JPS6130221B2 - - Google Patents

Info

Publication number
JPS6130221B2
JPS6130221B2 JP9766782A JP9766782A JPS6130221B2 JP S6130221 B2 JPS6130221 B2 JP S6130221B2 JP 9766782 A JP9766782 A JP 9766782A JP 9766782 A JP9766782 A JP 9766782A JP S6130221 B2 JPS6130221 B2 JP S6130221B2
Authority
JP
Japan
Prior art keywords
phosphor
light
radiation
scintillator
incident
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP9766782A
Other languages
Japanese (ja)
Other versions
JPS58786A (en
Inventor
Atsushi Suzuki
Koichi Urabe
Takamichi Yamada
Hideki Kono
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP9766782A priority Critical patent/JPS58786A/en
Publication of JPS58786A publication Critical patent/JPS58786A/en
Publication of JPS6130221B2 publication Critical patent/JPS6130221B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/20Measuring radiation intensity with scintillation detectors
    • G01T1/202Measuring radiation intensity with scintillation detectors the detector being a crystal

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Molecular Biology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Measurement Of Radiation (AREA)

Description

【発明の詳細な説明】 本発明は、X線、r線などの放射線検出器に関
する。特に、全身用X線CTや、ポジトロンカメ
ラなどのように、性能のそろつた多数個(200〜
1000個)の検出器を必要とする装置に対して有効
な検出器である。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a radiation detector for X-rays, R-rays, etc. In particular, a large number of units (200~
This detector is effective for devices that require 1000 detectors.

従来、上記の装置に対しては、キセノンのガス
チエンバーや、ゲルマニウム酸ビスマス(BGO
と略す)と光電子増倍管とを組み合わせた検出器
が用いられてきた。これらの検出器では、各チヤ
ンネルの特性をあわせることが容易でなく、その
結果、装置としては、充分に鮮明な像を得ること
が難しかつた。
Traditionally, for the above equipment, xenon gas chambers and bismuth germanate (BGO) were used.
A detector combining a photomultiplier tube and a photomultiplier tube has been used. In these detectors, it is not easy to match the characteristics of each channel, and as a result, it is difficult for the device to obtain a sufficiently clear image.

特に、BGOと光電子増倍管とを組み合せた検
出器では、シンチレータとして用いたBGO単結
晶の特性がばらつきおよび光電子増倍管の特性の
ばらつきのために、各検出器の特性をあわせるこ
とは、ほとんど不可能であつた。
In particular, in a detector that combines BGO and a photomultiplier tube, it is difficult to match the characteristics of each detector due to variations in the characteristics of the BGO single crystal used as a scintillator and variations in the characteristics of the photomultiplier tube. It was almost impossible.

本発明では、微粉末のけい光体をシンチレータ
として使用し、好ましくはX線入射方向からシン
チレータの発光を受光器に導くことにより、シン
チレータ特性のばらつきを少なくした。
In the present invention, a fine powder phosphor is used as a scintillator, and the scintillator's light emission is preferably guided to a light receiver from the X-ray incident direction, thereby reducing variations in scintillator characteristics.

以下図面によつて本発明を説明する。 The present invention will be explained below with reference to the drawings.

第1図は本発明の放射線検出器の一実施例の断
面図である。容器1の内壁はアルミニウムや銀の
ように可視、近赤外光線に対して反射率の高い膜
がコートしてある。この容器1は、放射線6の入
射面を除いて、タングステン又は鉛のように放射
線を遮へいする物質で遮へいするが、若しくはそ
のような物質からなる容器であることが好まし
い。けい光体粒子2は、容器1の中に保たれ、平
均粒径5〜15μmが好ましい。けい光体として
は、Eu,Pr,Tbの少なくとも一種で付活した
Y2O2S,La2O2S,Gd2O2S,Lu2O2S,LaOBr,
BaFCl,BaFBr及びBaSO4など並びにCdS;Cu,
Al,CdS;Ag,Cl,ZnS;Cu,Al,CaWO4又は
CdWO4などが用いられる。とくに、けい光体と
してX線に対して吸収が大きいGd2O2S(Eu),
Gd2O2S(Pr),CaWO4等は好ましい。けい光体
層の厚さは、それぞれのけい光体が、使用する放
射線を充分吸収するようにきめられている。けい
光体層は、実質的に透明度のよい物質、たとえば
エポキシ樹脂のような樹脂でかためられていても
よい。
FIG. 1 is a sectional view of one embodiment of the radiation detector of the present invention. The inner wall of the container 1 is coated with a film such as aluminum or silver that has a high reflectance to visible and near-infrared light. The container 1 is preferably shielded with a material that shields radiation, such as tungsten or lead, or made of such a material, except for the incident surface of the radiation 6. The phosphor particles 2 are kept in the container 1 and preferably have an average particle size of 5 to 15 μm. As a phosphor, it is activated with at least one of Eu, Pr, and Tb.
Y 2 O 2 S, La 2 O 2 S, Gd 2 O 2 S, Lu 2 O 2 S, LaOBr,
BaFCl, BaFBr and BaSO 4 etc. and CdS; Cu,
Al, CdS; Ag, Cl, ZnS; Cu, Al, CaWO 4 or
CdWO4 etc. are used. In particular, Gd 2 O 2 S (Eu), which has a high absorption of X-rays as a phosphor,
Gd 2 O 2 S (Pr), CaWO 4 , etc. are preferred. The thickness of the phosphor layers is such that each phosphor absorbs enough of the radiation used. The phosphor layer may be hardened with a substantially transparent material, for example a resin such as an epoxy resin.

個々のけい光体粒子の特性は、少しづつ異なつ
ている可能性があるが、このようにして作つた粉
体層を一つのシンチレータとして使用することに
より、シンチレータとしての特性のばらつきは、
粒子数の平方根分の一程度、すなわち、0.001%
程度以下になる。
The characteristics of individual phosphor particles may differ slightly, but by using the powder layer created in this way as a single scintillator, variations in the characteristics as a scintillator can be reduced.
Approximately one square root of the number of particles, i.e. 0.001%
below the level.

けい光体粒子を用いたとき、けい光体層内部で
の発光は、けい光体粒子表面で反射してけい光体
層に外側に出てくる。けい光体粒子の表面の反射
率は、けい光体の種類にもよるが、100%に近い
が100%にはならない。そのため充分に厚いけい
光体層の裏面(放射線の入射する面と逆の面)か
らの発光を観測すると単結晶のシンチレータを用
いた場合よりその強度は著しく低下している。一
方、シンチレータ層の表面(放射線の入射する
面)からの発光を観測すると、単結晶のシンチレ
ータを用いた場合の発光強度の7割〜9割程度の
発光が検出される。けい光体層の厚みを薄くすれ
ばこのようなことはない。しかしX線CTなどに
用いる放射線検出器は高感度であることが要求さ
れる。通常、X線はエネルギーの大なる波長から
エネルギーの小なる波長まで特定の波長範囲のも
のを使用する。それ故けい光体層に入射するX線
のうちエネルギーの小なる波長のものはその表面
から浅い部分までしか入射しないが、エネルギー
の大なる波長のものは表面から深い所まで入射す
る。前述のように検出器を高感度にするまでに
は、入射したX線を透過させることなくすべて光
に変換せしめる必要があり、そのためにはけい光
体層は充分に厚くなければならない。従つて充分
に厚いけい光体層を用いてその表面から発光を検
出する方が有利である。
When phosphor particles are used, the light emitted within the phosphor layer is reflected by the surface of the phosphor particles and exits to the phosphor layer. The reflectance of the surface of a phosphor particle is close to 100%, but not 100%, depending on the type of phosphor. Therefore, when light emission from the back surface of a sufficiently thick phosphor layer (the surface opposite to the surface on which radiation enters) is observed, the intensity is significantly lower than when a single crystal scintillator is used. On the other hand, when light emission from the surface of the scintillator layer (the surface on which radiation is incident) is observed, light emission with an intensity of about 70% to 90% is detected when a single crystal scintillator is used. This problem can be avoided by reducing the thickness of the phosphor layer. However, radiation detectors used in X-ray CT and the like are required to be highly sensitive. Usually, X-rays are used in a specific wavelength range from wavelengths with high energy to wavelengths with low energy. Therefore, of the X-rays incident on the phosphor layer, those with wavelengths of low energy are incident only shallowly from the surface, whereas those with wavelengths of high energy are incident deep from the surface. As mentioned above, in order to make the detector highly sensitive, it is necessary to convert all of the incident X-rays into light without transmitting them, and for this purpose the phosphor layer must be sufficiently thick. It is therefore advantageous to use a sufficiently thick phosphor layer and to detect the emission from its surface.

表面からの発光は、シンチレータ表面に設けら
れた光ガイド3に導かれる。3の側面には、アル
ミニウムの反射膜がある。光ガイドの一端から、
シンチレータの発光はシリコンの受光素子5にと
り込まれて電気信号に変換される。
Light emitted from the surface is guided to a light guide 3 provided on the surface of the scintillator. There is an aluminum reflective film on the side of 3. From one end of the light guide,
The light emitted from the scintillator is captured by the silicon light receiving element 5 and converted into an electrical signal.

第2図は、本発明の他の実施例の分解説明図で
複数の放射線検出器を連結したものである。タン
グステン又は鉛の遮へい板4(両面には光反射性
物質がある)により各チヤンネルを分離し、各チ
ヤンネルに同一のけい光体を入れ、それぞれ光ガ
イド3と光検出器5(1組のみ図示)を設ける。
FIG. 2 is an exploded explanatory view of another embodiment of the present invention, in which a plurality of radiation detectors are connected. Each channel is separated by a tungsten or lead shielding plate 4 (with light-reflecting material on both sides), and each channel contains an identical phosphor, each with a light guide 3 and a photodetector 5 (only one set is shown). ) will be established.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の一実施例の断面図、第2図
は、本発明の他の実施例の分解説明図である。
FIG. 1 is a sectional view of one embodiment of the invention, and FIG. 2 is an exploded explanatory view of another embodiment of the invention.

Claims (1)

【特許請求の範囲】[Claims] 1 内壁が光反射性であり、一部に光透過窓を有
する容器、該容器内に保たれたけい光体粒子、上
記けい光体粒子に対して入射する放射線の入射す
る側と実質的に同じ側に設けられた光ガイド及び
放射線による上記けい光体の発光を上記光ガイド
を通して検出する光検出器よりなることを特徴と
する放射線検出器。
1. A container whose inner wall is light-reflective and has a light-transmitting window in a part, phosphor particles held within the container, and a side that is substantially the same as the incident side of the radiation incident on the phosphor particles. A radiation detector comprising a light guide provided on the same side and a photodetector that detects light emitted from the phosphor by radiation through the light guide.
JP9766782A 1982-06-09 1982-06-09 Radiation detector Granted JPS58786A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9766782A JPS58786A (en) 1982-06-09 1982-06-09 Radiation detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9766782A JPS58786A (en) 1982-06-09 1982-06-09 Radiation detector

Publications (2)

Publication Number Publication Date
JPS58786A JPS58786A (en) 1983-01-05
JPS6130221B2 true JPS6130221B2 (en) 1986-07-11

Family

ID=14198388

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9766782A Granted JPS58786A (en) 1982-06-09 1982-06-09 Radiation detector

Country Status (1)

Country Link
JP (1) JPS58786A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0950903A1 (en) * 1998-04-15 1999-10-20 Europa Trading S.r.l. Scanning and detection means

Also Published As

Publication number Publication date
JPS58786A (en) 1983-01-05

Similar Documents

Publication Publication Date Title
US4317037A (en) Radiation detection apparatus
US5831269A (en) Radiation detector element
US4492869A (en) Radiation detector
US5712483A (en) X-ray grid-detector apparatus
JPS6350674B2 (en)
US5302817A (en) X-ray detector and X-ray examination system utilizing fluorescent material
EP1705478B1 (en) Imaging assembly and inspection method
JP5971866B2 (en) Scintillator plate, radiation measuring apparatus, radiation imaging apparatus, and scintillator plate manufacturing method
JPS61110079A (en) Radiation detector
US20090032718A1 (en) Color scintillator and image sensor
US5087818A (en) Beta scintillation probe
US7138633B1 (en) Apparatus employing a filtered scintillator and method of using same
JP2002214349A (en) X-ray detection module
US9995841B2 (en) Compact scintillation detector
JP2928677B2 (en) X-ray detector and X-ray inspection device
Kandarakis et al. An experimental method for the determination of spatial-frequency-dependent detective quantum efficiency (DQE) of scintillators used in X-ray imaging detectors
Cavouras et al. An experimental method to determine the effective luminescence efficiency of scintillator-photodetector combinations used in X-ray medical imaging systems.
Usuda et al. Phoswich detectors combining doubly or triply ZnS (Ag), NE102A, BGO and/or NaI (Tl) scintillators for simultaneous counting of α, β and γ rays
Swinth et al. Biomedical probe using a fiber‐optic coupled scintillator
JPS6130221B2 (en)
JP2000258539A (en) Apparatus and method for detection of radiation
WO2015008241A1 (en) Ce3+ activated luminescent compositions for application in imaging systems
Krus et al. Precision linear and two-dimensional scintillation crystal arrays for X-ray and gamma-ray imaging applications
JPH10160852A (en) Radiation detector
JP2000235078A (en) Radiation detecting structural body, and radiation detector and radiation inspection device using same