JPS6130434Y2 - - Google Patents

Info

Publication number
JPS6130434Y2
JPS6130434Y2 JP10385183U JP10385183U JPS6130434Y2 JP S6130434 Y2 JPS6130434 Y2 JP S6130434Y2 JP 10385183 U JP10385183 U JP 10385183U JP 10385183 U JP10385183 U JP 10385183U JP S6130434 Y2 JPS6130434 Y2 JP S6130434Y2
Authority
JP
Japan
Prior art keywords
rotor
gas
discharge chamber
fan
region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP10385183U
Other languages
Japanese (ja)
Other versions
JPS5981264U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP10385183U priority Critical patent/JPS5981264U/en
Publication of JPS5981264U publication Critical patent/JPS5981264U/en
Application granted granted Critical
Publication of JPS6130434Y2 publication Critical patent/JPS6130434Y2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Windings For Motors And Generators (AREA)
  • Motor Or Generator Cooling System (AREA)

Description

【考案の詳細な説明】 〔考案の利用分野〕 本案は水素ガスによつて回転子を冷却する水素
ガス冷却形発電機のようなガス冷却回転電機の回
転子に関するものである。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to a rotor of a gas-cooled rotating electrical machine such as a hydrogen gas-cooled generator that cools the rotor with hydrogen gas.

〔考案の背景〕[Background of the idea]

水素ガス冷却形発電機のような回転電機におい
て、回転子端部巻回を冷却するガスの流路を設け
ることについては次の制約がある。すなわち線輪
を所定の位置に保持する保持環は大きな応力を受
けるため、保持環に流路を設けることは好ましく
なく、巻回部へのガスの導入排出は、保持環端面
の外側に位置し、かつ回転子軸によつて制約され
た円環状の面を通して行なわなければならない。
しかもガス流の導入排出流路としてとり得る面積
は、巻線積層体が保持環と回転子軸の間の領域の
大きな部分を占め、かつ保持環の下に位置し巻線
積層体を軸方向に保持する中心環が存在するため
に、前記円環状の面の面積よりも実質的にさらに
制約されたものとなる。このためガスの導入口、
排出口を制約された状況のもとで如何に広く設け
るかということが回転子端部巻線冷却技術の最大
の課題であつた。
In a rotating electric machine such as a hydrogen gas-cooled generator, there are the following restrictions on providing a gas flow path for cooling the end windings of the rotor. In other words, the retaining ring that holds the wire in a predetermined position is subjected to large stress, so it is not preferable to provide a flow path in the retaining ring, and the introduction and discharge of gas to the winding section is located outside the end face of the retaining ring. , and must be carried out through an annular surface constrained by the rotor axis.
Moreover, the area that can be taken as the gas flow introduction and discharge passage is such that the winding stack occupies a large part of the area between the retaining ring and the rotor shaft, and the winding stack is located under the retaining ring and moves the winding stack in the axial direction. Because of the presence of the central ring that holds the surface, the area is substantially more restricted than the area of the annular surface. For this reason, the gas inlet
The biggest challenge in rotor end winding cooling technology was how to widen the exhaust port under restricted conditions.

従来技術においては、例えば、回転子軸に溝を
設けてガス入口室へガスを導くガス導入口の面積
を増すと共に、極軸近くのガス排出室を中心環に
近い第1の領域と遠い第2の領域の2つに区画
し、それぞれ第1と第2のフアン状通風装置を連
通し、また横軸近くのガス排出室の第3の領域に
も第3のフアン状通風装置を連通し、それらによ
りガスを外部に排出する構造となつている。
In the prior art, for example, grooves are provided in the rotor shaft to increase the area of the gas inlet that guides gas to the gas inlet chamber, and the gas discharge chamber near the polar axis is divided into a first region near the center ring and a second region far away. The first and second fan-shaped ventilation devices are connected to each other, and the third fan-shaped ventilation device is also connected to the third area of the gas discharge chamber near the horizontal axis. , the structure is such that gas is discharged to the outside.

このような従来技術においては、第1と第2の
フアン状通風装置は極軸近辺において円周方向に
入口室と排出室を隔絶する隔壁で区画された該排
出室の領域に、また第3のフアン状通風装置も同
様に横軸近辺において円周方向に入口室と排出室
を隔絶する隔壁で区画された該排出室の領域にし
か設けられていないため、ガス排出面積および排
出駆動力をそれほど大きくとることができない。
さらに、排出室の第1の領域および第2の領域と
異なり第3の領域に流れ込むガスは、巻線内軸方
向流路、円周方向流路を通るいずれの流れをも含
むにも拘らず1つのフアン状通風装置によつての
みしか排出されないため、十分な排出面積、排出
駆動力を得ることができず、横軸近辺の端部巻回
の効果的な冷却を行うことができない。
In such prior art, the first and second fan-shaped ventilation devices are provided in a region of the discharge chamber circumferentially partitioned by a partition wall separating the inlet chamber and the discharge chamber in the vicinity of the polar axis; Similarly, the fan-shaped ventilation device in the above is installed only in the region of the discharge chamber that is partitioned by a partition wall that separates the inlet chamber and the discharge chamber in the circumferential direction near the horizontal axis, so the gas discharge area and discharge driving force are limited. It can't be that big.
Furthermore, unlike the first and second regions of the discharge chamber, the gas flowing into the third region includes both an axial flow path and a circumferential flow path within the winding. Since the air is discharged only through one fan-shaped ventilation device, a sufficient discharge area and discharge driving force cannot be obtained, and the end winding near the horizontal axis cannot be effectively cooled.

〔考案の目的〕[Purpose of invention]

本案のガス冷却回転電機の回転子は、ガスの排
出通路面積を増大し、フアン状通風装置における
排出駆動力を増大してガス流量を増大せしめ、端
部巻回の効果的で均一な冷却を図ることを目的と
する。
The rotor of the gas-cooled rotating electric machine of the present invention increases the gas discharge passage area, increases the discharge driving force in the fan-shaped ventilation device, increases the gas flow rate, and achieves effective and uniform cooling of the end windings. The purpose is to

〔考案の特徴〕[Characteristics of the invention]

本案のガス冷却回転電機の回転子は、横軸近辺
に位置する排出室の第3の領域に対応する中心環
端面外側に独立する2個のフアン状通風装置を取
付け、これら2個のフアン状通風装置と排出室の
第3の領域とを中心環の内周側および外周側に設
けられた通路により連通し、これによりガス排出
面積を増大し、フアン状通風装置の排出駆動力を
増してガス風量を増大したことを特徴とする。
The rotor of the gas-cooled rotating electrical machine of the present invention has two independent fan-shaped ventilation devices installed on the outside of the center ring end surface corresponding to the third region of the discharge chamber located near the horizontal axis, and these two fan-shaped ventilation devices The ventilation device and the third region of the discharge chamber are communicated through passages provided on the inner and outer circumference sides of the central ring, thereby increasing the gas discharge area and increasing the discharge driving force of the fan-shaped ventilation device. It is characterized by an increased gas flow rate.

〔考案の実施例〕[Example of idea]

以下本案のガス冷却回転電機の回転子の具体例
を第1図〜第4図に基づいて説明する。
A specific example of the rotor of the gas-cooled rotating electrical machine of the present invention will be described below with reference to FIGS. 1 to 4.

第1図は回転子端部の横軸位置における排出部
の構造を示すもので、回転子軸1、保持環2、巻
線積層体3、保持環2に固着された中心環4によ
り構成されており、排出室5は中心環4に取付け
られ、巻線積層体3下の空間を軸方向に伸びるL
形絶縁片6及び中心環4より数えて複数番目の巻
線積層体3間に円周方向に設けられた絶縁片7に
よつて、このL形絶縁片6と円周方向絶縁片7で
囲まれる第1の領域5aとそれ以外の第2の領域
5bに区画されている。第1の領域5aは保持環
2に固着された中心環4の外周側に軸方向に貫通
し形成された多数の第1の軸方向通路8を経て中
心環4の側面に設けられた第1のフアン状通風装
置9に連通している。
Figure 1 shows the structure of the discharge section at the horizontal axis position of the rotor end, and is composed of a rotor shaft 1, a retaining ring 2, a winding stack 3, and a central ring 4 fixed to the retaining ring 2. The discharge chamber 5 is attached to the center ring 4 and extends in the axial direction in the space below the winding stack 3.
The L-shaped insulating piece 6 and the circumferential insulating piece 7 are surrounded by the insulating piece 7 provided circumferentially between the plurality of winding laminates 3 counting from the center ring 4. The area is divided into a first area 5a in which the area is covered, and a second area 5b other than the area 5a. The first region 5a passes through a plurality of first axial passages 8 formed to axially penetrate the outer circumferential side of the center ring 4 fixed to the retaining ring 2, and passes through a first region 5a provided on the side surface of the center ring 4. It communicates with a fan-shaped ventilation device 9.

第2の領域5bはL形絶縁片6と回転子軸1に
削設された複数本の溝1aとの間隙10及び中心
環4の回転子軸側に軸方向に貫通し形成された第
2の軸方向通路11を経て第1のフアン状通風装
置9の外側に設けられた第2のフアン状通風装置
12に連通している。従つて、ガス流はガス導入
口(後述する)から巻線積層体3の導体内に流入
して巻線積層体3を冷却したのち、排出室5の第
1の領域5aと第2の領域5bに向つて流動す
る。巻線積層体3の導体内から排出室5の第1の
領域5aに排出されたガスは第1の軸方向通路8
を通り第1のフアン状通風装置9により、また第
2の領域5bに排出されたガスは第2の軸方向通
路11を通り第2のフアン状通風装置12により
それぞれ回転子周囲に放出される。
The second region 5b is a gap 10 between the L-shaped insulating piece 6 and the plurality of grooves 1a cut in the rotor shaft 1, and a second region 5b formed by penetrating the center ring 4 in the rotor shaft direction in the axial direction. It communicates with a second fan-shaped ventilation device 12 provided outside the first fan-shaped ventilation device 9 through an axial passage 11 . Therefore, the gas flow flows into the conductor of the winding stack 3 from the gas inlet (described later) and cools the winding stack 3, and then flows into the first region 5a and the second region of the discharge chamber 5. 5b. The gas discharged from the conductor of the winding stack 3 into the first region 5a of the discharge chamber 5 passes through the first axial passage 8.
The gas discharged through the first fan-shaped ventilation device 9 and into the second region 5b passes through the second axial passage 11 and is discharged around the rotor by the second fan-shaped ventilation device 12, respectively. .

第2図は回転子端部の横軸位置近くにおけるガ
ス導入部とガス排出部の構造を示す。ガスの入口
室13は回転子軸1に削設された複数本の溝1b
と中心環4の回転子軸側に軸方向に貫通して形成
された第5の軸方向通路14とを経てガス導入口
15に連通している。上記複数本の溝1bは排出
室の第2の領域5bと第2のフアン状通風装置1
2とを連通する溝1aと、「円周方向に隔絶され
るように、極軸近くの巻線積層体3と回転子軸の
間に隔壁27が設けられている。」 排出室の第3の領域16は、横軸26付近で軸
方向に伸びる巻線積層体3に円周方向に取付けら
れかつその端部が軸方向に中心環4まで伸びて円
周方向に区画するように円周方向に伸びる巻線積
層体3に取付けられた隔壁17と、中心環4に取
付けられ巻線積層体3下の空間を軸方向に伸びる
L形絶縁片により囲まれて構成されている。この
排出室の「第3の領域16の保持環2側は、中心
環4の外周側に軸方向に貫通し形成された多数の
第3の軸方向通路19」を経て中心環4の側面に
設けられた第3のフアン状通風装置20に連通し
ている。また排出室の第3の領域16の回転子軸
1側は、L形絶縁片18に設けられた孔21と、
L形絶縁片18に接続し中心環4下の空間と第5
の軸方向通路とを半径方向に隔絶する絶縁片22
により軸方向に形成された第4の軸方向通路23
を経て、第3のフアン状通風装置20の外部側面
に位置する第4のフアン状通風装置24に連通し
ている。
FIG. 2 shows the structure of the gas introduction part and the gas discharge part near the horizontal axis position of the end of the rotor. The gas inlet chamber 13 is formed by a plurality of grooves 1b cut into the rotor shaft 1.
and a fifth axial passage 14 formed axially through the rotor shaft side of the center ring 4 to communicate with the gas inlet 15 . The plurality of grooves 1b are connected to the second region 5b of the discharge chamber and the second fan-shaped ventilation device 1.
"A partition wall 27 is provided between the winding stack 3 near the polar axis and the rotor shaft so as to be separated in the circumferential direction." The region 16 is attached in the circumferential direction to the winding laminate 3 extending in the axial direction near the horizontal axis 26, and its end portion extends in the axial direction to the center ring 4 so as to divide the circumference in the circumferential direction. It is surrounded by a partition wall 17 attached to the winding stack 3 extending in the direction, and an L-shaped insulating piece attached to the center ring 4 and extending in the axial direction in the space below the winding stack 3. The holding ring 2 side of the third region 16 of this discharge chamber is connected to the side surface of the center ring 4 through "a large number of third axial passages 19 formed to penetrate in the axial direction on the outer peripheral side of the center ring 4". It communicates with a third fan-shaped ventilation device 20 provided. Further, the rotor shaft 1 side of the third region 16 of the discharge chamber has a hole 21 provided in the L-shaped insulating piece 18,
Connected to the L-shaped insulating piece 18 and connected to the space under the center ring 4 and the fifth
an insulating piece 22 that radially isolates the axial passage of the
A fourth axial passage 23 formed in the axial direction by
, and communicates with a fourth fan-shaped ventilation device 24 located on the external side of the third fan-shaped ventilation device 20 .

第3図は本案における回転子端部の極軸25か
ら横軸26までの巻線線輪の配置を平面展開図に
よつて示したものであり、「ガスの入口室13と
排出室5a,5bとは隔壁27により円周方向に
区画されており、また排出室16とは隔壁17に
より円周方向、軸方向にL形絶縁片18、絶縁片
22により半径方向に区画されている。」 第4図は第1図〜第3図に示した回転子端部の
斜視図である。
FIG. 3 shows the arrangement of the winding rings from the polar axis 25 to the horizontal axis 26 at the end of the rotor in the present invention in a plan development view. 5b in the circumferential direction by a partition wall 27, and the discharge chamber 16 in the circumferential direction by the partition wall 17 and in the axial direction by an L-shaped insulating piece 18 and an insulating piece 22 in the radial direction. FIG. 4 is a perspective view of the rotor end shown in FIGS. 1-3.

第1図〜第4図に示した本案における回転子構
造において、ガスはガス導入口15から流入した
のち第5の軸方向通路14を経て隔壁17,27
により区画された入口室13に入る。入口室13
に入つたガスは、排出室の第1及び第2の領域5
a,5b側、または排出室の第3の領域16側に
排出される。この第1及び第2の領域5a,5b
側に排出されるガスは、巻線積層体3の巻線内円
周方向流路28内に流入して巻線積層体3を冷却
したのち排出室5の第1の領域5aおよび第2の
領域5bに向つて流動する。「残りのガスと横軸
付近のガス導入口15から流入し、L形絶縁片1
8、絶縁片22により半径方向に区画された第5
の軸方向通路14を経て入口室13に流入したガ
スは、」巻線積層体3の巻線内円周方向流路28
あるいは巻線内軸方向流路29を流れ、巻線積層
体3を冷却したのち横軸26近くに位置する排出
室の第3の領域16に向つて流動する。排出室5
の第1の領域5aに排出されたガスは第1の軸方
向通路8を経て第1のフアン状通風装置9から回
転子外部に放出される。また排出室5の第2の領
域5bに排出されたガスは、回転子軸1に削設さ
れた溝1aと第2の軸方向通路11を経て第2の
フアン状通風装置12から回転子外部に放出され
る。また、排出室の第3の領域16に排出された
ガスは、一部は第3の軸方向通路19を経て第3
のフアン状通風装置20から、残りはL形絶縁片
18に設けられた孔21と第4の軸方向通路23
を経て第4のフアン状通風装置24からそれぞれ
回転子外部に放出される。
In the rotor structure according to the present invention shown in Figs.
Enter the entrance chamber 13 divided by. Entrance room 13
The gas that enters the first and second regions 5 of the evacuation chamber
It is discharged to the a, 5b side or the third region 16 side of the discharge chamber. These first and second regions 5a, 5b
The gas discharged to the side flows into the inner winding circumferential flow path 28 of the winding stack 3 and cools the winding stack 3, and then flows into the first region 5a and the second region of the discharge chamber 5. It flows towards region 5b. "The remaining gas flows in from the gas inlet 15 near the horizontal axis, and the L-shaped insulating piece 1
8. A fifth section partitioned in the radial direction by an insulating piece 22
The gas flowing into the inlet chamber 13 through the axial passage 14 of
Alternatively, it flows through the winding inner axial flow path 29, cools the winding stack 3, and then flows toward the third region 16 of the discharge chamber located near the horizontal axis 26. Discharge chamber 5
The gas discharged into the first region 5a passes through the first axial passage 8 and is discharged from the first fan-shaped ventilation device 9 to the outside of the rotor. Further, the gas discharged into the second region 5b of the discharge chamber 5 passes through the groove 1a cut in the rotor shaft 1 and the second axial passage 11, and then from the second fan-shaped ventilation device 12 to the outside of the rotor. is released. In addition, a part of the gas discharged into the third region 16 of the discharge chamber passes through the third axial passage 19 and into the third region 16.
From the fan-shaped ventilation device 20, the rest are holes 21 provided in the L-shaped insulating piece 18 and a fourth axial passage 23.
The air is then discharged from the fourth fan-shaped ventilation device 24 to the outside of the rotor.

なお、以上の実施例においては第4の軸方向通
路23を中心環4と絶縁片22の間の空間に形成
したが、中心環4の回転子軸側に多数の軸方向貫
通路を設けて形成しても同様の効果が得られるこ
とは自明である。
In the above embodiment, the fourth axial passage 23 is formed in the space between the center ring 4 and the insulating piece 22, but a large number of axial passages are provided on the rotor shaft side of the center ring 4. It is obvious that the same effect can be obtained even if the film is formed.

〔考案の効果〕[Effect of idea]

以上説明したように、本案のガス冷却回転電機
の回転子においては、排出室のガス排出面積を増
大することができ、また著しい冷却ガス量の増大
を図ることができる。さらに、横軸近辺の端部巻
回の冷却を大幅に改良することができる。
As explained above, in the rotor of the gas-cooled rotating electric machine of the present invention, the gas discharge area of the discharge chamber can be increased, and the amount of cooling gas can be significantly increased. Additionally, the cooling of the end turns near the transverse axis can be significantly improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図〜第4図は本案のガス冷却回転電機の回
転子を説明する図であり、第1図は回転子端部の
極軸位置における構造を示す断面図、第2図は回
転子端部の横軸位置における構造を示すもので、
第3図の−線矢視断面図、第3図は回転子端
部の極軸位置近辺から横軸位置近辺における平面
展開図、第4図は回転子端部の斜視図である。 1……回転子軸、2……保持環、3……巻線積
層体、4……中心環、5a……排出室の第1の領
域、5b……排出室の第2の領域、16……排出
室の第3の領域、8……第1の軸方向通路、9…
…第1のフアン状通風装置、11……第2の軸方
向通路、12……第2のフアン状通風装置、13
……ガスの入口室、14……第5の軸方向通路、
15……ガス導入口、17……隔壁、8……L形
絶縁片、19……第3の軸方向通路、20……第
3のフアン状通風装置、23……第4の軸方向通
路、24……第4のフアン状通風装置、25……
極軸、26……横軸。
Figures 1 to 4 are diagrams for explaining the rotor of the gas-cooled rotating electrical machine of the present invention. Figure 1 is a sectional view showing the structure at the polar axis position of the rotor end, and Figure 2 is a cross-sectional view of the rotor end. This shows the structure at the horizontal axis position of the part.
3 is a cross-sectional view taken along the line arrow 3 in FIG. 3, FIG. 3 is a developed plan view of the rotor end from near the polar axis position to near the horizontal axis position, and FIG. 4 is a perspective view of the rotor end. DESCRIPTION OF SYMBOLS 1... Rotor shaft, 2... Holding ring, 3... Winding laminate, 4... Center ring, 5a... First region of the discharge chamber, 5b... Second region of the discharge chamber, 16 ... third region of the discharge chamber, 8 ... first axial passage, 9 ...
...First fan-shaped ventilation device, 11...Second axial passage, 12...Second fan-shaped ventilation device, 13
... gas inlet chamber, 14 ... fifth axial passage,
15... Gas inlet, 17... Partition wall, 8... L-shaped insulating piece, 19... Third axial passage, 20... Third fan-shaped ventilation device, 23... Fourth axial passage , 24... fourth fan-shaped ventilation device, 25...
Polar axis, 26...horizontal axis.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 回転子巻線を保持する保持環と回転子軸との間
の領域に、保持環に固定された中心環と中心環及
び巻線に一端が取付けられ、他端を回転子軸に固
定された軸方向にのびる半径方向の隔壁によつて
円周方向に区画したガスの入口室および排出室を
設け、ガスが入口室から巻線線輪内に流入して巻
線を冷却したのち排出室に流れ、回転子端部の外
部側面に設けたフアン状通風装置によつて回転子
外部に放出するように構成したガス冷却回転電機
の回転子において、前記排出室は、一端が巻線に
取付けられ他端が半径方向にのびる円周方向の隔
壁、半径方向の隔壁および中心環に取付けられ巻
線下の空間を軸方向に前記円周方向の隔壁までの
びるL形絶縁片により、極軸近くの中心環側に位
置する第1の領域と中心環に遠い第2の領域およ
び横軸近くの中心環側に位置する第3の領域に区
画され、前記中心環の外部側面には、前記排出室
の第1の領域と前記中心環の外周側に設けられた
第1の軸方向通路を経て連通する第1のフアン状
通風装置と、前記排出室の第2の領域と前記中心
環下の第2の軸方向通路を経て連通する、第1の
フアン状通風装置外部側面に位置する第2のフア
ン状通風装置と、前記排出室の第3の領域と前記
中心環の外周側および内周側に設けられた第3の
軸方向通路および第4の軸方向通路を経て連通す
る第3のフアン状通風装置および第3のフアン状
通風装置外部側面に位置する第4のフアン状通風
装置とをそれぞれ設け、前記ガス流の入口室は前
記第2の軸方向通路と円周方向に区画され、前記
第4の軸方向通路と半径方向に区画された第5の
軸方向通路を経てガス導入口に連通するように構
成したことを特徴とするガス冷却回転電機の回転
子。
In the area between the retaining ring that holds the rotor winding and the rotor shaft, there is a center ring fixed to the retaining ring and a center ring with one end attached to the winding and the other end fixed to the rotor shaft. A gas inlet chamber and a discharge chamber are defined in the circumferential direction by a radial partition wall extending in the axial direction, and the gas flows into the winding ring from the inlet chamber, cools the winding, and then flows into the discharge chamber. In a rotor of a gas-cooled rotating electrical machine configured to discharge air to the outside of the rotor by means of a fan-shaped ventilation device provided on an external side surface of an end of the rotor, the discharge chamber has one end attached to the winding. A circumferential bulkhead whose other end extends in the radial direction, an L-shaped insulating piece attached to the radial bulkhead and the center ring and extending axially through the space under the windings to the circumferential bulkhead, The discharge chamber is divided into a first region located on the center ring side, a second region far from the center ring, and a third region located on the center ring side near the horizontal axis, and the discharge chamber is provided on the outer side of the center ring. a first fan-shaped ventilation device that communicates with a first region of the discharge chamber via a first axial passage provided on the outer circumferential side of the center ring; a second fan-shaped ventilation device located on an external side surface of the first fan-shaped ventilation device, which communicates through two axial passages, and a third region of the discharge chamber and an outer peripheral side and an inner peripheral side of the central ring. A third fan-shaped ventilation device communicating through a third axial passage and a fourth axial passage provided in The gas flow inlet chamber is circumferentially divided from the second axial passage, and passes through a fifth axial passage that is radially divided from the fourth axial passage to a gas inlet. A rotor for a gas-cooled rotating electric machine, characterized in that the rotor is configured to communicate with the rotor.
JP10385183U 1983-07-06 1983-07-06 Rotor of gas-cooled rotating electric machine Granted JPS5981264U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10385183U JPS5981264U (en) 1983-07-06 1983-07-06 Rotor of gas-cooled rotating electric machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10385183U JPS5981264U (en) 1983-07-06 1983-07-06 Rotor of gas-cooled rotating electric machine

Publications (2)

Publication Number Publication Date
JPS5981264U JPS5981264U (en) 1984-06-01
JPS6130434Y2 true JPS6130434Y2 (en) 1986-09-05

Family

ID=30244108

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10385183U Granted JPS5981264U (en) 1983-07-06 1983-07-06 Rotor of gas-cooled rotating electric machine

Country Status (1)

Country Link
JP (1) JPS5981264U (en)

Also Published As

Publication number Publication date
JPS5981264U (en) 1984-06-01

Similar Documents

Publication Publication Date Title
US2833944A (en) Ventilation of end turn portions of generator rotor winding
EP1171938B1 (en) Direct gas cooled endwinding ventilation schemes for machines with concentric coil rotors
EP1171937B1 (en) Direct gas cooled longitudinal/cross-flow endwinding ventilation schemes for machines with concentric coil rotors
CA1209186A (en) High speed generator air vent for air gap
US3225231A (en) Gas-cooled end winding for dynamoelectric machine rotor
US2786951A (en) Dynamo-electric machines
JPS60501834A (en) Liquid cooled high speed synchronous machine
CA1136684A (en) Rotor for hydrogen-cooled rotary electric machines
US6844637B1 (en) Rotor assembly end turn cooling system and method
CN108880111A (en) The generator of the cooling and reduced windage loss of stator with enhancing
JPS6130434Y2 (en)
JPH07212999A (en) Winding of electrodynamic equipment, rotor end winding assembly of electrodynamic assembly and generator assembly
JPS6215018B2 (en)
US3831050A (en) Rotor for a dynamoelectric machine
JP3707250B2 (en) Cylindrical rotor of rotating electrical machine
KR20200104781A (en) Rotary electrical machine
TWI714408B (en) Inner rotor and a motor
JPS642527Y2 (en)
JPS642525Y2 (en)
JPS642526Y2 (en)
JPS6362991B2 (en)
JPS6213403Y2 (en)
JP2542819B2 (en) Superconducting rotating electric machine rotor
WO2021128274A1 (en) Internal rotor and motor
JPS5818868B2 (en) Cylindrical rotating field type rotor