed in the solid material delivery cylinder, and a drive device is connected to the screw blade to rotate the screw blade at a rotational speed that allows centrifugal separation of liquid from the solid material on the screw blade. Then, a hole for return is formed in the threaded blade at an appropriate height with a sufficient pore size to allow a part of the solids and the centrifuged liquid containing the exfoliated fine particles to fall, and A precipitated solid, characterized in that a return discharge hole having a sufficient hole diameter to discharge a part of the solid and a centrifuged liquid containing exfoliated fine particles to the outside of the cylinder is formed on the side of the substance discharge cylinder. Equipment for transporting goods.
JP14226182A 1982-08-17 1982-08-17 Apparatus for conveying out precipitated solid substance Granted JPS5932910A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14226182A JPS5932910A (en) 1982-08-17 1982-08-17 Apparatus for conveying out precipitated solid substance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14226182A JPS5932910A (en) 1982-08-17 1982-08-17 Apparatus for conveying out precipitated solid substance

Publications (2)

Publication Number Publication Date
JPS5932910A JPS5932910A (en) 1984-02-22
JPS6130604B2 true JPS6130604B2 (en) 1986-07-15

Family

ID=15311216

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14226182A Granted JPS5932910A (en) 1982-08-17 1982-08-17 Apparatus for conveying out precipitated solid substance

Country Status (1)

Country Link
JP (1) JPS5932910A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61111107A (en) * 1984-11-05 1986-05-29 Fujii Shizuo Device for discharging solid deposit
JPS63194704A (en) * 1987-02-05 1988-08-11 Meiwa Kogyo Kk Separator for solid-liquid mixture

Also Published As

Publication number Publication date
JPS5932910A (en) 1984-02-22

Similar Documents

Publication Publication Date Title
RU2129586C1 (en) Method of petroleum separation from particles coated with petroleum, device for its embodiment and hard particle separator
EP0275159B1 (en) Centrifugal concentrator
JPH0258965B2 (en)
US4999115A (en) Method and apparatus for use in separating solids from liquids
KR100904283B1 (en) Disposal equipment of impurities
US3737032A (en) Coal preparation process and magnetite reclaimer for use therein
PL181377B1 (en) Apparatus for interittently separating solid particles from liquids
KR101729262B1 (en) Adulteration disposal equipment with wedge bar screen
US5151079A (en) Method and apparatus for reduction of particle disintegration
DE4222119C2 (en) Device and method for the wet mechanical separation of solid mixtures
EP0868217B1 (en) Decanter centrifuge
JPS6130604B2 (en)
JP2008012528A (en) Gravity separation type waste recovery apparatus and gravity separation type waste recovery method
JP6312016B2 (en) Contaminated soil treatment equipment
US1545636A (en) Method for separating materials of different specific gravities
JP2000350948A (en) Method for cleaning rotary cylinder of horizontal shaft tubular type centrifugal separator
JPH0262282B2 (en)
US4230561A (en) Method and apparatus for separating clay from coal fines
US3472383A (en) Vacuum drum filter
WO2001043882A1 (en) Centrifugal classifier
EP0063910A2 (en) Multi phase separation process
SU1417789A3 (en) Apparatus for separating various components of product in heavy suspension
US5169005A (en) Apparatus for separating material of lighter specific gravity from material of a heavier specific gravity
JPS5948123B2 (en) Precipitated solids removal device
KR102176241B1 (en) Sand cleaning apparatus of sediment treatment system