JPS6130119B2 - - Google Patents

Info

Publication number
JPS6130119B2
JPS6130119B2 JP8287181A JP8287181A JPS6130119B2 JP S6130119 B2 JPS6130119 B2 JP S6130119B2 JP 8287181 A JP8287181 A JP 8287181A JP 8287181 A JP8287181 A JP 8287181A JP S6130119 B2 JPS6130119 B2 JP S6130119B2
Authority
JP
Japan
Prior art keywords
shield
outer cylinder
conveyor
chamber
gravel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP8287181A
Other languages
Japanese (ja)
Other versions
JPS57197397A (en
Inventor
Hiromi Hagimoto
Yutaka Kashima
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TAIHO KENSETSU KK
Original Assignee
TAIHO KENSETSU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TAIHO KENSETSU KK filed Critical TAIHO KENSETSU KK
Priority to JP8287181A priority Critical patent/JPS57197397A/en
Publication of JPS57197397A publication Critical patent/JPS57197397A/en
Publication of JPS6130119B2 publication Critical patent/JPS6130119B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は地下水位以下の地盤などの軟弱な地盤
に横坑を掘削するシールド掘進機に関する。 従来より、地下水位以下の例えば砂層、砂礫層
などのように切羽の自立が困難な地盤に横坑を掘
削する場合、第1図に示すようなシールド掘進機
が用いられている。 この従来のシールド掘進機は、シールド外筒A
の前方に水密性の隔壁Bを設け、この隔壁Bの前
面に切刃C1,C2と練混具C3とを有する回転型の
掘削具を設ける一方、前記隔壁Bの下方から外
筒Aの後方へ向つて立上げたスクリユーコンベア
D並びに掘進機の推進用に設けたオイルジヤツキ
Eなどを主要部材として構成されており、前記掘
削具が回転して掘削した切羽の土砂は、スクリ
ユーコンベアDのスクリユー羽根d1が回転される
ことにより、その排出口d2から外部へ排出される
ようになつている。なお、第1図中d3は前記コン
ベアの外筒、d4は回転軸、C4,d5は駆動モータで
ある。 しかして、掘削すべき地山に粗大礫がある場
合、この粗大礫を確実、かつ円滑にスクリユーコ
ンベアDで排出するには、その外筒d3の有効内径
とスクリユー羽根d1の有効外径およびピツチは充
分な大きさに形成する必要がある。 例えば、第2図に示すスクリユーコンベアDの
断面において、外筒d3の有効内径がR、回転軸d4
の外径がrの場合、このコンベアが搬送できる礫
mの断面の径はR−r/2であるから、粗大礫を
通過させるに足りる搬送空間を確保するには、上
記諸元を充分大きくした大形のスクリユーコンベ
アの設置が必要となつて、掘削機本体の価格を押
上げてしまう難点がある。 本発明は上記の点に鑑み、スクリユーコンベア
自体はそれ程大形にすることなく、粗大礫も確実
かつ円滑に搬送、排出できる掘削土の排出装置を
具備した小型化に適したシールド掘進機を提供す
ることを目的としてなされたものである。 以下に、本発明の実施例を図面に沿つて説明す
る。 第3図は本発明シールド掘進機機の要部の一例
を示す側断面図で、各構成部品の基本的な配設位
置関係は従来のものと殆んど同様であるが、掘削
上の排出装置たるコンベアの構造が異なつてい
る。 すなわち、同図中1はシールド外筒、2は外筒
1の前方部に設けた水密性の隔壁で、その前面部
が切羽室3となる。は切羽室3の前端部に配さ
れた回転型の掘削具で、ここでは前面の多数の掘
削刃5と前面中心部の芯抜掘削刃6および後面に
複数の棒状をなす練混翼7を有して回転軸8に取
付けられている。9は前記軸8内にその長さ方向
に沿つて形成した中空の土質改良剤注入管、10
は前記注入管先端の注入孔である。 しかして、前記回転軸8は、隔壁2のラジアル
軸受11と、隔壁後面に配設した駆動機構部のス
ラストラジアル軸受12とによつて軸支されてい
る。駆動機構は、回転軸8の後端側に取付けた減
速歯車13、この歯車に噛合させられたピニオン
ギア14およびこのギア14を取付けた駆動源た
る油圧モータ15によつて形成されている。な
お、16は前記軸8の後端に於て前記注入管9に
接続されたスイベルジヨイントである。 しかして、17は掘削土の排出装置でこの排出
装置17は隔壁2の下部からシールド外筒1の後
方へ向つて立上つた傾斜を有するコンベア外筒1
8を、その前端部を前記切羽室3に連通させて設
け、この外筒18の内部に、螺旋棒体19とスク
リユー羽根20の軸21とを接続した構造の複合
形搬送体を収装して構成した点に特徴を有してい
る。 すなわち、上記複合型搬送体は、前半が螺旋棒
体19で、後半部がそれと接続されて直列状一体
となつたスクリユー羽根20を周囲に有する回転
軸21とにより形成されている。 22は前記外筒18の後方部に設けた排出口、
23は外筒18後端に於て軸8に接続れた駆動モ
ータ、24は前記外筒18に於て、螺旋棒体19
の後端部が位置する外筒上面に開設した礫取出
口、25はこの取出口の蓋で、以上により本発明
掘削機の掘削土排出装置の一例を構成する。なお
図中、26はシールドジヤツキ、27はシールド
外筒1後方に順次土留筒に組立てられたセグメン
トである。 第4図は上記排出装置を第3図の―線で切
断した図で、礫を含む掘削土の搬送手段として作
用する螺旋体19を内部に有する外筒18の断面
に占める形状、大きさが斜線を付した部分19S
に表わされている。 しかして、螺旋棒体19は、その回転を支持す
るスクリユー羽根の軸21のような通し軸を有し
ないので、搬送可能な礫の大きさは、図の1点鎖
線で示すように、外筒18の有効内径よりわずか
に小さい程度の粗大な礫nでも円滑に搬送するこ
とができる。 因に、第2図に示す従来のスクリユーコンベア
では、先にも述べた如く、外筒内径Rから軸径r
を減じ、これを2で除した大きさの礫mまでしか
搬送することができない。 上述した本発明掘進機機の作動態様は次の通り
である。 例えば、粗大礫を含む砂礫層を掘進機する時、
掘削具の回転により、切羽が掘削されその掘削
土砂が切羽室3に溜められる。 上記掘削土砂は、掘削時に粘土、ベントナイ
ト、CMC等の土質改良剤が注入孔10から加え
られ、更に、練混翼7の作用を受けて切羽室3の
全体に亘り練り混ぜられ、塑性流動性と不透水性
を有し、かつ地質とほぼ同程度の単位体積重量
(1.6〜2.0t/m2)、および地山とほぼ同程度の含
水比を有する泥土にされる。しかして、この泥土
は切羽室3および排出装置の外筒18内に充満さ
せられ、その土圧によつて切羽の土圧と水圧に対
抗せしめ、掘進時に切羽を安定させた状態に維持
する。 上記泥土内に粗大礫が含まれていれば、それら
の礫は螺旋棒体19の回転によりコンベア外筒1
8内を後方へ移動させられるが、その移動は前記
棒体19の後端、すなわちスクリユー羽根20の
前端側で停滞する。換言すれば、粗大礫はスクリ
ユー羽根20によつてスクリユーコンベア側へ移
動するのが阻止されることになる場合があるの
で、礫取出口24の蓋25を開け、停滞している
礫を取出すのである。 なお、螺旋棒体19は、移動作用と共に練混作
用もあるから、該棒体19の部分および棒体19
とスクリユー羽根20の接合部で前記粗大礫以外
の停滞は生じない。すなわち、礫が取除かれた泥
土は、従来機の場合と同様にコンベア外筒18の
後端排出口22から排出される。 第5図および第6図は本発明の他の実施例のシ
ールド掘進機を示す側断面図であり、よつて説明
の重複を避けるために第3図に示した実施例のも
のと異なる構成部分についてのみ説明する。した
がつて、第3図と同一符号は同一部材を示す。 この掘進機は、第3図図示のものと、掘削具
の回転支持構造、芯抜掘削刃と一体に設けた練混
手段およびこの練混手段を収装し、かつ切羽室3
に連通されて形成した土砂室についての構成が異
なつている。 すなわち、掘削具はその後面が連結杆81を
介し隔壁2にシール兼軸受11をもつて支持され
た回転筒82に取付けられており、この回転筒8
2は後面に設けた環状の減速歯車13′がピニオ
ンギア14を介して回転駆動源の油圧モータ15
に接続されている。 次に、掘削具に固着されてそれと一体に回転
される芯抜掘削刃6の同軸上後方には、前記回転
筒体82の内部を貫通して後方へ延びた螺旋棒体
の練混具71が取付けられており、その後端が、
後述する土砂室31の後面壁において軸受12′
を介して軸支されている。 そして、前記練混具71は、前記回転円筒体8
2の内壁面にその先端部を密に遊挿することによ
り前記切羽室3に連通して隔壁2後方に突設され
た土砂室31内に収装されていると共に、内部は
中空状になつており、土質改良剤を注入し得るよ
うになつている。 上記土砂室31はその後端側が下方へ膨出した
貯溜部32に形成され、この貯溜部32にゲート
33を介して先の実施例で説明したものと同構成
の土砂排出装置が連通接続されており、以上によ
り本発明による別例のシールド掘進機が構成され
ている。 しかして、上記別例のシールド掘進機の作動
は、掘削された土砂が練混翼7で練混ぜられた
後、更に土砂室31からその貯溜部32に搬送さ
せる間において、螺旋棒体の練混具71で練り混
ぜられつつ前方から後方に移動される。ここで、
掘削土中に粗大な礫があつても土砂室31の練混
具71はその中心軸上に通し軸を有しないから、
礫を後方へ送りつつ掘削土砂の泥土化を助長し促
進することができる。 そして、礫を含む泥土は、土砂室31の貯溜部
32からゲート33を通り、先の実施例と同様排
出装置によつて後方へ搬送され、粗大礫はその取
出口24から取出され、泥土のみがコンベア外筒
後端の排土口22から外部へ排出されるのであ
る。 本発明は以上の通りであつて、シールド掘進機
の掘削土の排出装置を、スクリユー羽根とその軸
に直列的に連結された螺旋棒体とにより形成した
複合タイプの搬送体を一本のコンベア外筒内に収
装すると共に、粗大礫の取出口を螺旋棒状体の後
端部が位置する外筒に設けて構成したから、小型
化しても粗大礫を排出装置内に容易に導入し得、
かつ装置内を搬送させてその途中で取出すことが
できる一方、粗大礫はスクリユー羽根側へは移動
し得ないので、その礫を効果的に取除くことがで
きる。 また、排出装置自体は、従来機程度の大きさで
あつても良く、従来機のスクリユーコンベアのス
クリユー羽根の前半部を螺旋棒体に置き換え、外
筒に礫取出孔を設ければ、本発明は従来機にわず
かの改造を加えるだけで得ることができる経済効
果もある。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a shield excavator for excavating a horizontal shaft in soft ground such as ground below the groundwater level. BACKGROUND ART Conventionally, a shield excavator as shown in FIG. 1 has been used when excavating a horizontal shaft in the ground below the groundwater level, where it is difficult for the face to stand on its own, such as in a sand layer or a gravel layer. This conventional shield tunneling machine has shield outer cylinder A.
A watertight partition wall B is provided in front of the partition wall B, and a rotary excavating tool C having cutting blades C 1 , C 2 and a kneading tool C 3 is provided in front of the partition wall B. The main components include a screw conveyor D raised toward the rear of the cylinder A and an oil jack E provided for propulsion of the excavator. By rotating the screw blade d1 of the screw conveyor D, the screw is discharged to the outside from its discharge port d2 . In FIG. 1, d 3 is an outer cylinder of the conveyor, d 4 is a rotating shaft, and C 4 and d 5 are drive motors. If there is coarse gravel in the ground to be excavated, in order to reliably and smoothly discharge the coarse gravel by the screw conveyor D, the effective inner diameter of the outer cylinder d3 and the effective outer diameter of the screw blade d1 must be adjusted. The diameter and pitch need to be formed to a sufficient size. For example, in the cross section of the screw conveyor D shown in FIG. 2, the effective inner diameter of the outer cylinder d 3 is R, and the rotation axis d 4
When the outer diameter of m is r, the cross-sectional diameter of the gravel m that can be conveyed by this conveyor is R-r/2. Therefore, in order to secure a conveyance space sufficient for passing coarse gravel, the above specifications must be made large enough. This requires the installation of a large screw conveyor, which raises the price of the excavator itself. In view of the above points, the present invention provides a shield excavator suitable for downsizing, which is equipped with an excavated soil discharge device that can reliably and smoothly convey and discharge coarse gravel without making the screw conveyor itself that large. It was made for the purpose of providing. Embodiments of the present invention will be described below with reference to the drawings. Figure 3 is a side sectional view showing an example of the main parts of the shield tunneling machine of the present invention. The structure of the conveyor device is different. That is, in the figure, 1 is a shield outer cylinder, 2 is a watertight partition provided at the front part of the outer cylinder 1, and the front part thereof becomes the face chamber 3. Reference numeral 4 denotes a rotary excavating tool disposed at the front end of the face chamber 3, which includes a number of excavating blades 5 at the front, a coring excavating blade 6 at the center of the front, and a plurality of rod-shaped kneading blades 7 at the rear. is attached to the rotating shaft 8. 9 is a hollow soil conditioner injection pipe formed in the shaft 8 along its length; 10
is an injection hole at the tip of the injection tube. The rotating shaft 8 is supported by a radial bearing 11 of the partition wall 2 and a thrust radial bearing 12 of a drive mechanism provided on the rear surface of the partition wall. The drive mechanism is formed by a reduction gear 13 attached to the rear end side of the rotating shaft 8, a pinion gear 14 meshed with this gear, and a hydraulic motor 15 serving as a drive source to which this gear 14 is attached. Note that 16 is a swivel joint connected to the injection pipe 9 at the rear end of the shaft 8. Reference numeral 17 denotes a discharge device for excavated soil, and this discharge device 17 is a conveyor outer cylinder 1 having an inclination rising from the lower part of the partition wall 2 toward the rear of the shield outer cylinder 1.
8 is provided with its front end communicating with the face chamber 3, and a composite conveying body having a structure in which a spiral rod body 19 and a shaft 21 of a screw blade 20 are connected is housed inside this outer cylinder 18. It is characterized by its structure. That is, the above-mentioned composite conveying body is formed of a helical rod 19 in the first half and a rotary shaft 21 surrounding the screw blades 20 connected to the helical rod 19 and integrated in series in the latter half. 22 is a discharge port provided at the rear part of the outer cylinder 18;
23 is a drive motor connected to the shaft 8 at the rear end of the outer cylinder 18; 24 is a helical rod 19 connected to the outer cylinder 18;
A gravel outlet 25 is a lid for the gravel outlet provided on the upper surface of the outer cylinder where the rear end is located, and thus constitutes an example of the excavated soil discharge device of the excavator of the present invention. In the figure, 26 is a shield jack, and 27 is a segment that is sequentially assembled into a retaining cylinder at the rear of the shield outer cylinder 1. FIG. 4 is a diagram of the above-mentioned discharge device taken along the line - - in FIG. 3, and the shape and size of the outer cylinder 18, which has a spiral body 19 inside that acts as a conveyance means for excavated soil containing gravel, is indicated by the diagonal line. Part 19S marked with
It is expressed in However, since the spiral rod body 19 does not have a through shaft like the shaft 21 of the screw blade that supports its rotation, the size of gravel that can be transported is Even coarse gravel n that is slightly smaller than the effective inner diameter of 18 can be smoothly conveyed. Incidentally, in the conventional screw conveyor shown in FIG.
It is possible to transport only up to the size of gravel m, which is calculated by subtracting this value and dividing this by 2. The operation mode of the above-mentioned excavator according to the present invention is as follows. For example, when excavating a gravel layer containing coarse gravel,
By rotating the excavator 4 , the face is excavated and the excavated earth and sand is stored in the face chamber 3. During excavation, a soil improver such as clay, bentonite, or CMC is added to the excavated soil through the injection hole 10, and is further mixed throughout the face chamber 3 under the action of the mixing blades 7 to improve plastic fluidity. It is made into mud that is impermeable and has a unit volume weight (1.6 to 2.0 t/m 2 ) that is approximately the same as that of the geological formation, and a water content ratio that is approximately the same as that of the earth. This mud fills the face chamber 3 and the outer cylinder 18 of the discharge device, and its earth pressure counteracts the earth pressure and water pressure of the face, thereby maintaining the face in a stable state during excavation. If coarse gravel is included in the mud, the gravel is removed from the conveyor outer cylinder by the rotation of the spiral rod 19.
8, but the movement is stopped at the rear end of the rod 19, that is, at the front end of the screw blade 20. In other words, the coarse gravel may be prevented from moving toward the screw conveyor by the screw blade 20, so open the lid 25 of the gravel outlet 24 and remove the stagnant gravel. It is. In addition, since the spiral rod 19 has a kneading function as well as a moving function, the portion of the rod 19 and the rod 19
At the joint between the screw blade 20 and the screw blade 20, no stagnation occurs except for the coarse gravel. That is, the mud from which gravel has been removed is discharged from the rear end discharge port 22 of the conveyor outer cylinder 18, as in the case of the conventional machine. 5 and 6 are side sectional views showing shield tunneling machines according to other embodiments of the present invention, and therefore, to avoid duplication of explanation, components different from those of the embodiment shown in FIG. 3 are shown. I will only explain about. Therefore, the same reference numerals as in FIG. 3 indicate the same members. This excavator consists of the one shown in Figure 3 and the excavator 4.
A rotating support structure, a kneading means provided integrally with the core excavation blade, and a kneading means housing the kneading means, and a face chamber 3.
The structure of the sediment chamber formed by communicating with each other is different. That is, the digging tool 4 has its rear surface attached to a rotary cylinder 82 which is supported by the partition wall 2 with a seal/bearing 11 via a connecting rod 81.
2, an annular reduction gear 13' provided on the rear surface is connected to a hydraulic motor 15 as a rotational drive source via a pinion gear 14.
It is connected to the. Next, on the coaxial rear side of the core cutting blade 6 which is fixed to the digging tool 4 and rotated together with it, there is a kneading tool having a spiral rod body extending rearward through the inside of the rotary cylinder 82. 71 is attached, and the rear end is
Bearing 12' on the rear wall of the earth and sand chamber 31 to be described later.
It is pivoted through. The kneading tool 71 is connected to the rotating cylindrical body 8.
By loosely inserting its tip tightly into the inner wall surface of the partition wall 2, the dirt chamber 31 is communicated with the face chamber 3 and protrudes from the rear of the partition wall 2, and the inside thereof is hollow. It is now possible to inject soil conditioners. The sediment chamber 31 is formed in a storage portion 32 whose rear end side bulges downward, and a sediment discharge device having the same configuration as that described in the previous embodiment is connected to this storage portion 32 through a gate 33. As described above, another example of the shield tunneling machine according to the present invention is constructed. Therefore, the operation of the shield excavator of the above-described example is such that after the excavated soil is mixed by the mixing blades 7, it is further conveyed from the soil chamber 31 to the storage section 32, while the helical rod is kneaded. The mixture is moved from the front to the rear while being mixed by the mixing tool 71. here,
Even if there is coarse gravel in the excavated soil, the kneading tool 71 in the soil chamber 31 does not have a through shaft on its central axis.
It is possible to encourage and promote the turning of excavated soil into mud while sending gravel backwards. Then, the mud containing gravel passes through the gate 33 from the storage section 32 of the sand chamber 31, and is transported rearward by the discharge device as in the previous embodiment, and the coarse gravel is taken out from the outlet 24, leaving only the mud. The soil is discharged to the outside from the soil discharge port 22 at the rear end of the conveyor outer cylinder. The present invention is as described above, and provides a discharge device for excavated soil of a shield excavator, in which a composite type transport body formed by a screw blade and a helical rod body connected in series to the shaft thereof is conveyed onto a single conveyor. Since the coarse gravel is housed in the outer cylinder and the outlet for the coarse gravel is provided in the outer cylinder where the rear end of the spiral rod-shaped body is located, the coarse gravel can be easily introduced into the discharge device even when the size is reduced. ,
Moreover, while the gravel can be conveyed through the device and taken out during the process, the coarse gravel cannot move toward the screw blade, so the gravel can be effectively removed. In addition, the discharge device itself may be as large as the conventional machine, and if the front half of the screw conveyor of the conventional machine is replaced with a spiral rod and gravel removal holes are provided in the outer cylinder, the present invention can be used. The invention also has economic benefits that can be obtained by making slight modifications to conventional machines.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来のシールド掘進機の概要を表わす
側断面図、第2図は第1図の―線断面拡大
図、第3図は本発明にかかるシールド掘削機の一
実施例の側断面図、第4図は第3図の―線断
面拡大図、第5図は本発明の実施例の側断面図、
第6図は正面図である。 1…シールド外筒、2…隔壁、3…切羽室、
…掘削具、5…掘削刃、6…芯抜掘削刃、7…練
混翼、8…回転軸、9…土質改良剤注入管、10
…注入孔、11,12…軸受、13…減速歯車、
14…ピニオンギア、15…油圧モータ、16…
スイベルジヨイント、17…排出装置、18…コ
ンベア外筒、19…螺旋棒体、20…スクリユー
羽根、21…スクリユー羽根軸、22…排出口、
23…駆動モータ、24…礫取出口、25…蓋、
26…シールドジヤツキ、27…セグメント。
Fig. 1 is a side sectional view showing an outline of a conventional shield excavator, Fig. 2 is an enlarged cross-sectional view taken along the line - - in Fig. 1, and Fig. 3 is a side sectional view of an embodiment of the shield excavator according to the present invention. , FIG. 4 is an enlarged cross-sectional view taken along the line - in FIG. 3, and FIG. 5 is a side sectional view of the embodiment of the present invention.
FIG. 6 is a front view. 1... Shield outer cylinder, 2... Partition wall, 3... Face chamber, 4
...Drilling tool, 5...Drilling blade, 6...Coring drilling blade, 7...Kneading blade, 8...Rotating shaft, 9...Soil conditioner injection pipe, 10
...Injection hole, 11, 12...Bearing, 13...Reduction gear,
14... Pinion gear, 15... Hydraulic motor, 16...
Swivel joint, 17 ...Discharge device, 18...Conveyor outer cylinder, 19...Spiral rod body, 20...Screw blade, 21...Screw blade shaft, 22...Discharge port,
23... Drive motor, 24... Gravel outlet, 25... Lid,
26...Shield jack, 27...Segment.

Claims (1)

【特許請求の範囲】 1 シールド外筒の前方を水密性の隔壁で仕切
り、その前方を切羽室となし、該切羽室の前面に
適宜の掘削刃を設けると共に、前記切羽室に連通
されかつ前記シールド外筒の後方へ向け配設され
た掘削土の排出装置を具備したシールド掘進機に
おいて、前記切羽室に連通されたコンベア筒体の
内部に、前方が螺旋棒体を以て、また後方がスク
リユー羽根で形成される複合形の搬送体を、回転
可能にして直列的に収装すると共に、前記螺旋棒
体の後端部が位置するコンベア筒体の壁面に開閉
自在の礫取出口を形成してなる排出装置を設けた
ことを特徴とするシールド掘進機。 2 上記掘削土の排出装置において、コンベア外
筒は、その前方側を略水平にして土砂室に形成す
ると共に、該土砂室後端に落差を付けて後方に向
つて立上り傾斜を付した後端側を接続して成る一
方、前記土砂室には、前端が芯抜掘削刃の軸に接
続された螺旋棒体を回転可能にして収装すると共
に、前記外筒の後方傾斜部には、前半部が螺旋棒
体、後半部がスクリユー羽根から成る複合型搬送
を収装して成ることを特徴とする前記特許請求の
範囲第1項記載のシールド掘進機。
[Scope of Claims] 1. The front of the shield outer cylinder is partitioned by a watertight partition wall, the front of the shield is defined as a face chamber, an appropriate excavation blade is provided on the front surface of the face chamber, and the shield is connected to the face chamber and is connected to the face chamber. In a shield excavator equipped with an excavated soil discharge device disposed toward the rear of the shield outer cylinder, a conveyor cylinder communicating with the face chamber has a helical rod at the front and a screw blade at the rear. A composite type of conveyor formed by the above is rotatable and stored in series, and a gravel outlet that can be opened and closed is formed on the wall surface of the conveyor cylinder where the rear end of the spiral rod is located. A shield excavator characterized by being equipped with a discharge device. 2 In the above-mentioned excavated soil discharge device, the conveyor outer cylinder is formed into a sand chamber with its front side substantially horizontal, and has a rear end that is inclined upwardly toward the rear with a drop at the rear end of the sand chamber. On the other hand, the earth and sand chamber rotatably accommodates a helical rod whose front end is connected to the axis of a cored excavator blade, and the rear inclined part of the outer cylinder has a front half connected 2. The shield excavator according to claim 1, wherein the shield excavator is equipped with a composite conveyor in which a portion comprises a helical rod and a rear portion comprises a screw blade.
JP8287181A 1981-05-29 1981-05-29 Shield drilling machine Granted JPS57197397A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8287181A JPS57197397A (en) 1981-05-29 1981-05-29 Shield drilling machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8287181A JPS57197397A (en) 1981-05-29 1981-05-29 Shield drilling machine

Publications (2)

Publication Number Publication Date
JPS57197397A JPS57197397A (en) 1982-12-03
JPS6130119B2 true JPS6130119B2 (en) 1986-07-11

Family

ID=13786356

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8287181A Granted JPS57197397A (en) 1981-05-29 1981-05-29 Shield drilling machine

Country Status (1)

Country Link
JP (1) JPS57197397A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58194291U (en) * 1982-02-18 1983-12-24 石川島播磨重工業株式会社 Screw conveyor of shield excavator
FI115393B (en) * 2002-03-28 2005-04-29 Abb Oy System and method for braking the propulsion unit motor

Also Published As

Publication number Publication date
JPS57197397A (en) 1982-12-03

Similar Documents

Publication Publication Date Title
JPS6130119B2 (en)
JPS58101997A (en) Method and apparatus for constructing traverse pit in underground
JP2528995Y2 (en) Pipe renewal shield machine
JPH0354240Y2 (en)
JP2815779B2 (en) Rectangular mud shield excavator
JPS6214230Y2 (en)
JP3509768B2 (en) Excavator
JP2815780B2 (en) Rectangular shield excavator
JPH0150758B2 (en)
JP4450891B2 (en) Underground excavator
JP3106142B2 (en) Semi-shield excavator
JPS6126474Y2 (en)
JPH0144633Y2 (en)
JP3423772B2 (en) Shaft excavation apparatus, shaft excavation method and shaft
JPS6130118B2 (en)
JPH09195682A (en) Different diameter and different shape shield
JP2548078B2 (en) Lateral hole drilling method and tube member and tube body used in the method
JPH0150757B2 (en)
JP2815783B2 (en) Rectangular shield excavator
JPH07252992A (en) Shield excavator
JPS6340554Y2 (en)
JPS6133119Y2 (en)
JPH0468195A (en) Excavator having right and left swivel type carrying paddle screw
JPS628600B2 (en)
JPS59131000A (en) Shield excavator