JPS6130022B2 - - Google Patents

Info

Publication number
JPS6130022B2
JPS6130022B2 JP57161350A JP16135082A JPS6130022B2 JP S6130022 B2 JPS6130022 B2 JP S6130022B2 JP 57161350 A JP57161350 A JP 57161350A JP 16135082 A JP16135082 A JP 16135082A JP S6130022 B2 JPS6130022 B2 JP S6130022B2
Authority
JP
Japan
Prior art keywords
steel plate
furnace temperature
furnace
inhibitor
plating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57161350A
Other languages
Japanese (ja)
Other versions
JPS5950161A (en
Inventor
Kazu Igarashi
Kuniaki Sato
Yasuhisa Nakajima
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP57161350A priority Critical patent/JPS5950161A/en
Publication of JPS5950161A publication Critical patent/JPS5950161A/en
Publication of JPS6130022B2 publication Critical patent/JPS6130022B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/003Apparatus
    • C23C2/0038Apparatus characterised by the pre-treatment chambers located immediately upstream of the bath or occurring locally before the dipping process
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • C23C2/022Pretreatment of the material to be coated, e.g. for coating on selected surface areas by heating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • C23C2/024Pretreatment of the material to be coated, e.g. for coating on selected surface areas by cleaning or etching

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、片面めつき鋼板の製造方法に係り、
特に所謂阻止剤方式と称せられる片面めつき鋼板
の製造方法に関するものである。 本発明に関する阻止剤方式と称される片面めつ
き鋼板の製造方法を片面亜鉛めつき鋼板の場合を
例にとり説明する。第1図に阻止剤方式片面亜鉛
めつきラインの全体図を示す。図において、1は
鋼板、2はペイオフリール、3,13,17はル
ーパー、4はクリーニング、5はめつき阻止剤を
鋼板1に塗布するロールコーター、6は予備乾燥
炉、7は焼鈍炉、8はシンクロール、9は亜鉛ポ
ツト、10はワイパー、11はクーリング装置、
12は阻止層除去装置、14はスキンパスミル、
15はテンシヨンレベラー、16は化成処理装
置、18はテンシヨンリールである。 ペイオフルール2から巻き戻された鋼板1は、
クリーニング4で表面を清浄にされた後、ロール
コーター5で片面表面にのみめつき阻止剤が塗布
される。めつき阻止剤は通常水ガラスを主成分と
した無機質の液体が用いられていて、この阻止剤
が塗布された鋼板1は予備乾燥炉6で阻止剤中の
水分が除去され、続いて焼鈍炉7で900℃近い温
度に加熱され、鋼板1の阻止剤が塗布した面の全
域にめつき阻止層がガラス状に焼き付けられる。
一方、鋼板素材も同時に加熱され、熱処理され
る。この後鋼板1は亜鉛ポツト9中に浸漬され阻
止剤を塗布してない側の面に亜鉛めつきが施され
る。ワイパー10では亜鉛めつき面の亜鉛の付着
量が適正値に調整されるとともに、めつき阻止剤
が焼き付けられた側の面では鋼板1のめつき阻止
層に付着した亜鉛は火災、噴射ガス等により払い
落とされる。 冷却された、片面が亜鉛、他面がめつき阻止剤
の塗布、焼成された鋼板1の一方の面に焼き付け
られて形成されためつき阻止層は阻止層除去装置
12によつて除去される。これにより鋼板1は片
面亜鉛めつき鋼板となる。阻止層除去装置12
は、通常ベンデイングロール(図示せず)および
ブラシロール(図示せず)で構成され、ガラス状
に焼成されためつき阻止層をベンデイングロール
で折り曲げ、鋼板1の表面より剥離させると共
に、ブラシロールで払い落して除去するよう構成
されている。以後スキンパスミル14で指定の表
面粗度を与え、テンシヨンレベラー15で鋼板1
のLぞり、Cぞり等の形状不良を矯正し、化成処
理装置16で必要な薬品処理を施した後、テンシ
ヨンリール18で巻き取る。 以上説明したような工程により片面亜鉛めつき
鋼板は製造されるが、この工程の焼鈍炉7での鋼
板の加熱温度のいかんによつては、亜鉛ポツト9
を通過した鋼板1の阻止剤を焼き付けた側の面に
亜鉛が付着したまま残存したり、阻止層そのもの
が阻止層除去装置12で完全に剥離されずに残つ
たりするおそれがある。 このめつき阻止剤塗布、焼き付け面に亜鉛や阻
止層が残ると製品としては不良品であることは勿
論であるが、ライン操業中に少しでもめつき阻止
層が残ると、阻止層除去装置12以降の設備、例
えばルーパー13,17のロール、またはスキン
パスミル14、テンシヨンレベラー15のロール
にめつき阻止層が付着し、後続する鋼板1にキズ
が入る原因となるため直ちにラインを停止し、ロ
ールを全部点険する必要が生じる。この点険作業
には多くの人員と長時間を要すると共に、亜鉛め
つき鋼板、特に片面亜鉛めつき鋼板を製造する場
合、鋼板は適正な温度で熱処理する必要があるの
で、焼鈍炉7の炉況が安定するまでに生産された
鋼板1は製品とならず、良品の歩留りに大きな影
響を及ぼすことになるため、ラインを停止するこ
とは生産性を著しく低下させる。また鋼板を炉内
に停止した状態で加熱することも鋼板の炉内破断
が生じることから採用しがたい。 従つてラインの運転開始に当つては通板材と呼
ばれるめつき阻止剤を塗布しない鋼板を所定の速
度で通過させながら焼鈍炉7の炉温を高める燃料
ガス等の供給量を調節し、めつき阻止剤を鋼板表
面に焼き付けする所定の焼付炉温すなわち目標炉
温に達した時点でめつき阻止剤の塗布を開始する
ようにしている。ところが目標炉温に達した時点
で塗布を開始すると、従来の方法では塗布開始直
後の鋼板1上のめつき阻止層が剥離されずに残る
現象が多発した。この状況を図面によつて説明
す。第2図は片面亜鉛めつき鋼板を製造する場合
の従来の操業モデル図(タイムチヤート)であ
る。 第2図において、19は燃料ガス量の推移、2
0は炉温の推移、21はめつき阻止剤を塗布した
鋼板が焼鈍炉7に進入を開始する時点を示す。燃
料ガスの増加とともに炉温が上昇し、所定の焼付
温に達する。ところが、めつき阻止剤を塗布した
鋼板が焼鈍炉7中に進入すると、その直後の炉温
は第2図のA部に示すように急激に低下する。従
つて、焼付炉温を維持するためには燃料ガスを増
加させる必要がある。しかし、この急激な炉温低
下により炉温が所定の焼付炉温に回復するまでに
通過した鋼板1にはめつき阻止層残りが発生する
ことが判明した。 本発明は係る問題を解決するためになされたも
のであり、その目的とするところは、品質の優れ
た片面めつき鋼板を効率よく製造することができ
る方法を提供することにある。 本発明は、鋼板の片面にめつき阻止剤を塗布し
た後焼鈍炉を通過させ、この炉中で所定の焼付炉
温にてめつき阻止剤を鋼板表面に焼き付けし、次
いでこの鋼板を溶融めつき槽に浸漬する工程を含
む片面めつき鋼板の製造方法において、前記めつ
き阻止剤が塗布された鋼板が前記焼鈍炉に進入を
開始する前に当該焼鈍炉の炉温を予め定常焼き付
け作業時における所定の焼付炉温よりもめつき阻
止剤の塗布された鋼板が進入することによる炉温
の低下量を捕填するだけ高くしておくことによつ
て、上記目的を達成するものである。 以上本発明を図に基づき説明する。 第3図は片面亜鉛めつき鋼板を製造する場合の
本発明の操業モデル図である。第3図において、
19′は燃料ガス量の推移、20′は炉温の推移を
示す。19,20はそれぞれ第2図に示した片面
亜鉛めつき鋼板を製造する場合の従来の燃料ガス
量、炉温の推移である。 第3図に示すように、ライン運転開始と同時に
燃料ガスを増加し、炉温を高めていくが、本発明
においてはめつき阻止剤を塗布した鋼板が焼鈍炉
7に進入を開始する時点21には炉温t21を定常
の焼き付け作業時の所定の焼付炉温tNよりもめ
つき阻止剤の塗布された鋼板が進入することによ
る炉温の低下量を捕填するだけ予め高くしてお
く。これによつて、めつき阻止剤の塗布された鋼
板が進入することにより炉温が低下するが、この
炉温低下によつて所定の焼付炉温tNとなるた
め、鋼板は焼付開始時点から所定の焼付炉温tN
で焼き付けされることになり、従来のような炉温
低下によるめつき阻止剤残りは発生しなくなる。
本実施例ではt21とtNの差はめつき阻止剤の塗布
による鋼板の吸熱量の増加分に相当するが、鋼板
を焼鈍炉に進入させずに炉温を高め、その後、め
つき阻止剤を塗布した鋼板を一気に進入させる場
合にはt21とtNの差は、めつき阻止剤の塗布され
た鋼板全体の吸熱量の増加分に相当する。この場
合鋼板の寸法や焼鈍炉の種類にもよるが概ね20℃
未満の炉温上昇ではめつき阻止層残りが生じ、ま
た、60℃超では高過ぎ、やはりめつき阻止層は剥
離し難くなる傾向があり、さらに焼鈍される鋼板
素材にも悪影響を及ぼすおそれがあるので、t21
は焼付炉温tNプラス20〜60℃位が望ましく、さ
らに好ましく約40℃焼付炉温より高くすることが
良好な結果を得ることを知見した。このようにめ
つき阻止剤が塗布されると、鋼板面の放射率
(ε)が小から大に大きく変化するので、鋼板の
吸熱量が変化する。従つて炉温を予め焼付炉温よ
りやや高めにすることによつて設定すべき焼付炉
温に対する実際の焼付炉温の変動を小さくできる
ようになり、亜鉛めつき後の鋼板表面にめつき阻
止層の剥離残りが発生する問題が解消される。 さらに、めつきされる鋼板の巾が1000mm程度で
あれば、めつき阻止剤が塗布された鋼板が焼鈍炉
に進入を開始する前に最適炉温、例えば焼付炉温
プラス約40℃の温度に保つようにすると、めつき
阻止層の剥離残りが発生することはないことが確
認できたが、鋼板巾が1400〜1500mmと広くなると
鋼板の吸熱量が増加し、めつき阻止剤の塗布され
た鋼板が焼鈍炉に進入を開始する時の炉温落ち込
み量が大きくなり、めつき阻止剤残りを生じる温
度の下限限界を越える場合があることがわかつ
た。 この現象は従来の炉温制御すべき炉温に対して
実際の炉温が高い場合は燃料をしぼり、逆に低い
場合は燃料制御バルブを開く制御を行つているた
めに、炉温を検知してから燃料が減少または増加
するまでに時間おくれが生じ、大きな炉温変化に
素速く対応することに無理があるために生じたも
のである。 そこで、この種のタイプの焼鈍炉では、本発明
者等はめつき阻止剤が塗布された鋼板が焼鈍炉に
進入を開始する時刻の2〜3分前に予め燃料ガス
量を増量しておくことが有効であることを、さら
に実験により確かめた。この制御を行なうため
に、従来の炉温を検知してからのフイードバツク
方式では間に合わないため、予め鋼板寸法とライ
ンスピードから算出される必要熱量に合わせて投
入熱料を調節するフイードフオワード方式とする
のが好ましい。阻止剤が塗布された鋼板が焼鈍炉
に進入を開始する時刻の2〜3分前に燃料制御を
1度だけ手動操作を行なうことによつてこの操作
を容易に実施することができた。 このように阻止剤が塗布された鋼板面の放射率
(ε)が小から大に大きく変化する場合、鋼板の
吸熱量の変化分を見込んで予め炉温を高めておく
こと、および、燃料増加の制御を開始しておくこ
とにより、設定すべき焼付炉温に対する実際の焼
付炉温の変動を小さくできるようになり、亜鉛め
つき後の鋼板表面にめつき阻止層の剥離残りが発
生する問題を解消することができた。これによ
り、生産性の向上、歩留りの向上に多大の寄与を
するようになつた。 なお、本発明は片面亜鉛めつき鋼板の製造に限
らずめつき阻止剤方式を採用する片面めつき鋼板
例えば片面ニツケルめつき鋼板等の片面めつき鋼
版に採用できる。
The present invention relates to a method for manufacturing a single-sided plated steel plate,
In particular, the present invention relates to a method for producing a single-sided plated steel sheet, which is called the so-called inhibitor method. The method for producing a single-sided galvanized steel sheet, which is referred to as the inhibitor method, according to the present invention will be explained by taking the case of a single-sided galvanized steel sheet as an example. Figure 1 shows an overall diagram of the inhibitor type single-sided galvanizing line. In the figure, 1 is a steel plate, 2 is a payoff reel, 3, 13, and 17 are loopers, 4 is a cleaning unit, 5 is a roll coater that applies an anti-plating agent to the steel plate 1, 6 is a pre-drying oven, 7 is an annealing oven, and 8 is a sink roll, 9 is a zinc pot, 10 is a wiper, 11 is a cooling device,
12 is a blocking layer removal device, 14 is a skin pass mill,
15 is a tension leveler, 16 is a chemical conversion treatment device, and 18 is a tension reel. Steel plate 1 rewound from payoff rule 2 is
After the surface is cleaned by cleaning 4, a glare inhibiting agent is applied to one side of the surface by roll coater 5. The plating inhibitor is usually an inorganic liquid mainly composed of water glass, and the steel plate 1 coated with this inhibitor is subjected to a pre-drying furnace 6 to remove moisture in the inhibitor, and then to an annealing furnace. In step 7, the steel plate 1 is heated to a temperature close to 900°C, and a plating prevention layer is baked into a glass-like shape over the entire surface of the steel plate 1 coated with the inhibitor.
Meanwhile, the steel sheet material is also heated and heat treated at the same time. After this, the steel plate 1 is immersed in a zinc pot 9 and galvanized on the side not coated with the inhibitor. In the wiper 10, the amount of zinc deposited on the galvanized surface is adjusted to an appropriate value, and on the side where the galvanizing agent is baked, the zinc deposited on the galvanizing layer of the steel plate 1 is protected against fire, jet gas, etc. be brushed off by. The anti-glaze layer formed by baking on one side of the cooled steel plate 1, coated with zinc on one side and anti-glare agent on the other side, is removed by a blocking layer removing device 12. As a result, the steel plate 1 becomes a single-sided galvanized steel plate. Blocking layer removal device 12
Usually consists of a bending roll (not shown) and a brush roll (not shown). It is designed to be removed by brushing it off. Thereafter, a skin pass mill 14 is used to give the specified surface roughness, and a tension leveler 15 is used to cut the steel plate 1.
After correcting shape defects such as L-curving and C-curving, and performing necessary chemical treatment in the chemical conversion treatment device 16, the sheet is wound up with a tension reel 18. A single-sided galvanized steel sheet is manufactured through the process described above, but depending on the heating temperature of the steel sheet in the annealing furnace 7 in this process, the zinc pot 9
There is a risk that zinc may remain attached to the side of the steel plate 1 that has passed through the process and on which the blocking agent has been baked, or that the blocking layer itself may not be completely removed by the blocking layer removing device 12 and may remain. It goes without saying that if zinc or a blocking layer remains on the surface where the plating inhibitor is applied or baked, the product is defective, but if even a small amount of the plating blocking layer remains during line operation, the blocking layer removing device 12 The plating prevention layer will adhere to the subsequent equipment, such as the rolls of the loopers 13 and 17, or the rolls of the skin pass mill 14 and tension leveler 15, which will cause scratches on the subsequent steel plate 1, so immediately stop the line. You will need to score all of your rolls. This dangerous work requires many people and a long time, and when manufacturing galvanized steel sheets, especially single-sided galvanized steel sheets, the steel sheets must be heat-treated at an appropriate temperature. The steel plates 1 produced before the situation stabilizes will not become products, which will have a significant impact on the yield of non-defective products, so stopping the line will significantly reduce productivity. Furthermore, it is difficult to heat the steel plate while it is stopped in the furnace because the steel plate may break in the furnace. Therefore, when starting the operation of the line, the amount of fuel gas etc. supplied to raise the furnace temperature of the annealing furnace 7 is adjusted while passing the steel plate, which is not coated with a galvanizing agent, at a predetermined speed. Application of the plating inhibitor is started when a predetermined baking furnace temperature for baking the inhibitor onto the surface of the steel sheet, that is, a target furnace temperature is reached. However, when coating is started when the target furnace temperature is reached, in the conventional method, there are many cases where the plating prevention layer remains on the steel plate 1 immediately after coating starts without being peeled off. This situation will be explained using drawings. FIG. 2 is a conventional operational model diagram (time chart) for manufacturing single-sided galvanized steel sheets. In Fig. 2, 19 is the change in fuel gas amount, 2
0 indicates the transition of the furnace temperature, and 21 indicates the point in time when the steel plate coated with the anti-plating agent starts to enter the annealing furnace 7. As the fuel gas increases, the furnace temperature rises and reaches a predetermined baking temperature. However, when the steel plate coated with the plating inhibitor enters the annealing furnace 7, the furnace temperature immediately drops rapidly as shown in section A of FIG. Therefore, in order to maintain the firing furnace temperature, it is necessary to increase the amount of fuel gas. However, it has been found that due to this rapid decrease in furnace temperature, a sticking prevention layer remains on the steel plate 1 that has passed through the furnace until the furnace temperature recovers to a predetermined baking furnace temperature. The present invention has been made to solve this problem, and its purpose is to provide a method that can efficiently produce single-sided plated steel sheets of excellent quality. The present invention involves applying a plating inhibitor to one side of a steel sheet, passing it through an annealing furnace, baking the plating inhibitor onto the surface of the steel sheet at a predetermined baking furnace temperature, and then melting the steel sheet. In a method for manufacturing a single-sided galvanized steel sheet including a step of immersing the steel plate in a plating tank, before the steel plate coated with the plating inhibitor starts entering the annealing furnace, the furnace temperature of the annealing furnace is adjusted in advance during a regular baking operation. The above object is achieved by setting the baking furnace temperature higher than the predetermined baking furnace temperature by enough to compensate for the decrease in furnace temperature caused by the entry of the steel plate coated with the plating inhibitor. The present invention will be described above based on the drawings. FIG. 3 is an operational model diagram of the present invention when producing a single-sided galvanized steel sheet. In Figure 3,
19' indicates the change in fuel gas amount, and 20' indicates the change in furnace temperature. 19 and 20 show the changes in the conventional fuel gas amount and furnace temperature when producing the single-sided galvanized steel sheet shown in FIG. 2, respectively. As shown in FIG. 3, the fuel gas is increased at the same time as the line operation starts and the furnace temperature is raised, but in the present invention, at time 21 when the steel plate coated with the anti-plating agent starts to enter the annealing furnace 7. The furnace temperature t 21 is set in advance to be higher than the predetermined baking furnace temperature t N during regular baking operations by an amount sufficient to compensate for the decrease in the furnace temperature due to the entry of the steel plate coated with the anti-plating agent. As a result, the steel plate coated with the plating inhibitor enters and the furnace temperature decreases, but this decrease in furnace temperature brings the baking furnace temperature tN to the prescribed baking furnace temperature, so the steel plate is Predetermined baking furnace temperature t N
As a result, the plating inhibitor is no longer left behind due to a decrease in furnace temperature, which is the case with conventional methods.
In this example, the difference between t 21 and t N corresponds to the increase in the amount of heat absorbed by the steel sheet due to the application of the plating inhibitor. When the steel plate coated with plating inhibitor is introduced all at once, the difference between t 21 and t N corresponds to the increase in the amount of heat absorbed by the entire steel plate coated with the plating inhibitor. In this case, it depends on the dimensions of the steel plate and the type of annealing furnace, but it is approximately 20℃.
If the furnace temperature rises below 60°C, the plating prevention layer will remain, and if it exceeds 60°C, it will be too high and the plating prevention layer will tend to be difficult to peel off. Furthermore, there is a risk that it will have a negative effect on the steel sheet material being annealed. Since there is t 21
It has been found that a baking oven temperature t N plus about 20 to 60° C. is desirable, and more preferably a baking oven temperature higher than about 40° C. gives good results. When the plating inhibitor is applied in this way, the emissivity (ε) of the steel plate surface changes greatly from small to large, and therefore the amount of heat absorbed by the steel plate changes. Therefore, by setting the furnace temperature slightly higher than the baking furnace temperature in advance, it is possible to reduce the variation in the actual baking furnace temperature with respect to the baking furnace temperature that should be set, thereby preventing galvanizing on the surface of the steel sheet after galvanizing. This solves the problem of remaining layers remaining after peeling. Furthermore, if the width of the steel plate to be plated is approximately 1000 mm, the steel plate coated with the galvanizing agent must be heated to the optimum furnace temperature, for example, the baking furnace temperature plus approximately 40°C, before entering the annealing furnace. It was confirmed that no residual peeling of the plating-preventing layer would occur if the plating-preventing layer was maintained, but as the steel sheet width increased to 1,400 to 1,500 mm, the amount of heat absorbed by the steel sheet increased and the plating-preventing layer was coated with It has been found that the amount of furnace temperature drop when the steel plate starts entering the annealing furnace becomes large, and the lower limit of the temperature at which plating inhibitor remains is sometimes exceeded. This phenomenon is caused by conventional furnace temperature control, in which when the actual furnace temperature is higher than the actual furnace temperature, the fuel is throttled, and when the actual furnace temperature is lower, the fuel control valve is opened. This is because there is a time lag between when the fuel is reduced or increased, making it difficult to quickly respond to large changes in furnace temperature. Therefore, in this type of annealing furnace, the inventors recommend that the amount of fuel gas be increased in advance 2 to 3 minutes before the steel plate coated with the galling inhibitor starts entering the annealing furnace. We further confirmed through experiments that it is effective. In order to perform this control, the conventional feedback method that detects the furnace temperature is not sufficient, so a feed-back method that adjusts the input heat charge according to the required amount of heat calculated in advance from the steel plate dimensions and line speed is used. It is preferable that This operation was easily accomplished by performing a one-time manual operation of the fuel control, 2 to 3 minutes before the time when the steel plate coated with the inhibitor began to enter the annealing furnace. If the emissivity (ε) of the steel plate surface coated with an inhibitor changes greatly from small to large, it is necessary to increase the furnace temperature in advance to account for the change in the amount of heat absorbed by the steel plate, and increase the fuel consumption. By starting the control in advance, it is possible to reduce fluctuations in the actual baking oven temperature relative to the baking oven temperature that should be set. was able to resolve it. This has greatly contributed to improving productivity and yield. The present invention is not limited to the manufacture of single-sided galvanized steel sheets, but can be applied to single-sided galvanized steel plates that employ a plating inhibitor method, such as single-sided nickel-plated steel plates.

【表】 上記条件で片面亜鉛めつき鋼板を製造したが、
表裏両面とも美麗な片面亜鉛めつき鋼版が得られ
た。
[Table] A single-sided galvanized steel sheet was manufactured under the above conditions.
A beautiful single-sided galvanized steel plate was obtained on both the front and back sides.

【表】 第2表に示す除件で阻止剤方式片面亜鉛めつき
鋼板を製造したが、鋼板めつき阻止剤塗布面側約
20mに亜鉛付着が発生し、この部分は阻止層が剥
離しなかつた。
[Table] A steel plate galvanized on one side using an inhibitor method was manufactured under the exclusion conditions shown in Table 2.
Zinc adhesion occurred in a 20 m area, and the blocking layer was not peeled off in this area.

【表】 第3表に示す条件で片面亜鉛めつき鋼板を製造
したところ、表裏両面とも美麗な片面亜鉛めつき
鋼板が得られた。 なお本実施例ではめつき阻止剤を塗布した部分
が進入を開始する2分前に炉内に供期されるガス
(Cガス)量を1000Nm3/Hrから1400Nm3/Hrに
増量した。
[Table] When a single-sided galvanized steel plate was manufactured under the conditions shown in Table 3, a beautiful single-sided galvanized steel plate was obtained on both the front and back sides. In this example, the amount of gas (C gas) supplied into the furnace 2 minutes before the part coated with the plating inhibitor started to enter was increased from 1000 Nm 3 /Hr to 1400 Nm 3 /Hr.

【表】 第4表に示す条件で阻止剤方式片面亜鉛めつき
鋼板を製造したが、鋼板のめつき阻止剤を塗布し
た両側に約30mにわたつて亜鉛付着が発生し、こ
の部分はめつき阻止層も剥離しなかつた。
[Table] A steel plate galvanized on one side using the inhibitor method was manufactured under the conditions shown in Table 4, but zinc adhesion occurred for about 30 m on both sides of the steel plate where the galvanizing inhibitor was applied, and this area was prevented from galvanizing. The layers did not peel off either.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は阻止剤方式片面亜鉛めつきラインの系
統図、第2図は従来の操業モデル図、第3図は本
発明の操業モデル図である。 1……鋼板、2……ペイオフリール、3……ル
ーパー、4……クリーニング、5……ロールコー
ター、6……予備乾燥炉、7……焼鈍炉、8……
シンクロール、9……亜鉛ポツト、10……ワイ
パー、11……クーリング装置、12……阻止層
除去装置、13……ルーパー、14……スキンパ
スミル、15……テンシヨンレベラ、16……化
成処理装置、17……ルーパー、18……テンシ
ヨンリール、19……燃料ガス量の推移、20…
…炉温の推移、21……阻止剤塗布開始時点。
FIG. 1 is a system diagram of an inhibitor type single-sided galvanizing line, FIG. 2 is a conventional operational model diagram, and FIG. 3 is an operational model diagram of the present invention. 1... Steel plate, 2... Payoff reel, 3... Looper, 4... Cleaning, 5... Roll coater, 6... Pre-drying furnace, 7... Annealing furnace, 8...
sink roll, 9... zinc pot, 10... wiper, 11... cooling device, 12... blocking layer removal device, 13... looper, 14... skin pass mill, 15... tension leveler, 16... chemical formation Processing device, 17... Looper, 18... Tension reel, 19... Change in fuel gas amount, 20...
...Furnace temperature transition, 21...Start of inhibitor application.

Claims (1)

【特許請求の範囲】 1 鋼板の片面にめつき阻止剤を塗布した後焼鈍
炉を通過させ、この炉中で所定の焼付炉温にてめ
つき阻止剤を鋼板表面に焼き付けし、次いでこの
鋼板を溶融めつき槽に浸漬する工程を含む片面め
つき鋼板の製造方法において、前記めつき阻止剤
が塗布された鋼板が前記焼鈍炉に進入を開始する
前に当該焼鈍炉の炉温を予め定常の焼き付け作業
時における所定の焼付炉温よりもめつき阻止剤の
塗布された鋼板が進入することによる炉温の低下
量を捕填するだけ高くしておくことを特徴とする
片面めつき鋼板の製造方法。 2 前記めつき阻止剤が塗布された鋼板が進入を
開始する前の前記焼鈍炉の炉温を予め定常焼き付
け作業時の焼付炉温よりも20℃〜60℃高くしてお
くことを特徴とする特許請求の範囲第1項記載の
片面めつき鋼板の製造方法。
[Scope of Claims] 1. After applying a plating inhibitor to one side of a steel plate, the steel plate is passed through an annealing furnace, in which the plating inhibitor is baked onto the surface of the steel plate at a predetermined baking furnace temperature, and then the steel plate is In the method for producing a single-sided galvanized steel sheet, the method includes the step of immersing the steel plate in a hot-dip galvanizing tank, before the steel plate coated with the plating inhibitor starts entering the annealing furnace, the furnace temperature of the annealing furnace is kept at a steady state in advance. Manufacture of a single-sided plated steel sheet, characterized in that the furnace temperature is kept higher than the predetermined baking furnace temperature during baking work to compensate for the decrease in furnace temperature due to the entry of the steel plate coated with a plating inhibitor. Method. 2. The furnace temperature of the annealing furnace before the steel plate coated with the plating inhibitor starts to enter the annealing furnace is set to be 20°C to 60°C higher than the baking furnace temperature during the regular baking operation. A method for manufacturing a single-sided plated steel sheet according to claim 1.
JP57161350A 1982-09-16 1982-09-16 Manufacture of one-side hot-dipped steel plate Granted JPS5950161A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57161350A JPS5950161A (en) 1982-09-16 1982-09-16 Manufacture of one-side hot-dipped steel plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57161350A JPS5950161A (en) 1982-09-16 1982-09-16 Manufacture of one-side hot-dipped steel plate

Publications (2)

Publication Number Publication Date
JPS5950161A JPS5950161A (en) 1984-03-23
JPS6130022B2 true JPS6130022B2 (en) 1986-07-10

Family

ID=15733408

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57161350A Granted JPS5950161A (en) 1982-09-16 1982-09-16 Manufacture of one-side hot-dipped steel plate

Country Status (1)

Country Link
JP (1) JPS5950161A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61147210U (en) * 1985-03-06 1986-09-11
JPH0363516U (en) * 1989-10-20 1991-06-20

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2721620B1 (en) * 1994-06-22 1996-08-23 Maubeuge Fer Method and device for annealing a metal strip and improving continuous hot-dip galvanizing lines using it.

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61147210U (en) * 1985-03-06 1986-09-11
JPH0363516U (en) * 1989-10-20 1991-06-20

Also Published As

Publication number Publication date
JPS5950161A (en) 1984-03-23

Similar Documents

Publication Publication Date Title
JPS6130022B2 (en)
JPS5914541B2 (en) Alloying treatment method for galvanized steel sheets
US4477491A (en) One-side zinc hot dipping process using an anti-plating agent
BRPI0607715B1 (en) "HOT LAMINATED STEEL STRIP PRODUCTION EQUIPMENT HOT DIP COATING".
US2142869A (en) Treatment of nickel-chromium alloys
JPS5944367B2 (en) Water quenching continuous annealing method
KR100526135B1 (en) Method for improving surface quality of hot dip galvanized steel sheet
EP0077473B1 (en) Method for producing one-side zinc hot dipped steel sheets
JPS6148568B2 (en)
JPH0233924Y2 (en)
JP2832100B2 (en) Manufacturing method of controlled cooling steel sheet
JPH0472019A (en) Method and apparatus for continuously annealing stainless steel strip
JPH10140311A (en) Method of hot dip plating for hot rolled steel sheet and hot dip plating equipment
JPS6350425B2 (en)
JPS6053760B2 (en) Manufacturing method of single-sided galvanized steel sheet
JPS62205262A (en) Manufacture of alloyed steel sheet
JPH09324249A (en) Hot dip metal plating device and production of hot dip metal plated hot rolled steel strip
JPH11106946A (en) Chromate treating method of galvanized steel sheet
JPS6274025A (en) Heat treatment for clad cold rolled steel strip
JPH0297655A (en) Method for smoothing surface of hot dip galvanized steel sheet
JPH06336663A (en) Continuous hot dip metal coating method of band steel
CN117463808A (en) Method for preventing bonding defect on surface of cold-rolled low-carbon steel plate
JPS62118905A (en) Treatment line for continuous hot dip zinc coating line of steel strip
JPS5861266A (en) Calcining method for plating inhibitor from steel plate applied with inhibitor on one side and zinc hot dipping on the other
JPS60194053A (en) Production of molten galvanized steel sheet