JPS613044A - Apparatus for automatically determining base sequence of nucleic acid - Google Patents

Apparatus for automatically determining base sequence of nucleic acid

Info

Publication number
JPS613044A
JPS613044A JP59123710A JP12371084A JPS613044A JP S613044 A JPS613044 A JP S613044A JP 59123710 A JP59123710 A JP 59123710A JP 12371084 A JP12371084 A JP 12371084A JP S613044 A JPS613044 A JP S613044A
Authority
JP
Japan
Prior art keywords
gel
nucleic acid
base sequence
electrophoretic
support plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59123710A
Other languages
Japanese (ja)
Inventor
Keiichi Nagai
啓一 永井
Hideki Kanbara
秀記 神原
Tamotsu Shimada
保 嶋田
Yoshinori Harada
義則 原田
Jiro Tokita
鴇田 二郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP59123710A priority Critical patent/JPS613044A/en
Publication of JPS613044A publication Critical patent/JPS613044A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/416Systems
    • G01N27/447Systems using electrophoresis
    • G01N27/44704Details; Accessories
    • G01N27/44708Cooling

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Molecular Biology (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Biological Materials (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Abstract

PURPOSE:To determine the sequence of a nucleic acid with high accuracy by eliminating the distortion of an electrophoretic pattern by uniformizing the temp. of an electrophoretic gel, by preparing the support plate of the electrophoretic gel from electric insulating ceramics with high heat conductivity. CONSTITUTION:An electrophoretic separation gel 2 is held between two support plates 3 and both ends thereof are immersed in an electrolyte tank 1 and a high voltage DC power source 5 is provided to form an electric field in the gel 2. As the material of the supports 3 interposing the gel 2 therebetween, electric insualating ceramics with high heat conductivity, for example, SiC ceramics containing Be, B, Al or a compound thereof as a sintering aid is used. At this time, heat is generated during electrophoresis because of Joule heat but, because the support plate 3 is made highly heat-conductive, the temp. gradient in the gel is reduced. As a result, the distortion of the electrophoretic pattern of the specimen is not generated and the determination of the base sequence of the nucleic acid can be performed at a high speed with high accuracy.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、核酸の塩基配列決定装置に係り、特にその高
速化、高精度化に好適なゲル電気泳動装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a nucleic acid base sequencing device, and particularly to a gel electrophoresis device suitable for increasing speed and accuracy.

〔発明の背景〕[Background of the invention]

従来、核酸の塩基配列決定は、たとえばマキサム・ギル
バート法(蛋白質・核酸・酵素、 Vol。
Conventionally, base sequencing of nucleic acids has been determined using, for example, the Maxam-Gilbert method (Proteins, Nucleic Acids, Enzymes, Vol.

I立、pp、182〜196 (1978) )  に
より行なわれてきた。この方法では、放射性同位体で標
識された核酸を化学的に断片化した後、電気泳動法で長
さの異なる断片をゲル中で分子量類に整列後、ゲルをガ
ラス板よりはがし、このオートラジオグラムを撮ること
で放射性断片を含む泳動帯の検出を行ない、核酸の塩基
配列を決定する。従来の電気泳動法では、ゲルが熱伝導
率の小さなガラス板で支持されていたため、電気泳動に
伴い発生する熱の放散が不十分でゲル中の温度が不均一
になり、温度の高い中心部では核酸断片の移動度が大き
く。
I, pp. 182-196 (1978)). In this method, radioactive isotope-labeled nucleic acids are chemically fragmented, the fragments of different lengths are aligned in a gel according to molecular weight using electrophoresis, and the gel is peeled off from a glass plate. By taking a gram, the electrophoretic band containing radioactive fragments is detected, and the base sequence of the nucleic acid is determined. In the conventional electrophoresis method, the gel is supported by a glass plate with low thermal conductivity, so the heat generated during electrophoresis is not sufficiently dissipated, resulting in uneven temperature within the gel, and the high temperature center part , the mobility of nucleic acid fragments is large.

逆に温度の低い周辺部では核酸断片の移動度が小さくな
る。その結果、例えば第1図に示すように、末端塩基の
異なる4つレーン間で、核酸断片の移動度に差があるた
め、泳動パターンに歪みが生じ、レーン相互間の位置の
読取りが不正確になるという欠点があった。特に装置の
自動化にあたり、処理速度の高速化のため電気泳動ゲル
にかける電圧を高くし、核酸断片の移動度を大きくしよ
うとすると、上記の欠点が一層顕著になる6 〔発明の目的〕 本発明の目的はゲル中の温度不均一に伴う電気泳動パタ
ーンの歪みをなくし、読み取り精度が高く、高速の核酸
塩基配列決定装置を提供することにある。
Conversely, the mobility of nucleic acid fragments decreases in the peripheral region where the temperature is low. As a result, as shown in Figure 1, for example, there is a difference in the mobility of nucleic acid fragments between the four lanes with different terminal bases, resulting in distortion of the migration pattern and inaccurate reading of positions between lanes. It had the disadvantage of becoming In particular, when automating an apparatus, the voltage applied to the electrophoresis gel is increased to increase the mobility of nucleic acid fragments in order to speed up the processing speed, and the above-mentioned drawbacks become even more pronounced.6 [Object of the Invention] The present invention The purpose of this is to provide a high-speed nucleic acid base sequencing device that eliminates distortion of electrophoretic patterns caused by temperature non-uniformity in gels and has high reading accuracy.

〔発明の概要〕[Summary of the invention]

本発明は、電気泳動用ゲルの支持板を熱伝導率が高く、
電気M縁性に優れたセラミックスあるいは金属に絶縁皮
膜をほどこしたものとすることで、電気泳動に伴なって
発生する熱のため生ずるゲル中の温度の不均一を最小限
にすることを特徴とする。
The present invention provides a support plate for electrophoresis gel that has high thermal conductivity.
The gel is made of ceramics or metals with excellent electrophoresis properties and an insulating film coated on them, thereby minimizing the temperature non-uniformity within the gel caused by the heat generated during electrophoresis. do.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の一実施例を第2図により説明する0本装
置は、2枚のセラミックス板3に挾まれた泳動分離用ゲ
ル2、その両端を浸す電極液槽1、高電圧直流電源Sで
構成する。
Hereinafter, one embodiment of the present invention will be described with reference to FIG. 2. This apparatus consists of a electrophoretic separation gel 2 sandwiched between two ceramic plates 3, an electrode liquid tank 1 in which both ends of the gel are immersed, and a high voltage DC power source S. Consists of.

まず、上記セラミックス板として、BeOを約3重量%
含むSiCを用いた場合のセラミックス材の特性を詳細
に説明する。
First, as the above-mentioned ceramic plate, about 3% by weight of BeO is used.
The characteristics of the ceramic material when using SiC containing SiC will be explained in detail.

セラミックスの組成は次の通りである。The composition of the ceramic is as follows.

純度98%のSiC100部 (不純物中に0.1%のAfl、O,を含む)上記組成
の材料を真空ホットプレス装置により真空度10−’−
10−sTorrの減圧下で、加圧力200kg/、1
1、温度2000℃で焼結して、セラミックス材と得る
100 parts of SiC with a purity of 98% (contains 0.1% Afl, O, and impurities) with the above composition was heated to a vacuum degree of 10-'- by a vacuum hot press machine.
Under reduced pressure of 10-sTorr, pressurizing force 200 kg/, 1
1. Sinter at a temperature of 2000°C to obtain a ceramic material.

上記セラミックス材の特徴の概要は次の通りである。す
なわち、熱伝導率は0 、7 ca Q / aiss
e”cで金属アルミニウムやBeOセラミックスより大
きく、ガラス板より3桁以上大きい。
A summary of the characteristics of the above ceramic material is as follows. That is, the thermal conductivity is 0,7 ca Q/aiss
e”c, which is larger than metal aluminum or BeO ceramics, and more than three orders of magnitude larger than glass plates.

電気抵抗は2 X 10”Ω■で絶縁体とみなせる程度
である。
The electrical resistance is 2 x 10''Ω■, which is enough to be considered an insulator.

放射性同位体(たとえば3− p )あるいは螢光体(
たとえばエチジウムプロミド)でw識された核酸試料を
ゲル2の負極側に乗せ、ゲルの両端を電極液1に接しさ
せゲル長あたり50V/am程度の電圧5で泳動すると
、同一分子量を持つ成分はそれぞれ泳動帯4を形成しつ
つ負極より正極に向かい1分子量にほぼ反比例した移動
度で泳動する。
Radioactive isotopes (e.g. 3-p) or fluorophores (
For example, when a nucleic acid sample identified with ethidium bromide (e.g., ethidium bromide) is placed on the negative electrode side of gel 2, both ends of the gel are brought into contact with electrode solution 1, and electrophoresis is performed at a voltage of about 50 V/am per gel length, components with the same molecular weight are detected. each migrates from the negative electrode toward the positive electrode with a mobility approximately inversely proportional to one molecular weight, forming a migration band 4.

上記泳動中に生ずるジュール熱のため、従来のガラス板
を使った電気泳動装置では泳動パターンに歪みが生じ、
読み取りが困難となる場合があった。特に読み取りの自
動化、装置化にあたって、その高精度化への障害となる
。本実施例によれば、ガラス板に代わる上記特性のセラ
ミックスの使用により、生じた熱が迅速かつ一様に拡散
するため、ゲル中の温度勾配が少なくなり、泳動パター
ンの歪みが小さくなるという効果がある。
Due to the Joule heat generated during the electrophoresis, the electrophoresis pattern in conventional electrophoresis devices using glass plates is distorted.
It was sometimes difficult to read. In particular, this becomes an obstacle to achieving high accuracy when automating reading and using equipment. According to this example, by using ceramics with the above characteristics in place of the glass plate, the generated heat is quickly and uniformly diffused, which reduces the temperature gradient in the gel and reduces the distortion of the migration pattern. There is.

次に本発明の他の一実施例を第3図により説明する。本
装置の構成は、第2図のセラミックス板3を絶縁皮膜を
ほどこした金属板6により買き換えたものである。本実
施例によれば、たとえばテフロンの薄膜を金属にコート
することで、第2図の実施例で説明した場合と同様の効
果が期待できる。
Next, another embodiment of the present invention will be described with reference to FIG. The configuration of this device is such that the ceramic plate 3 shown in FIG. 2 has been replaced with a metal plate 6 coated with an insulating film. According to this embodiment, by coating metal with a thin film of Teflon, for example, the same effect as that described in the embodiment of FIG. 2 can be expected.

(−5i!明の効果〕 本発明によれば、高い熱伝導率の基板でゲルを支持する
ことにより、ゲル中の温度勾配が小さくなるために、電
気泳動パターンの歪みが小さくなり、高精度な核酸の塩
基配列決定装置が実現できる。さらに本発明によれば電
気泳動パターンの歪みが小さくなるので、従来より高い
電圧で電気泳動が可能となり、高速の塩基配列決定装置
が実現する。
(-5i! bright effect) According to the present invention, by supporting the gel with a substrate with high thermal conductivity, the temperature gradient in the gel is reduced, so the distortion of the electrophoretic pattern is reduced, and high accuracy is achieved. Furthermore, according to the present invention, the distortion of the electrophoretic pattern is reduced, so electrophoresis can be performed at a higher voltage than conventionally, and a high-speed base sequencing apparatus can be realized.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、従来の電気泳動法の構成図、第2図。 ff13図は、それぞれ本発明の一実施例を示す構成図
である。 1・・・電極液槽、2・ゲル、3・・・セラミック板、
4・・泳動帯、5・・・高圧直流電源、6・・金属板、
7・・第 1  図 第 2 霞 第 3 図
FIG. 1 is a block diagram of a conventional electrophoresis method, and FIG. ff13 is a configuration diagram showing an embodiment of the present invention. 1... Electrode liquid tank, 2... Gel, 3... Ceramic plate,
4...Migration zone, 5...High voltage DC power supply, 6...Metal plate,
7...Figure 1 Figure 2 Kasumi Figure 3

Claims (1)

【特許請求の範囲】 1、核酸断片をゲル電気泳動法により分子量分離し核酸
塩基配列を決定する装置において、電気泳動ゲルを熱伝
導率が高く、電気絶縁力が大きなセラミックスからなる
支持板で支えたことを特徴とする核酸塩基配列自動決定
装置。 2、上記セラミックス材が、焼結助剤として数%のBe
またはBe含有化合物、BまたはB含有化合物、Alま
たはAl含有化合物を1種または2種以上含むSiCセ
ラミックス材であることを特徴とする特許請求の範囲第
1項記載の核酸塩基配列自動決定装置。 3、上記支持板が金属に絶縁被膜をコートしたものであ
ることを特徴とする特許請求の範囲第1項記載の核酸塩
基配列自動決定装置。
[Claims] 1. In an apparatus for separating the molecular weight of nucleic acid fragments by gel electrophoresis and determining the nucleic acid base sequence, an electrophoretic gel is supported by a support plate made of ceramics having high thermal conductivity and large electric insulating power. An automatic nucleic acid base sequence determination device characterized by: 2. The above ceramic material contains several percent of Be as a sintering aid.
The automatic nucleic acid base sequence determination device according to claim 1, which is a SiC ceramic material containing one or more types of Be-containing compound, B or B-containing compound, Al or Al-containing compound. 3. The automatic nucleic acid base sequence determination device according to claim 1, wherein the support plate is a metal coated with an insulating film.
JP59123710A 1984-06-18 1984-06-18 Apparatus for automatically determining base sequence of nucleic acid Pending JPS613044A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59123710A JPS613044A (en) 1984-06-18 1984-06-18 Apparatus for automatically determining base sequence of nucleic acid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59123710A JPS613044A (en) 1984-06-18 1984-06-18 Apparatus for automatically determining base sequence of nucleic acid

Publications (1)

Publication Number Publication Date
JPS613044A true JPS613044A (en) 1986-01-09

Family

ID=14867435

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59123710A Pending JPS613044A (en) 1984-06-18 1984-06-18 Apparatus for automatically determining base sequence of nucleic acid

Country Status (1)

Country Link
JP (1) JPS613044A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5073246A (en) * 1990-05-16 1991-12-17 Bio-Rad Laboratories, Inc. Slab electrophoresis system with improved sample wells and cooling mechanism

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5073246A (en) * 1990-05-16 1991-12-17 Bio-Rad Laboratories, Inc. Slab electrophoresis system with improved sample wells and cooling mechanism

Similar Documents

Publication Publication Date Title
Brumley Jr et al. Rapid DNA sequencing by horizontal ultrathin gel electrophoresis
US4443319A (en) Device for electrophoresis
Reid et al. A simple apparatus for vertical flat-sheet polyacrylamide gel electrophoresis
Garoff et al. Improvements of DNA sequencing gels
US4624768A (en) Electrophoresis apparatus
US4483885A (en) Method and device for electrophoresis
US4452624A (en) Method for bonding insulator to insulator
US4820398A (en) Electrophoresis gel sheet
JPS613044A (en) Apparatus for automatically determining base sequence of nucleic acid
US3915827A (en) Method in electrophoresis for controlling the supplied power so as to obtain separations at an optimum speed
JPS63100367A (en) Electrophoretic device
Carninci et al. A discontinuous buffer system increasing resolution and reproducibility in DNA sequencing on high voltage horizontal ultrathin‐layer electrophoresis
JPH0329844A (en) Electrophoretic apparatus
JPH0718840B2 (en) Two-dimensional electrophoresis method
JPH07112939B2 (en) Anodic bonding method of silicon wafer and glass substrate
JPH0526137U (en) Improved backing support for gel plate assembly apparatus
US5830781A (en) Semiconductor device soldering process
JPS5894923A (en) Electric discharge equipment
JPH07105505B2 (en) Anodic bonding method
Qureshi et al. An improved method for phenotyping of alpha1-antitrypsin variants using separator isoelectric focusing on thin-layer agarose gel
US3356604A (en) Method and apparatus for magneto electrophoresis
JPH0779110B2 (en) Anodic bonding method of silicon wafer and glass substrate
JPH01176282A (en) Method for electrically joining ceramics
CA1339832C (en) Gel layer interface for electrophoresis chamber
JP3675056B2 (en) Gel electrophoresis