JPS613046A - Electrophoretic apparatus - Google Patents

Electrophoretic apparatus

Info

Publication number
JPS613046A
JPS613046A JP59123704A JP12370484A JPS613046A JP S613046 A JPS613046 A JP S613046A JP 59123704 A JP59123704 A JP 59123704A JP 12370484 A JP12370484 A JP 12370484A JP S613046 A JPS613046 A JP S613046A
Authority
JP
Japan
Prior art keywords
electrophoresis
voltage
specimen
sample
detected
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59123704A
Other languages
Japanese (ja)
Inventor
Jiro Tokita
鴇田 二郎
Hideki Kanbara
秀記 神原
Osami Okada
岡田 修身
Tamotsu Shimada
保 嶋田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP59123704A priority Critical patent/JPS613046A/en
Publication of JPS613046A publication Critical patent/JPS613046A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/416Systems
    • G01N27/447Systems using electrophoresis
    • G01N27/44704Details; Accessories
    • G01N27/44713Particularly adapted electric power supply

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Molecular Biology (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Abstract

PURPOSE:To efficiently separate and detect specimens having MWs extending over a wide range, by enabling the variation in the voltage of an electrophoresis drive power source during migration corresponding to the advance situation of electrophoresis. CONSTITUTION:An anode and a cathode 2A, 2B are provided to both ends of an electrophoretic apparatus 1 and connected to an electrophoresis drive apparatus 3 while voltage is controlled by a controller 8. Detectors 4A, 4B,...4Z are provided to the migration path of a specimen and the passing specimen is detected, and amplification, data processing and outputting are respectively performed by an amplifier 5, a data processor 6 and an output device 7. The migration speed of the specimen becomes low as the MW thereof becomes larger. Because a specimen having a small MW is detected at the beginning of electrophoresis, the phoretic voltage is made low and, because MW becomes large with the elaspse of time, voltage is made high. The control of voltage is performed according to a predetermined program or while the advanced state of electrophoresis is detected. As a result, specimens having MWs extending over a wide range can be efficiently separated by one electrophoresis and a detection speed can be increased.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、電気泳動装置に係り、特に、高速で核酸の塩
基配列を決定するのに用いられる電気泳動装置に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to an electrophoresis apparatus, and particularly to an electrophoresis apparatus used for determining the base sequence of a nucleic acid at high speed.

〔発明の背景〕[Background of the invention]

一般に、ポリアクリルアミドゲルあるいはアガロースゲ
ルを用いた電気泳動法では、試料の分子量Mと泳動距離
aの間には、ある一定の範囲で次のような関係があるこ
とが知られている。 (D、)1.LBishop、 
J、 Mou 、 BioQ、 26.373 (19
67))QogM=  a Q + b (a、bはゲルによって定まる定数) 従って、1回の泳動で分子量の小さいものから分子量の
大きいものまでを同時に分離・検出することは困難であ
る。すなわち、泳動時間が短かすぎれば分子量の大きい
ものが分離せず、泳動時間が長すぎれば分子量の小さい
ものがゲルの終端に到達してしまう。この難点を解決す
るために、従来はゲル濃度あるいは泳動時間を変えた2
〜3回の泳動を行なって1塩基から約1000塩基にわ
たる広い範囲の分子量をカバーしていた。(「蛋白質・
核酸・酵素J Vol、 23. No3(1978)
) Lかし、この方法は実験操作の手間や試料・泳動装
置も2〜3倍必要となり、能率が悪かった。
Generally, in electrophoresis using polyacrylamide gel or agarose gel, it is known that the following relationship exists between the molecular weight M of the sample and the migration distance a within a certain range. (D,)1. LBishop,
J, Mou, BioQ, 26.373 (19
67)) QogM= a Q + b (a, b are constants determined by the gel) Therefore, it is difficult to simultaneously separate and detect molecules from small to large molecular weights in one electrophoresis. That is, if the electrophoresis time is too short, substances with large molecular weights will not be separated, and if the electrophoresis time is too long, substances with small molecular weights will reach the end of the gel. In order to solve this difficulty, conventional methods have been to change the gel concentration or the electrophoresis time.
A wide range of molecular weights ranging from 1 base to about 1000 bases was covered by ~3 runs of electrophoresis. ("protein·
Nucleic acids/enzymes J Vol, 23. No.3 (1978)
However, this method required 2 to 3 times more labor for experimental operations and 2 to 3 times more samples and electrophoresis equipment, and was inefficient.

このような能率の悪さを改善するために、デオキシリボ
核酸(DNA)色素による染色あるいはDNAを放射性
同位元素でラベル写真フィルムを感光させるオートラジ
オグラフィーによって泳動終了後に泳動の空間的パター
ンを読み取る従来の方法ではなくて、泳動中に泳動路上
に固定された検出器の前を通過してゆく試料を検出し、
泳動の時間的パターンを読み取る方法も考えられる。
In order to improve this inefficiency, conventional methods involve reading the spatial pattern of electrophoresis after the electrophoresis is completed by staining with deoxyribonucleic acid (DNA) dyes or by autoradiography, in which DNA is labeled with a radioisotope and a photographic film is exposed to light. Rather, it detects the sample passing in front of a detector fixed on the electrophoresis path during electrophoresis,
Another possible method is to read the temporal pattern of migration.

この方法によれば、1回の泳動で広い範囲の分子量をカ
バーできるが、電圧を泳動中一定に保った場合、試料が
検出器の位置に到達するまでに要する時間はほぼ試料の
分子量の対数に比例して長くなる。したがって、分子量
が大きくなるにつれて検出に時間がかかるようになり、
能率が悪くなる難点がある。
According to this method, a wide range of molecular weights can be covered in one run, but if the voltage is kept constant during the run, the time required for the sample to reach the detector position is approximately the logarithm of the sample's molecular weight. becomes longer in proportion to Therefore, as the molecular weight increases, detection takes longer,
The problem is that efficiency decreases.

どの問題を解決するために、泳動駆動電源の電圧を高く
して泳動速度を高めることが考えられる。
In order to solve this problem, it is conceivable to increase the voltage of the electrophoresis drive power source to increase the electrophoresis speed.

しかし、最初から高電圧で泳動を行なうと、もともと分
子量が小さい分子は分子量の大きい分子に比べて泳動速
度が速いため、速度が速くなりすぎて検出が困難になる
という欠点があった0以上のべたように、1回の泳動で
1塩基から約1000塩基にわたる広範囲の分子量をも
った試料を短時間で能率よく電気泳動による分離・検出
するには、泳動駆動電源の電圧が一定では泳動速度を制
御できない。
However, if electrophoresis is performed at high voltage from the beginning, molecules with small molecular weights migrate faster than molecules with large molecular weights, so the speed becomes too fast and detection becomes difficult. As shown above, in order to efficiently separate and detect samples with a wide range of molecular weights ranging from 1 base to about 1000 bases in a single run by electrophoresis in a short time, it is necessary to keep the electrophoresis speed constant if the voltage of the electrophoresis drive power supply is constant. I can't control it.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、上記問題点を解決し、1つの電気泳動
装置で広い範囲の分子量にわたって短時間で能率よく試
料を分離・検出しうる電気泳動装置を提供することにあ
る。
An object of the present invention is to solve the above-mentioned problems and provide an electrophoresis device that can efficiently separate and detect samples over a wide range of molecular weights in a short time using one electrophoresis device.

〔発明の概要〕[Summary of the invention]

上記の目的を達成するために、本発明の電気泳動装置で
は、あらかじめ設定されたプログラムに従って、あるい
は泳動路上に設けられた検出器から得られた泳動の進行
情況に関する情報に基づいて、泳動駆動電源の電圧を泳
動中に変化させうるようにしたことに特徴がある。これ
により、時間の経過と共に検出する試料分子の分子量が
大きくなり、検出する試料分子の泳動速度がおそくなっ
て、検出器の位置まで到達するのに長い時間がかかるよ
うになると、電源電圧を徐々に高くして泳動速度を早め
ることが可能となる。その結果、分子量の大きなものに
対しても短時間で分離・検出が行なえるようになった。
In order to achieve the above object, in the electrophoresis apparatus of the present invention, the electrophoresis drive power supply is operated according to a preset program or based on information regarding the progress of electrophoresis obtained from a detector provided on the electrophoresis path. The feature is that the voltage can be changed during electrophoresis. As a result, as time passes, the molecular weight of the sample molecules to be detected increases, the migration speed of the sample molecules to be detected becomes slow, and it takes a long time to reach the detector position, so the power supply voltage is gradually reduced. It is possible to increase the electrophoresis speed by increasing the electrophoresis speed. As a result, it has become possible to separate and detect substances with large molecular weights in a short time.

従って、本電気泳動装置によれば、I塩基から約100
0塩基の広い範囲の分子量にわたって能率のよい分離・
検出が可能となった。
Therefore, according to this electrophoresis device, approximately 100
Efficient separation and separation over a wide range of molecular weights including 0 bases
Detection is now possible.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の一実施例を第1図に基づいて説明する。 An embodiment of the present invention will be described below with reference to FIG.

電気泳動槽1の両端にはそれぞれ正負の電極2A、2B
を配置し、2A、2Bの間には試料に泳動力を付与する
ための電気駆動装置3を設置する。試料が移動する泳動
路上には検出器4A〜4Zを設け、この前を通過する試
料を検出する。
Positive and negative electrodes 2A and 2B are provided at both ends of the electrophoresis tank 1, respectively.
An electric drive device 3 is installed between 2A and 2B to apply electrophoretic force to the sample. Detectors 4A to 4Z are provided on the electrophoresis path on which the sample moves, and detect the sample passing in front of them.

検出器の出力は増巾器5によって増巾された後、データ
処理装置6によって処理され、出力装置7によって出力
される。泳動駆動電源3には電源制御装置8がつながれ
ており、これはあらかじめ設定されたプログラムに基づ
いて、あるいは検出器によって得られた泳動情報に基づ
いて泳動駆動電源3の電圧を制御する。泳動情報に基づ
いて電源電圧を制御する場合には、電源制御装置8はデ
ータ処理装置6.増巾器5を介して検出器4A〜4Zと
つながれている。ここで検出器とは、試料が染色あるい
はケイ光ラベルされている場合には光検出器であり、ラ
ジオアイソ1−一プラベルされている場合には放射線検
出器である。
The output of the detector is amplified by an amplifier 5, processed by a data processing device 6, and outputted by an output device 7. A power supply control device 8 is connected to the electrophoresis drive power source 3, and this controls the voltage of the electrophoresis drive power source 3 based on a preset program or based on electrophoresis information obtained by a detector. When controlling the power supply voltage based on migration information, the power supply control device 8 is connected to the data processing device 6. It is connected to detectors 4A to 4Z via an amplifier 5. Here, the detector is a photodetector when the sample is stained or fluorescently labeled, and a radiation detector when the sample is radioiso-1-1 labeled.

次に、本実施例の動作を説明する。Next, the operation of this embodiment will be explained.

従来法のように泳動電圧を泳動中一定に保った場合、試
料分子の泳動速度Vと分子量Mの間には次の関係がある
When the electrophoresis voltage is kept constant during electrophoresis as in the conventional method, the following relationship exists between the electrophoresis velocity V and the molecular weight M of sample molecules.

V■a−12ogM(aは定数) このため、検出器に到達し検出されるまでに要する時間
は分子量の大きいものほど長くなる。
V■a-12ogM (a is a constant) Therefore, the time required for the molecular weight to reach the detector and be detected becomes longer as the molecular weight becomes larger.

この時間を短縮するためには泳動電圧を高めることが考
えられるが、最初から高電圧で泳動すると、もともと分
子量の小さい分子は分子量の大きい分子に比べて泳動速
度が速いため速度が速くなリすぎてしまう。このため、
試料分子が検出器の前に帯在する時間が短かくなり、試
料がラジオアイソトープラベルされている場合は放射線
のカウント数が、染色あるいはケイ光ラベルされている
場合は光量が不足して検出が困難になる。
In order to shorten this time, it is possible to increase the electrophoresis voltage, but if the electrophoresis is performed at a high voltage from the beginning, the electrophoresis speed will be too high because molecules with a small molecular weight will migrate faster than molecules with a large molecular weight. I end up. For this reason,
The time the sample molecules spend in front of the detector is shortened, and if the sample is labeled with a radioisotope, the number of radiation counts decreases. If the sample is dyed or fluorescently labeled, the amount of light is insufficient to detect it. It becomes difficult.

そこで、本実施例では、泳動がはじまって間もなくの分
子量の小さい試料が検出される時期には泳動電圧を低く
おさえ、時間が経過して検出される試料の分子量が増大
するとともに泳動電圧を除徐に上げて泳動速度を速め、
分子量の大きなものに対しても従来法に比へて短時間で
検出器の位置まで泳動させて検出できるようにした。
Therefore, in this example, the electrophoresis voltage is kept low immediately after the start of electrophoresis when a sample with a small molecular weight is detected, and as time passes and the molecular weight of the detected sample increases, the electrophoresis voltage is gradually lowered. Increase the electrophoresis speed to
Even with large molecular weight substances, it is possible to migrate them to the detector position and detect them in a shorter time than with conventional methods.

ここで、泳動駆動電源3の電圧は、電源制御装置8によ
り、あらかじめ設定したプログラムに従って上昇させる
。上昇のさせ方は、時間の経過に伴って電圧が嚇調に増
加するようなものてあればどのようなものでも効果があ
るが、電′g電圧の一ヒ限が許すかぎり時間の経過とと
もに上昇゛iの大きくなるようにした方が時間短縮の効
果が大きい。
Here, the voltage of the migration drive power supply 3 is increased by the power supply control device 8 according to a preset program. Any method of raising the voltage that causes the voltage to increase in a threatening manner over time will be effective, but as long as the voltage limit allows, it will increase over time. The effect of time reduction is greater if the increase ゛i is made larger.

第2図に試料の分子量とその試料を検出するのに要する
時間との関係を示す。曲線(a)は泳動中に電源電圧を
一定に保つ従来法であり、曲線(b)は電源電圧を時間
に対して一次関数的に上昇させた場合、曲線(C)は指
数関数的に上昇させた場合である。図から明らかにわか
るように、泳動電圧を指数関数的に上昇させた場合の方
が、−次間数的に上昇させた場合より時間短縮の効果が
大きい。
FIG. 2 shows the relationship between the molecular weight of a sample and the time required to detect the sample. Curve (a) is the conventional method in which the power supply voltage is kept constant during electrophoresis, curve (b) is when the power supply voltage is increased linearly with respect to time, and curve (C) is the method in which the power supply voltage is increased exponentially. This is the case when As clearly seen from the figure, the time reduction effect is greater when the electrophoresis voltage is increased exponentially than when it is increased exponentially.

以上のようにして、分子量の小さい試料の検出を困難に
することなく1分子量の大きい試料の検出に要する時間
の短縮をはかり、1塩基からおよそ1000塩基にわた
る広い分子量の範囲で、短時間で能率の良い分離・検出
を可能にした。
In this way, we aim to shorten the time required to detect a sample with a large molecular weight without making it difficult to detect a sample with a small molecular weight. This enabled good separation and detection of

次に、本発明のもう1つ別の実施例を第3図により説明
する。
Next, another embodiment of the present invention will be described with reference to FIG.

本実施例の電気泳動装置の構成は前記実施例の構成と゛
はとんど同じであるが、電気泳動の進行状況を検知する
ため、未知試料のための泳動路のほかに専用の泳動路と
その泳動路−ヒに検出器9を設け、データ処理袋e6と
電源制御装W18とをつないである所が異なっている。
The configuration of the electrophoresis apparatus of this example is almost the same as that of the previous example, but in order to detect the progress of electrophoresis, in addition to the electrophoresis path for unknown samples, there is also a dedicated electrophoresis path. The difference is that a detector 9 is provided in the migration path A and the data processing bag e6 is connected to the power supply control device W18.

次に、本実施例の動作を説明する。Next, the operation of this embodiment will be explained.

本実施例では、電気泳動の進行状況を検知するための専
用泳動路が設けてあり、未知試料と同時にここで分子量
既知の試料を泳動する。この試料は、既知DNAを制限
酵素で細かく切ってつくった分子量マーカーでもよいし
、塩基配列既知のDNAを未知試料と同様の塩基配列決
定用の処理(マキサム・ギルバート法、あるいはダイデ
オキシ法)したものでもよい。
In this example, a dedicated electrophoresis path is provided for detecting the progress of electrophoresis, and a sample with a known molecular weight is electrophoresed here at the same time as an unknown sample. This sample may be a molecular weight marker made by cutting known DNA into small pieces with restriction enzymes, or DNA with a known base sequence may be processed for base sequencing in the same way as unknown samples (Maxam-Gilbert method or dideoxy method). It can be anything.

これらの分子量既知の試料を専用検出器9で検出すれば
泳動の進行状況を実際に知ることができ、この情報を電
源制御装置8に送って泳動駆動電源3の電圧を制御する
。電圧の上封させかた及びその効果は前記実施例と同様
である。
By detecting these samples with known molecular weights using the dedicated detector 9, it is possible to actually know the progress of electrophoresis, and this information is sent to the power supply control device 8 to control the voltage of the electrophoresis drive power source 3. The method of capping the voltage and its effects are the same as in the previous embodiment.

一般に、電気泳動の速度はゲルのでき具合や温度によっ
ても若干異なる可能仕がある。したがって、本実施例の
ように泳動の進行状況を実際に検知し、その情報に基づ
いて泳動電圧を制御した方が、前記実施例のように泳動
の進行状況を実際に検知しない場合に比べてより確実に
好ましい制御ができる。
In general, the speed of electrophoresis can vary slightly depending on the condition of the gel and the temperature. Therefore, it is better to actually detect the progress of electrophoresis as in this example and control the electrophoresis voltage based on that information than to not actually detect the progress of electrophoresis as in the previous example. Favorable control can be achieved more reliably.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、分子量の大きな試料についても電界強
度を増すことにより従来法より短時間で検出ができるた
め、1回の電気泳動で分子量の広い範囲にわたって短時
間で能率よく試料を分離・検出できる。したがって、従
来の電気泳動法の高速化が可能となる。
According to the present invention, even samples with large molecular weights can be detected in a shorter time than conventional methods by increasing the electric field strength, so a single electrophoresis can efficiently separate and detect samples over a wide range of molecular weights in a short time. can. Therefore, it becomes possible to speed up the conventional electrophoresis method.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の一実施例による電気泳動装置を模式
的に示した図である。第2回は、電源電圧と出力装置か
らの出力信号を示した図である。 第3図は本発明の他の実施例を示す図である。 ■ 電気泳動槽、2A、2B  電極、3・・泳動駆動
電源、4 A、 4 F3.−42・・検出器、5・・
・増巾器、6・・・データ処理装置、7 出力装置、8
・・・電源制御装置、9 泳a進行状況検知用検出器。
FIG. 1 is a diagram schematically showing an electrophoresis apparatus according to an embodiment of the present invention. The second time is a diagram showing the power supply voltage and the output signal from the output device. FIG. 3 is a diagram showing another embodiment of the present invention. ■ Electrophoresis tank, 2A, 2B Electrode, 3...Electrophoresis drive power supply, 4 A, 4 F3. -42...detector, 5...
・Amplifier, 6...Data processing device, 7 Output device, 8
...Power supply control device, 9 Detector for detecting progress of swimming a.

Claims (1)

【特許請求の範囲】 1、電気泳動槽と、前記電気泳動槽中を泳動する試料を
検出する検出部と、前記電気泳動槽の両端に電圧をかけ
る泳動駆動電源とを備えた電気泳動装置において、前記
泳動駆動電源にかける電圧を可変とし、泳動中の試料の
泳動速度を可変にしたことを特徴とする電気泳動装置。 2、あらかじめ定められたプログラムに従って電圧を制
御することを特徴とする特許請求の範囲第1項記載の電
気泳動装置。 3、泳動進行状況を検出して電圧を制御することを特徴
とする特許請求の範囲第1項記載の電気泳動装置。
[Scope of Claims] 1. An electrophoresis apparatus comprising an electrophoresis tank, a detection unit that detects a sample migrating in the electrophoresis tank, and a migration drive power source that applies a voltage to both ends of the electrophoresis tank. . An electrophoresis apparatus, characterized in that the voltage applied to the electrophoresis drive power source is made variable, and the migration speed of the sample being electrophoresed is made variable. 2. The electrophoresis device according to claim 1, wherein the voltage is controlled according to a predetermined program. 3. The electrophoresis apparatus according to claim 1, characterized in that the voltage is controlled by detecting the progress of electrophoresis.
JP59123704A 1984-06-18 1984-06-18 Electrophoretic apparatus Pending JPS613046A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59123704A JPS613046A (en) 1984-06-18 1984-06-18 Electrophoretic apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59123704A JPS613046A (en) 1984-06-18 1984-06-18 Electrophoretic apparatus

Publications (1)

Publication Number Publication Date
JPS613046A true JPS613046A (en) 1986-01-09

Family

ID=14867278

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59123704A Pending JPS613046A (en) 1984-06-18 1984-06-18 Electrophoretic apparatus

Country Status (1)

Country Link
JP (1) JPS613046A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0361750A2 (en) * 1988-09-27 1990-04-04 The Board Of Trustees Of The Leland Stanford Junior University Capillary electrophoretic system
EP2425216A1 (en) * 2009-04-27 2012-03-07 Protein Discovery, Inc. Programmable electrophoretic notch filter systems and methods

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0361750A2 (en) * 1988-09-27 1990-04-04 The Board Of Trustees Of The Leland Stanford Junior University Capillary electrophoretic system
EP2425216A1 (en) * 2009-04-27 2012-03-07 Protein Discovery, Inc. Programmable electrophoretic notch filter systems and methods
EP2425216A4 (en) * 2009-04-27 2013-10-09 Protein Discovery Inc Programmable electrophoretic notch filter systems and methods
US8926817B2 (en) 2009-04-27 2015-01-06 Expedeon, Ltd Programmable electrophoretic notch filter systems and methods

Similar Documents

Publication Publication Date Title
Wrigley [38] Gel electrofocusing
Görg et al. Recent developments in two‐dimensional gel electrophoresis with immobilized pH gradients: Wide pH gradients up to pH 12, longer separation distances and simplified procedures
Paulus et al. Analysis of oligonucleotides by capillary gel electrophoresis
Lestourgeon et al. The Rapid Isolation, High-Resolution Electrophoretic Characterzation, and Purification of Nuclear Proteins
JP2804038B2 (en) Base sequence determination method
Hu et al. Separation of proteins by sodium dodecylsulfate capillary electrophoresis in hydroxypropylcellulose sieving matrix with laser-induced fluorescence detection
US5064519A (en) Neutral and positively charged dyes for electrophoresis sample loading solutions
Haas et al. Horizontal polyacrylamide gel electrophoresis for the separation of DNA fragments
Tseng et al. Effect of ionic strength, pH and polymer concentration on the separation of DNA fragments in the presence of electroosmotic flow
JPS613046A (en) Electrophoretic apparatus
Cohen et al. Capillary gel electrophoresis of biopolymers
Tseng et al. Analysis of large-volume DNA markers and polymerase chain reaction products by capillary electrophoresis in the presence of electroosmotic flow
Huang et al. Separation of dsDNA in the presence of electroosmotic flow under discontinuous conditions
Schwer et al. Capillary electrophoresis
Catsimpoolas Transient state isoelectric focusing: Digital measurement of zone position, zone area, segmental pH gradient, and isoelectric point as a function of time
Tseng et al. Regulation of electroosmotic flow and electrophoretic mobility of proteins for concentration without desalting
Chiu et al. A simple, rapid, and sensitive method for analysis of SYPRO Red labeled sodium dodecyl sulfate‐protein complexes by capillary electrophoresis with laser‐induced fluorescence
Westwood et al. Analysis of the common genetic variants of the human Gc system in plasma and bloodstains by isoelectric focusing in immobilized pH gradients
Maurer et al. Polyacrylamide gel electrophoresis in clinical chemistry: Problems of standardization and performance
Lindberg et al. Gel electrophoresis of DNA fragments in narrow‐bore capillaries
Enlund et al. Detectability improvements in capillary zone electrophoresis by combining single capillary isotachophoretic preconcentration and frequency doubled argon ion laser‐induced fluorescence detection
Catai et al. Simplex optimization of electrokinetic injection of DNA in capillary electrophoresis using dilute polymer solution
Guttman et al. Rapid two‐dimensional analysis of proteins by ultra‐thin layer gel electrophoresis
HJERTÉN et al. Analytical and micropreparative high-performance electrophoresis
Kaur et al. Electrophoresis: A Conceptual Understanding