JPS6130411Y2 - - Google Patents

Info

Publication number
JPS6130411Y2
JPS6130411Y2 JP18682182U JP18682182U JPS6130411Y2 JP S6130411 Y2 JPS6130411 Y2 JP S6130411Y2 JP 18682182 U JP18682182 U JP 18682182U JP 18682182 U JP18682182 U JP 18682182U JP S6130411 Y2 JPS6130411 Y2 JP S6130411Y2
Authority
JP
Japan
Prior art keywords
output
circuit
outputs
failure
fault
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP18682182U
Other languages
Japanese (ja)
Other versions
JPS58108727U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP18682182U priority Critical patent/JPS58108727U/en
Publication of JPS58108727U publication Critical patent/JPS58108727U/en
Application granted granted Critical
Publication of JPS6130411Y2 publication Critical patent/JPS6130411Y2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Emergency Protection Circuit Devices (AREA)

Description

【考案の詳細な説明】 この考案は電気系統の事故を検出して該系統を
保護する保護継電装置に関する。
[Detailed Description of the Invention] This invention relates to a protective relay device that detects accidents in an electrical system and protects the system.

以下、説明の便宜上従来の保護継電装置、この
考案の一実施例のいずれも電力系統の保護に用い
られる地絡過電流継電装置の場合について述べ
る。
Hereinafter, for convenience of explanation, both a conventional protective relay device and an embodiment of the present invention will be described in the case of a ground fault overcurrent relay device used for protecting an electric power system.

第1図は従来の地絡過電流継電装置の一例を示
すブロツク図であり、第2図はその各部の動作説
明のための入出力波形図である。第1図および第
2図に示す1は系統の故障電流Ifを導入する入
力端子、2はこの導入された故障電流Ifが設定
値以上になつたとき出力V2をだす故障検出回
路、3はこの故障検出回路の出力V2を規定時間
T以上継続してうけることで出力V0するタイマ
回路、4は出力端子である。
FIG. 1 is a block diagram showing an example of a conventional ground fault overcurrent relay device, and FIG. 2 is an input/output waveform diagram for explaining the operation of each part thereof. Reference numeral 1 shown in FIGS. 1 and 2 is an input terminal that introduces the fault current I f of the system, and 2 is a fault detection circuit that outputs an output V 2 when the introduced fault current I f exceeds a set value. 3 is a timer circuit which outputs V 0 by continuously receiving the output V 2 of this failure detection circuit for a specified time T or more, and 4 is an output terminal.

従来の地絡過電流継電装置(以下単に地絡リレ
ーと称す)は上記のように構成されており、入力
端子1に導入された故障電流Ifが故障検出回路
2の設定値以上であり、且つそれがタイマ回路3
の規定時間T以上継続したことで出力端子4から
出力V0を送出して系統をしや断する等の保護を
行なうようにしていた。
A conventional ground fault overcurrent relay device (hereinafter simply referred to as a ground fault relay) is configured as described above, and the fault current If introduced into the input terminal 1 is equal to or higher than the setting value of the fault detection circuit 2, And that is timer circuit 3
If this continues for a specified time T or more, protection is provided such as sending out an output V 0 from output terminal 4 and disconnecting the system.

ところで最近ケーブル送配電線が多く設置され
るが、このケーブル系における地絡事故はケーブ
ルの劣化初期においては故障現象が第2図に示す
ように間欠的に発生する場合がある。このような
場合、故障検出回路2がその故障電流Ifに応動
して出力V2をだしたとしてもその送出時間、す
なわち故障継電時間がタイマ回路3の規定時間T
より短かければ出力V0を送出せず、結局地絡リ
レーは系統事故が発生しているにも拘らず検出し
得ないことになる。
Recently, many cable transmission and distribution lines have been installed, and ground faults in cable systems may occur intermittently in the early stages of cable deterioration, as shown in FIG. In such a case, even if the fault detection circuit 2 outputs an output V 2 in response to the fault current I f , the sending time, that is, the fault relay time, will exceed the specified time T of the timer circuit 3.
If it is shorter, the output V 0 will not be sent out, and the ground fault relay will not be able to detect a system fault even though it has occurred.

この考案は簡単な回路構成で上記のような間欠
的に発生する系統事故にも応動させ得る保護継電
装置を提供することを目的とする。
The purpose of this invention is to provide a protective relay device with a simple circuit configuration that can respond to system faults that occur intermittently as described above.

第3図はこの考案の一実施例を示すブロツク図
であり、第4図イ,ロ,ハはその各部の動作説明
のための入出力波形図である。第3図および第4
図に示す符号中第1図および第2図で説明した符
号と同一符号を付したものはすべて同一または相
当部分である。5は上記故障検出回路2の出力
V2が有りの期間、出力V5する第1の出力回路、
6は上記故障検出回路2の出力V2が無しの期
間、出力V6する第2の出力回路、7は上記第1
の出力回路5の出力V5により徐々に充電され、
第2の出力回路6の出力V6で徐々に放電される
と共にその充電された値に応じた出力V7をだす
積分回路、8はこの積分回路7の出力V7が一定
レベルを超えたとき上記出力端子4を通して出力
V0を送出する判定回路である。
FIG. 3 is a block diagram showing an embodiment of this invention, and FIGS. 4A, 4B, and 4C are input/output waveform diagrams for explaining the operation of each part. Figures 3 and 4
Among the reference numerals shown in the figures, all parts denoted by the same reference numerals as those explained in FIGS. 1 and 2 are the same or corresponding parts. 5 is the output of the above failure detection circuit 2
a first output circuit that outputs V 5 while V 2 is present;
6 is a second output circuit that outputs V 6 during the period when there is no output V 2 of the failure detection circuit 2; 7 is the first output circuit
is gradually charged by the output V 5 of the output circuit 5 of
An integrating circuit that is gradually discharged by the output V 6 of the second output circuit 6 and outputs an output V 7 according to the charged value, 8 is when the output V 7 of this integrating circuit 7 exceeds a certain level. Output through output terminal 4 above
This is a judgment circuit that sends out V 0 .

第5図および第6図は第3図に用いた積分回路
7の一構成例およびその動作を説明するための入
出力波形図である。第5図および第6図に示す9
および10はそれぞれ上記第1および第2の出力
回路5,6の出力V5,V6を導入する入力端子、
11はコレクタに抵抗12を介して電圧+Eが加
えられ、エミツタに電圧−Eが加えられるトラン
ジスタ、13,14はこのトランジスタ11のベ
ースと上記入力端子9,10間に挿入された抵
抗、15は上記トランジスタ11のコレクタとベ
ース間に接続されたコンデンサ、16は出力端子
である。
5 and 6 are input/output waveform diagrams for explaining an example of the configuration of the integrating circuit 7 used in FIG. 3 and its operation. 9 shown in Figures 5 and 6.
and 10 are input terminals for introducing the outputs V 5 and V 6 of the first and second output circuits 5 and 6 , respectively;
11 is a transistor to which a voltage +E is applied to its collector through a resistor 12 and a voltage -E is applied to its emitter; 13 and 14 are resistors inserted between the base of this transistor 11 and the input terminals 9 and 10; 15 is a transistor A capacitor 16 connected between the collector and base of the transistor 11 is an output terminal.

さて第5図において入力端子9に第1の出力回
路5の出力V5が印加されるとコンデンサ15の
電荷は電圧+Eに向つて抵抗13によつてきまる
定電流で充電され、入力端子10に第2の出力回
路6の出力V6が印加されるとコンデンサ15の
電荷は電圧−Eに向つて抵抗6によつてきまる定
電流で放電される。従つて出力端子16にはコン
デンサ15の充電状態に応じた電圧が現われる。
この回路はトランジスタ11、抵抗12,13,
14およびコンデンサ15からなるいわゆるミラ
ー積分回路である。
Now, in FIG. 5, when the output V 5 of the first output circuit 5 is applied to the input terminal 9, the electric charge of the capacitor 15 is charged with a constant current determined by the resistor 13 toward the voltage +E, and the input terminal 10 is charged with a constant current determined by the resistor 13. When the output V 6 of the second output circuit 6 is applied to the capacitor 15 , the charge in the capacitor 15 is discharged toward the voltage -E with a constant current determined by the resistor 6 . Therefore, a voltage corresponding to the state of charge of the capacitor 15 appears at the output terminal 16.
This circuit consists of a transistor 11, resistors 12, 13,
14 and a capacitor 15, which is a so-called Miller integrating circuit.

次に第3図および第4図イ,ロ,ハにより第3
図に示すこの考案の一実施例の動作を説明する。
Next, according to Figure 3 and Figure 4 A, B, and C,
The operation of one embodiment of this invention shown in the figure will be explained.

すなわち第4図において系統が健全なときは故
障検出回路2は不動作で出力V2なしである。
That is, in FIG. 4, when the system is healthy, the failure detection circuit 2 is inoperative and there is no output V2 .

従つて第2の出力回路6が出力V6を送出して
積分回路7の電荷を放電させているので、その出
力V7は常に第4図イに示す電圧−Eの状態であ
る。この状態において () 故障電流Ifが継続する系統事故の場合 …第4図イ まず故障検出回路2が故障電流Ifに応動
し、出力V2する。次にこの出力V2によつて第
1の出力回路5が出力V5を連続送出する。そ
の結果積分回路7は徐々に充電されて出力V7
を電圧+Eに向つて上昇し続ける。そしてこの
上昇が規定時間T継続し出力V7が第4図イに
示す0に達したとき判定回路8が出力V0
る。
Therefore, since the second output circuit 6 sends out the output V 6 to discharge the charge of the integrating circuit 7, its output V 7 is always in the voltage -E state shown in FIG. 4A. In this state, () In the case of a system fault in which the fault current I f continues...Figure 4 (a) First, the fault detection circuit 2 responds to the fault current I f and outputs V 2 . Next, this output V 2 causes the first output circuit 5 to continuously send out an output V 5 . As a result, the integrating circuit 7 is gradually charged and the output V 7
continues to rise towards voltage +E. When this increase continues for a specified time T and the output V7 reaches 0 as shown in FIG. 4A, the determination circuit 8 outputs V0 .

() 故障電流Ifが間欠的に発生する系統事故の
場合 …第4図ロ 上記したように故障検出回路2は故障電流I
f有りの期間のみ応動し出力V2する。続いてこ
の出力V2有りで第1の出力回路5が出力V5
し、また出力V2無しで第2の出力回路6が出
力V6を送出する。そして積分回路7の電荷は
第4図ロに示すように出力V5によつて徐々に
充電され、出力V6によつて徐々に放電され
る。いま仮りに積分回路7の充、放電速度が同
じであるとすれば、間欠的に発生する故障電流
f有りの期間が無しの期間を僅かでも上廻わ
るとき積分回路7は充放電を繰返し乍らもその
出力V7を徐々に上昇してゆき、やがてその電
荷は電圧0に達するので判定回路8が出力V0
する。
() In the case of a system fault in which the fault current I f occurs intermittently...Figure 4B As mentioned above, the fault detection circuit 2
It responds only during the period when f is present and outputs V2 . Next, with this output V 2 present, the first output circuit 5 outputs V 5
Also, the second output circuit 6 delivers an output V 6 without an output V 2 . The charge in the integrating circuit 7 is gradually charged by the output V5 and gradually discharged by the output V6 , as shown in FIG. 4B. Assuming that the charging and discharging speeds of the integrating circuit 7 are the same, the integrating circuit 7 will repeat charging and discharging when the period in which there is an intermittent fault current I f exceeds the period without it even by a small amount. gradually increases the output V 7 , and eventually the charge reaches voltage 0, so the judgment circuit 8 outputs V 0
do.

() 故障電流Ifが間欠的に発生する系統事故の
場合 …第4図ハ 上述の第4図ロの場合と同様に積分回路7は
第1と第2の出力回路5,6から交互に同じ期
間宛出力V5,V6が与えられ、充、放電を繰返
すが、これらの出力V5,V6が第4図ハに示す
ように同じ期間宛出力するか若くは出力V5
出力期間の方が出力V6の出力期間より長い、
すなわち故障電流Ifありの期間がない期間よ
り長い場合は積分回路7の出力V7は図示電圧
−Eの付近を上下するのみであり上昇すること
はない。従つて判定回路8は不動作のままで出
力V0しない。
() In the case of a system fault in which the fault current I f occurs intermittently...Figure 4 (c) As in the case of Figure 4 (b) above, the integrating circuit 7 alternately outputs signals from the first and second output circuits 5 and 6. Outputs V 5 and V 6 destined for the same period are given, and charging and discharging are repeated, but these outputs V 5 and V 6 output for the same period as shown in Figure 4 C, or the output of output V 5 is shorter. period is longer than the output period of output V 6 ,
That is, if the period with the fault current I f is longer than the period without it, the output V 7 of the integrating circuit 7 only fluctuates around the indicated voltage -E and does not rise. Therefore, the determination circuit 8 remains inactive and does not output V0 .

なお、上記実施例では説明の都合上積分回路7
の充電側の積分定数K1と放電側の積分定数K2
等しく設定した場合について述べたが、この積分
定数K1,K2を適当に変化させることにより動作
限界となる故障電流Ifのある時間とない時間の
比率を任意に選ぶことができる。
Note that in the above embodiment, for convenience of explanation, the integrating circuit 7 is
We have described the case where the integral constant K 1 on the charging side and the integral constant K 2 on the discharging side are set equal, but by appropriately changing the integral constants K 1 and K 2 , the fault current I f which becomes the operating limit can be adjusted. You can arbitrarily choose the ratio of time with and without.

また上記実施例では地絡過電流継電装置にこの
考案を適用した場合について述べたが、これに限
るものではなく、地絡過電圧継電装置、あるいは
地絡方向継電装置等、各種の保護継電装置に適用
可能である。
Furthermore, in the above embodiment, the case where this invention is applied to a ground fault overcurrent relay device has been described, but it is not limited to this, and various protective relays such as a ground fault overvoltage relay device or a ground fault directional relay device are described. Applicable to electrical equipment.

以上のようにこの考案は系統に事故電流の発生
している期間と発生していない期間を積分し、そ
の積分値が一定レベルに達したことによつて系統
事故と判定するようにしたので、間欠的に発生す
る事故でも確実に検出保護することができる。
As described above, this invention integrates the periods in which fault current is occurring in the grid and the periods in which it does not, and determines a grid fault when the integrated value reaches a certain level. Even accidents that occur intermittently can be reliably detected and protected.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の地絡過電流継電装置の一例を示
すブロツク図、第2図は第1図の各部の動作説明
のための入出力波形図、第3図はこの考案による
地絡過電流継電装置の一実施例を示すブロツク
図、第4図イ,ロ,ハは第3図の各部の動作説明
のための入出力波形図、第5図および第6図はこ
の考案に用いた積分回路の一構成を示す回路図お
よびその動作を説明するための入出力波形図であ
る。図において1は入力端子、2は故障検出回
路、5は第1の出力回路、6は第2の出力回路、
7は積分回路、8は判定回路、9は出力端子であ
る。なお、上記各図中同一符号は同一または相当
部分を示す。
Fig. 1 is a block diagram showing an example of a conventional earth fault overcurrent relay device, Fig. 2 is an input/output waveform diagram for explaining the operation of each part in Fig. 1, and Fig. 3 is a ground fault overcurrent relay according to this invention. A block diagram showing one embodiment of the electric device; Figure 4 A, B, and C are input/output waveform diagrams to explain the operation of each part in Figure 3; Figures 5 and 6 are integral diagrams used in this invention. 2 is a circuit diagram showing one configuration of a circuit and an input/output waveform diagram for explaining its operation. FIG. In the figure, 1 is an input terminal, 2 is a failure detection circuit, 5 is a first output circuit, 6 is a second output circuit,
7 is an integrating circuit, 8 is a determination circuit, and 9 is an output terminal. Note that the same reference numerals in each of the above figures indicate the same or corresponding parts.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 系統故障による電気量変化に応動し該系統故障
の有無を出力する故障検出回路と、この故障検出
回路の動作中第1の定電圧を出力する第1の出力
回路と、上記故障検出回路の不動作中上記第1の
定電圧と極性の異なる第2の定電圧を出力する第
2の出力回路と、上記第1の出力回路の出力電圧
で充電されかつ上記第2の出力回路の出力電圧で
放電される充放電用の帰還コンデンサ及び増幅器
から形成される積分回路と、この積分回路の積分
値が一定レベルに達したとき上記系統故障と判定
した出力信号を送出する判定回路を備え、上記系
統故障の有無の時間幅に対応して系統故障を判定
すると共に継電動作時間は上記系統故障の有無の
時間幅比率に応じて決定されることを特徴とする
保護継電装置。
a failure detection circuit that outputs the presence or absence of a system failure in response to a change in the amount of electricity due to a system failure; a first output circuit that outputs a first constant voltage during operation of the failure detection circuit; a second output circuit that outputs a second constant voltage having a polarity different from the first constant voltage during operation; The system is equipped with an integrating circuit formed from a charging/discharging feedback capacitor and an amplifier, and a determination circuit that sends out an output signal that determines that the system has failed when the integrated value of this integrating circuit reaches a certain level. A protective relay device characterized in that a system failure is determined according to the time width of the presence or absence of a failure, and the relay operation time is determined according to the time width ratio of the presence or absence of the system failure.
JP18682182U 1982-12-08 1982-12-08 Protective relay device Granted JPS58108727U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18682182U JPS58108727U (en) 1982-12-08 1982-12-08 Protective relay device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18682182U JPS58108727U (en) 1982-12-08 1982-12-08 Protective relay device

Publications (2)

Publication Number Publication Date
JPS58108727U JPS58108727U (en) 1983-07-25
JPS6130411Y2 true JPS6130411Y2 (en) 1986-09-05

Family

ID=30102704

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18682182U Granted JPS58108727U (en) 1982-12-08 1982-12-08 Protective relay device

Country Status (1)

Country Link
JP (1) JPS58108727U (en)

Also Published As

Publication number Publication date
JPS58108727U (en) 1983-07-25

Similar Documents

Publication Publication Date Title
US4439806A (en) Short-circuit protection device for a DC control element
US4363064A (en) Overcurrent protection system
US4355342A (en) Power circuit including means for automatically protecting a chopping transistor thereof
RO118502B1 (en) Detector for monitoring the integrity of a grounding connetion of an electrical appliance
CA2290223A1 (en) Arc fault detector apparatus, means and system
GB1524825A (en) Current sensitive circuit protection system
JPS6130411Y2 (en)
US5243489A (en) Protection circuit for multiple phase power system
US3976920A (en) Filtering arrangement for relay protection devices
IE820833L (en) Solid state load protection system
EP0323223B1 (en) Telephone interface circuit
JPH0729712Y2 (en) Surge protector
GB2229053A (en) Protection against arcing in cables
US4441148A (en) Power converting device and a protection device for the same
US3471748A (en) Protective device for a series condenser
RU2085414C1 (en) Device to protect ac traction circuit in case of insulation faults in poles non-grounded to rails
SU1737599A1 (en) Device for protection of network with insulated neutrals against single-phase short-circuit to ground
RU1796498C (en) Device to suppress sparking in electric locomotive current collectors
SU1040562A2 (en) Device for protecting direct current mains
SU1480004A2 (en) Device for differential protection of electrical installation
JPH058760Y2 (en)
US1979256A (en) Electrical protective system
JPS6236335Y2 (en)
SU1504712A1 (en) Arrangement for remote protection of d.c. traction network
IT1090925B (en) DC motor protection circuit - has interrupting network responsive to overvoltage monitoring network and dynamic brake current detector network