JPS6130550B2 - - Google Patents

Info

Publication number
JPS6130550B2
JPS6130550B2 JP6798482A JP6798482A JPS6130550B2 JP S6130550 B2 JPS6130550 B2 JP S6130550B2 JP 6798482 A JP6798482 A JP 6798482A JP 6798482 A JP6798482 A JP 6798482A JP S6130550 B2 JPS6130550 B2 JP S6130550B2
Authority
JP
Japan
Prior art keywords
lactic acid
acid bacteria
growth
foods
manganese
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP6798482A
Other languages
Japanese (ja)
Other versions
JPS58183080A (en
Inventor
Isao Shibazaki
Mitsuo Takano
Gendo Sawada
Osamu Nabeya
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Shinyaku Co Ltd
Original Assignee
Nippon Shinyaku Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Shinyaku Co Ltd filed Critical Nippon Shinyaku Co Ltd
Priority to JP6798482A priority Critical patent/JPS58183080A/en
Publication of JPS58183080A publication Critical patent/JPS58183080A/en
Publication of JPS6130550B2 publication Critical patent/JPS6130550B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Food Preservation Except Freezing, Refrigeration, And Drying (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明はハム・ソーセージ・ハンバーグ等の食
肉製品、糖漬、一夜漬、山菜漬等の漬物製品、そ
の他調味液や総菜製品などの食品を合成樹脂製の
ケーシング、瓶、罐などに詰め密封する包装食品
に於て、その食品が乳酸菌の増殖により、風味の
劣化、濁度の増大、褐変、ガスの発生などの外観
の悪変などが生じるのを防止する方法に関するも
のである。 乳酸菌は古来、乳製品、醗酵ソーセージ・塩蔵
品・漬物等の醗酵食品に利用されてきた有用微生
物である半面、上述の如く食品の風味を劣化させ
たり、液の濁りやガスの発生等の食品の変敗を起
こし商品寿命を縮める有害微生物でもある。 事実、包装食品では数多くの乳酸菌汚染例が知
られているが、これは、乳酸菌が微生物学的な酵
素要求性からの分類上微好気性細菌に属してお
り、包装食品、とりわけ食品が一杯に充填されて
いるものや、真空包装食品では、乳酸菌の増殖に
適した酸素圧環境下にあることと関連があるもの
と考えられる。この汚染乳酸菌がヘテロ醗酵型乳
酸菌の場合、増殖に伴い、炭水化物を資化し炭酸
ガスを生成するため包装食品のガス発生という商
品価値からみれば致命的な悪変が生ずることにな
る。このような意味合いからも安全な食品保存方
法によつてこれらの有害乳酸菌の増殖を抑制し
て、商品の延長をはかることは従前より当業界で
は渇望されていたものである。 これらの有害乳酸菌の増殖を抑制するため従来
からも、合成保存料、各種有機酸、アルコール等
種々の食品添加物を中心とする化学物質による保
存方法が試みられているが、乳酸菌の増殖を顕著
に阻止できる物質は見出せていないのが実状であ
る。また、これらの添加物使用るよる風味への影
響や、毒性面からの影響も無視できない。 さらに加熱や冷蔵などの物理的方法による食品
の保存方法の改良も進んではいるが、乳酸菌によ
る包装食品の変敗はかなりの頻度で発生している
のが実状である。 本発明者らは、このような観点に立ちより安全
な方法で確実に乳酸菌の増殖を抑制できる方法に
ついて鋭意検討を続けた結果、ヘテロ型乳酸菌を
はじめとする有害乳酸菌と拮抗する有用な乳酸菌
を用い、且つこれを各種ゲル素材により固定化し
たのち、食品と共存させることにより安全にして
且つ確実に食品の保蔵性を向上させ得ることを見
出し本発明を完成したものである。 とくに有用乳酸菌を固定化することでその増殖
を制御し限定することが出来、液状食品の濁度の
増加を防ぐことが出来る。乳酸菌による各種微生
物の増殖阻害機構としては栄養成分の拮抗、酸化
還元電位の低下・酸性物質の生産・抗菌性物質の
産生などが知られており、これらいずれの機構を
利用しても有害乳酸菌の増殖阻害が可能であるこ
とはいうまでもないが、本発明者らはこの増殖阻
害機構が栄養成分の拮抗、特に食品成分中のマン
ガンの拮抗であることを見出している。このマン
ガンの拮抗という阻害機構を利用してより有効な
有用乳酸菌をスクリーニングすることも可能であ
る。 固定化に用いる有用乳酸菌はとりあえず出来る
だけマンガン吸着能の強い、ホモ型乳酸菌をスク
リーニングするのが能率上好ましいといえるが、
一般の乳酸菌でもマンガン吸着能のあるホモ型乳
酸菌であればよく、スクリーニングは必須の要件
ではない。 固定化の方法は現在知られているいかなる方法
でも応用できるが、安全衛生面から考慮すれば固
定化に用いる素材としては、寒天、ゼラチン、カ
ラギーナン、アルギン酸ナトリウム等の食品素材
や天然添加物或いは食品添加物が好ましいのはい
うまでもない。又、各種包材との組合せによるい
かなる固定化方法でもよく要は活性の保存してい
る生菌体を包埋する担体が、生菌体の食品内への
離脱を防止できる物理的安定性を有していて且つ
食品成分中の乳酸菌の増殖に必要なマンガンが自
由に通過出来る半透膜性を有しておればよい。 固定化する菌体量は包装食品中の有害微生物の
増殖を阻止できる量であればよく、ゲル内での固
定菌体の増殖を考えればそれ以下でもよい。マン
ガンの拮抗を利用する観点から包装食品中のマン
ガンが有害微生物の増殖を抑制できる量に迄吸着
除去される充分な菌体量を固定すればよいわけ
で、食品の種類、内容量、固定化に用いる素材や
固定化後の有用乳酸菌の活性の保持程度等に応じ
適宜、増減させればよい。 本発明者らは有用乳酸菌として、タイ国産醗酵
豚肉のナーム(Nahm)より分離したホモ型乳酸
菌、ペデイオコツカス・スペシーズ
(Pediococcus sp.);略称 N―50株を用いたが
ホモ型乳酸菌の殆どの菌株は多少の差はあるが他
の一般細菌群に比し多くのマンガン量を吸着する
傾向のあることを認めている。 従つて、固定化に用いる菌株は特にN―50株に
限るものではない。このN―50株は培養方法によ
つて異なるが、1億cellsあたり1.0〜1.2μgのマ
ンガンを菌体へ吸着する能力を持つ。尚、以下の
実施例ではN―50菌体75億cells〜90億cellsを2
〜4%カラギーナン溶液10〜30mlを用いて固定
化して使用した。 実施例 1 肉汁主体の調味液(豚の煮汁ブイヨンをベース
とした調味液)を100℃で15分間加熱殺菌した
後、調味液100mlと本発明に係る検体として上述
の固定化N―50菌体をOPPポリエチレンフイル
ムに密封包装し、20℃で貯蔵した。 真空包装食品でガス発生変敗を生じさせた原因
菌であるヘテロ型乳酸菌(略称TK―1株)を
310万cells/ml植菌した検体もそれぞれ作成し
た。 結果は表1に示した。本発明に係る検体では、
20℃貯蔵下でTK―1株の増殖は認められなかつ
たが、対照では、菌の増殖とガスの発生が認めら
れた。対照では、当初、0.85μg/mlのマンガン
が存在したが、本発明に係る検体ではマンガンは
固定化菌体封入により、検出されなかつた。 実施例 2 白菜2部に対し15%食塩水1部の割合で下漬し
た白菜100gと食塩2.9%、グルタミン酸ナトリウ
ム0.3%とを溶解させた調味液100mlとを、塩化ビ
ニリデンケーシングにて密封包装後15℃にて各検
体を貯蔵した。本発明に係る検体には、上述の固
定化N―50菌体を封入した。 実施例1にて述べたTK―1株を720万cells/
ml植菌した検体も作成した。 結果は表2に示した。ヘテロ乳酸菌TK―1株
を植菌した検体を15℃で貯蔵した場合、2日後で
対照品から顕著なガス発生を認めたが、本発明に
係る検体では10日後でもガスは発生せず、かつ
TK―1株の増殖も認められなかつた。TK―1
株を植菌しなかつた検体群に関しても、本発明に
係る検体の保存性は顕著に優れていた。
The present invention relates to packaging in which meat products such as hams, sausages, and hamburgers, pickled products such as sugar pickles, overnight pickles, wild vegetable pickles, and other foods such as seasoning liquids and delicatessen products are packed and sealed in synthetic resin casings, bottles, cans, etc. The present invention relates to a method for preventing deterioration of the appearance of foods, such as deterioration of flavor, increase in turbidity, browning, and generation of gas, due to the proliferation of lactic acid bacteria. Lactic acid bacteria are useful microorganisms that have been used in fermented foods such as dairy products, fermented sausages, salted products, and pickles since ancient times.However, as mentioned above, they can degrade the flavor of foods, cause the liquid to become cloudy, and cause gas to be generated. They are also harmful microorganisms that cause deterioration and shorten product life. In fact, there are many cases of lactic acid bacteria contamination in packaged foods, but this is because lactic acid bacteria belong to microaerobic bacteria due to their microbiological requirement for enzymes, and packaged foods, especially foods, are often overfilled. This is thought to be related to the fact that packed foods and vacuum-packed foods are in an oxygen pressure environment suitable for the growth of lactic acid bacteria. If the contaminating lactic acid bacteria are heterofermenting lactic acid bacteria, they will assimilate carbohydrates and produce carbon dioxide as they proliferate, resulting in the generation of gas from packaged foods, a fatal adverse change from the commercial value point of view. From this point of view, there has long been a desire in the industry to suppress the proliferation of these harmful lactic acid bacteria using a safe food preservation method and extend the product life. In order to suppress the growth of these harmful lactic acid bacteria, preservation methods using chemical substances, mainly synthetic preservatives, various organic acids, alcohol, etc., have been attempted, but they have significantly inhibited the growth of lactic acid bacteria. The reality is that no substance has been found that can prevent this. Furthermore, the effects of using these additives on flavor and toxicity cannot be ignored. Furthermore, although progress has been made in improving food preservation methods using physical methods such as heating and refrigeration, the reality is that packaged food spoilage due to lactic acid bacteria occurs quite frequently. From this point of view, the present inventors have continued to study methods that can reliably suppress the growth of lactic acid bacteria in a safer manner, and as a result, they have discovered useful lactic acid bacteria that compete with harmful lactic acid bacteria, including heterozygous lactic acid bacteria. The present invention has been completed based on the discovery that the storage stability of foods can be safely and reliably improved by using and immobilizing them with various gel materials and allowing them to coexist with foods. In particular, by immobilizing useful lactic acid bacteria, their proliferation can be controlled and limited, and an increase in turbidity of liquid foods can be prevented. The mechanisms by which lactic acid bacteria inhibit the growth of various microorganisms are known to include antagonism of nutrients, reduction of redox potential, production of acidic substances, and production of antibacterial substances. It goes without saying that growth inhibition is possible, and the present inventors have discovered that the mechanism for this growth inhibition is the antagonism of nutritional components, particularly manganese in food components. It is also possible to screen for more effective and useful lactic acid bacteria by utilizing this inhibition mechanism of manganese antagonism. For the useful lactic acid bacteria used for immobilization, it is preferable in terms of efficiency to screen for homozygous lactic acid bacteria that have the strongest manganese adsorption ability as possible.
Even general lactic acid bacteria can be used as long as they are homozygous lactic acid bacteria capable of adsorbing manganese, and screening is not an essential requirement. Any currently known method for immobilization can be applied, but from the standpoint of safety and hygiene, food materials such as agar, gelatin, carrageenan, sodium alginate, natural additives, or food materials can be used for immobilization. It goes without saying that additives are preferred. In addition, any immobilization method in combination with various packaging materials may be used, as long as the carrier embedding the live microorganisms with preserved activity has physical stability that can prevent the living microorganisms from leaving the food. It is sufficient that the material has semipermeable membrane properties that allow free passage of manganese, which is necessary for the growth of lactic acid bacteria in food ingredients. The amount of bacteria to be immobilized may be any amount that can inhibit the growth of harmful microorganisms in the packaged food, and may be less than that if the growth of the immobilized bacteria within the gel is considered. From the perspective of utilizing the antagonism of manganese, it is sufficient to fix a sufficient amount of bacterial cells to adsorb and remove manganese in packaged foods to an amount that suppresses the growth of harmful microorganisms. The amount may be increased or decreased as appropriate depending on the material used for the preparation, the degree of retention of the activity of useful lactic acid bacteria after immobilization, etc. The present inventors used Pediococcus sp. (abbreviated as N-50 strain), a homozygous lactic acid bacterium isolated from Nahm, a fermented pork product produced in Thailand, as a useful lactic acid bacterium, but most strains of homozygous lactic acid bacteria Although there are some differences, it is recognized that there is a tendency to adsorb a larger amount of manganese than other general bacterial groups. Therefore, the bacterial strain used for immobilization is not particularly limited to the N-50 strain. This N-50 strain has the ability to adsorb 1.0 to 1.2 μg of manganese per 100 million cells to the bacterial cells, although this varies depending on the culture method. In addition, in the following example, N-50 bacterial cells 7.5 billion cells to 9 billion cells were
It was used after immobilization using 10 to 30 ml of ~4% carrageenan solution. Example 1 After heat sterilizing a meat juice-based seasoning liquid (a seasoning liquid based on pork broth bouillon) at 100°C for 15 minutes, 100 ml of the seasoning liquid and the above-mentioned immobilized N-50 bacteria were added as a sample according to the present invention. was hermetically packaged in OPP polyethylene film and stored at 20°C. Heterogeneous lactic acid bacteria (abbreviated as TK-1 strain), which is the causative agent of gas generation and deterioration in vacuum-packed foods, were introduced.
Specimens inoculated with 3.1 million cells/ml were also prepared. The results are shown in Table 1. In the specimen according to the present invention,
No growth of the TK-1 strain was observed under storage at 20°C, but bacterial growth and gas generation were observed in the control. In the control, 0.85 μg/ml of manganese was initially present, but in the sample according to the present invention, manganese was not detected due to the inclusion of immobilized bacterial cells. Example 2 100 g of Chinese cabbage that had been pickled at a ratio of 2 parts of Chinese cabbage to 1 part of 15% saline solution and 100 ml of a seasoning solution containing 2.9% salt and 0.3% monosodium glutamate were sealed and packaged in a vinylidene chloride casing. Each specimen was stored at 15°C. The above-mentioned immobilized N-50 bacterial cells were encapsulated in the specimen according to the present invention. 7.2 million cells/TK-1 strain described in Example 1
Specimens with ml inoculation were also prepared. The results are shown in Table 2. When a sample inoculated with heterolactic acid bacteria TK-1 strain was stored at 15°C, remarkable gas generation was observed in the control product after 2 days, but no gas was generated in the sample according to the present invention even after 10 days.
No growth of the TK-1 strain was observed. TK-1
Even for the sample group that was not inoculated with the strain, the preservation stability of the samples according to the present invention was significantly excellent.

【表】【table】

【表】【table】

Claims (1)

【特許請求の範囲】[Claims] 1 固定化乳酸菌を用い有害乳酸菌の増殖を阻止
することを特徴とする包装食品の保存方法。
1. A method for preserving packaged foods characterized by using immobilized lactic acid bacteria to inhibit the growth of harmful lactic acid bacteria.
JP6798482A 1982-04-21 1982-04-21 Storing method of packaged food Granted JPS58183080A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6798482A JPS58183080A (en) 1982-04-21 1982-04-21 Storing method of packaged food

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6798482A JPS58183080A (en) 1982-04-21 1982-04-21 Storing method of packaged food

Publications (2)

Publication Number Publication Date
JPS58183080A JPS58183080A (en) 1983-10-26
JPS6130550B2 true JPS6130550B2 (en) 1986-07-14

Family

ID=13360750

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6798482A Granted JPS58183080A (en) 1982-04-21 1982-04-21 Storing method of packaged food

Country Status (1)

Country Link
JP (1) JPS58183080A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021033190A1 (en) 2019-08-22 2021-02-25 Ifat Hammer Goods protection insert and uses thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11707070B2 (en) * 2018-04-19 2023-07-25 Chr. Hansen A/S Inhibition of fungal growth by manganese depletion

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021033190A1 (en) 2019-08-22 2021-02-25 Ifat Hammer Goods protection insert and uses thereof

Also Published As

Publication number Publication date
JPS58183080A (en) 1983-10-26

Similar Documents

Publication Publication Date Title
Galvez et al. Application of bacteriocins in the control of foodborne pathogenic and spoilage bacteria
Berry et al. The use of bacteriocin-producing Pediococcus acidilactici to control postprocessing Listeria monocytogenes contamination of frankfurters
Gill et al. Surface application of lysozyme, nisin, and EDTA to inhibit spoilage and pathogenic bacteria on ham and bologna
Pelroy et al. Inhibition of Listeria monocytogenes in cold-process (smoked) salmon by sodium nitrite and packaging method
Szabo et al. Nisin and ALTATM 2341 inhibit the growth of Listeria monocytogenes on smoked salmon packaged under vacuum or 100% CO2
WO1990004336A1 (en) Glucose oxidase food treatment and storage method
US6242017B1 (en) Stabilization of cooked meat compositions stabilized by nisin-containing whey and method of making
US6613364B2 (en) Stabilization of cooked meat and meat-vegetable compositions using whey from nisin-producing cultures and product thereof
Stiles Modified atmosphere packaging of meat, poultry and their products
AU620481B2 (en) Control of microbial growth with nisin/lysozyme formulations
Wang et al. Control of Listeria monocytogenes by monoglycerides in foods
Carlin et al. Effects of controlled atmospheres on microbial spoilage, electrolyte leakage and sugar content of fresh ‘ready‐to‐use’grated carrots
WO1989011801A1 (en) Method for preserving food
Ghazala New packaging technology for seafood preservation—shelf-life extension and pathogen control
JPS6130550B2 (en)
Avery et al. Inhibition of Listeria monocytogenes on normal ultimate pH beef (pH 5.3-5.5) at abusive storage temperatures by saturated carbon dioxide controlled atmosphere packaging
Hao et al. Influence of modified atmosphere on growth of vegetable spoilage bacteria in media
AU690750B2 (en) Inhibition of the growth of micro-organisms
Conte-Junior et al. Effect of modified atmosphere packaging on the growth/survival of Yersinia enterocolitica and natural flora on fresh poultry sausage
WO2002026059A2 (en) Method for preserving food products using biological modified atmosphere packaging
JP3587219B2 (en) Food preservatives
US4954358A (en) Multiplication inhibitor for Bacillus cereus
JP3585286B2 (en) Food preservatives
POST et al. Development of staphylococcal toxin and sensory deterioration during storage of nitrogen and vacuum packaged nitrite‐free bacon‐like product
US3258344A (en) Color stabilization of cured meat