JPS6129874B2 - - Google Patents

Info

Publication number
JPS6129874B2
JPS6129874B2 JP8748880A JP8748880A JPS6129874B2 JP S6129874 B2 JPS6129874 B2 JP S6129874B2 JP 8748880 A JP8748880 A JP 8748880A JP 8748880 A JP8748880 A JP 8748880A JP S6129874 B2 JPS6129874 B2 JP S6129874B2
Authority
JP
Japan
Prior art keywords
weight
resin
polymer
adhesive
pvdf
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP8748880A
Other languages
Japanese (ja)
Other versions
JPS5712646A (en
Inventor
Kunizo Kito
Fujio Suzuki
Kazuo Kushida
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kureha Corp
Original Assignee
Kureha Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kureha Corp filed Critical Kureha Corp
Priority to JP8748880A priority Critical patent/JPS5712646A/en
Publication of JPS5712646A publication Critical patent/JPS5712646A/en
Publication of JPS6129874B2 publication Critical patent/JPS6129874B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Laminated Bodies (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は弗化ビニリデン系樹脂(以下PVDFと
略称する)と他の熱可塑性樹脂、特に塩化ビニル
系樹脂(以下PVCと略称する)、ポリカーボネー
ト系樹脂(以下PCと略称する)、アクリロニトリ
ル―ブタジエン―スチレン系樹脂(以下ABSと
略称する)又はポリエステル系樹脂(以下PEsと
略称する)との積層物に関する。 PVDFは優れた物性を有しながらも他の熱可塑
性樹脂との接着性に乏しい。ただ例外的にポリメ
タクリル酸メチルとは良く接着することが知られ
ている。しかしながらポリメタクリル酸メチルを
接着層とする積層物は衝撃強度が極めて低い欠点
を有する。 ところが本出願人は昭和53年特許願第161895号
においてPVDFとPVCとの接着剤としてメチルメ
タクリレート系重合体(以下PMMAと略称す
る)100重量部を幹重合体とし、弗化ビニリデン
重合体又は弗化ビニリデンを主成分とする共重合
体30〜500重量部をグラフト成分とするグラフト
重合体を提案している。 この接着剤を介したPVDFと他の熱可塑性樹脂
との積層物は上述したポリメタクリル酸メチルを
接着層とする積層物より衝撃強度に優れている
が、産業上利用するに当つて製造コストが高いと
いう欠点を有している。 本発明は上記従来技術の現状に鑑み、PVDFと
他の熱可塑性樹脂とをコスト的に実用性のある低
廉な接着剤を用いて接着し、且つ衝撃強度の優れ
た積層物を提供するとにある。 本発明者等はPVDFとPMMAとは両者のブレン
ド比によつては必らずしも相溶性が良いとは云い
難いが、上述グラフト共重合体とPMMAとは相
溶性が良く、かかる組成物からなる接着剤を用い
てPVDFと他の熱可塑性樹脂とを積層させた場
合、接着性に優れ、しかもある範囲の組成比にお
いては衝撃強度に優れ、更に低廉な接着剤となる
ことに着眼したものであり、本発明の要旨とする
ところは特許請求の範囲に示す通りである。 以下本発明を詳細に説明する。 本発明積層物においてPVDFと他の熱可塑性樹
脂との接着剤はグラフト共重合体とPMMAとか
らなる組成物である。 まず説明上グラフト共重合体の製造方法を概略
説明すると、塊状重合法、乳化重合法、懸濁重合
法、電子線照射重合法等公知の何れの方法を使用
してもよい。しかしグラフト効率の点からいつて
PMMAを水性媒体に懸濁させ、これに油溶性触
媒を含むグラフト成分を加えて加圧下にグラフト
重合させる懸濁重合法が望ましく、耐衝撃性に優
れている。 かかるグラフト共重合体の幹重合体を構成する
PMMAとはメチルメタクリレート単独重合体又
は少なくとも60重量%以上のメチルメタクリレー
トを含み、これと共重合し得る炭素数2〜5のア
ルキル基を含むアクリル酸エステル或はメタクリ
ル酸エステルとの共重合体又はこれらの少なくと
もいずれかを主とするポリブレンドである。この
重合体は例えば通常の懸濁重合によつて得られた
スラリーをそのまま使用してもよいし、また乳化
重合物を凝析物でもよい。 幹重合体であるPMMAにグラフトさせるグラ
フト成分としては弗化ビニリデン単独或は少なく
とも弗化ビニリデンの70重量%以上を含む共単量
体又はこれらの混合物であり、コモノマーの相手
としては好ましくは弗化ビニル、6弗化プロピレ
ン、4弗化エチレン又は3弗化塩化エチレン等の
1種以上が使用される。 幹重合体であるPMMAと枝重合体であるPVDF
との割合はPMMV100重量部に対しPVDF30〜500
重量部の範囲である。これよりPVDFが少ない場
合は該グラフト共重合体そのものを接着剤組成物
中の本発明範囲内で多くしても衝撃強度が低いた
めであり、逆に多過ぎるとPVDFと共に積層され
る熱可塑性樹脂との相溶性を失なうためである。 本発明積層物の接着剤において前記グラフト共
重合体を5〜99重量%望ましくは10〜60重量%
と、PMMAを1〜95重量%望ましくは40〜90重
量%とすることにより、PVDFと他の熱可塑性樹
脂とが極めて良く接着した積層物が得られ、
PMMAのみを接着剤とした積層物に較べ優れた
耐衝撃性を示す。 特に枝重合体が接着剤樹脂組成物中2〜60重量
%、より望ましくは5〜50重量%である場合には
より一層優れた耐衝撃性が得られる。 他方接着剤をグラフト共重合体と共に構成する
PMMAはグラフト共重合体の幹重合体と同一範
囲のものが用いられ、この他少量の添加物、例え
ば紫外線吸収剤、顔料、無機物、熱安定剤等を含
んでいても良い。 上記接着性樹脂組成物で接着されるPVDFとは
弗化ビニリデンホモポリマー若しくは弗化ビニリ
デンを50モル%以上とする共重合体又はこれらの
なくともいずれかを50重量%以上とする組成物で
ある。尚共重合体としては例えば弗化ビニル、4
弗化エチレン、6弗化プロピレン又は3弗化塩化
エチレン等との共重合合体が好ましく用いられ
る。 他方、上記接着性組成物を介しPVDFと積層さ
れる樹脂としてはPVDF以外の熱可塑性樹脂が用
いられ、特にPVC,PC,ABS,PEsに対し良好
な接着が得られる。ここでPVCとは塩化ビニル
ホモポリマー若しくは塩化ビニルを50モル%以上
とし、これと共重合可能なコモノマーとの共重合
体又はこれらの少なくともいずれかを主とする組
成物であり、耐衝撃強化剤、加工助剤、その他の
助剤、充填剤等を含むものであつてもよい。また
PCとは公知のいわゆるポリカーボネート限ら
ず、コポリカーボネート、カーボネート結合と他
の結合とを主鎖中に有するヘテロ結合共重合体、
これらポリカーボネートを主体とするブレンド物
等の変性ポリカーボネートをも含むものである。
またここでABSとはポリブタジエンまたはブタ
ジエンを50モル%以上としこれと共重合可能なコ
モノマーとの共重合体又はこれらの少なくともい
ずれかを主とする組成物の存在下で、アクリロニ
トリルに限定されることなくオレフイン系ニトリ
ル及びスチレン、α―メチルスチレン等のビニル
系芳香族炭化水素との混合物をグラフト重合させ
てものである。 更にPEsとは公知の熱可塑性ポリエステル、例
えばポリエチレンテレフタレート、ポリブチレン
テレフタレートを始め芳香族ポリエステル、これ
らの共重合体類、これら単一重合体、共重合体を
主成分とするブレンド物等を含むものであり、加
工助剤、充填剤、顔料、耐衝撃性強化剤、その他
の添加剤等を含むものであつても良い。 本発明積層物の製造方法はダイス内積層、ダイ
ス外積層等の公知の共押出の方法又は各層シート
を別々に製造し、貼り合わせ工程で積層する方法
等が用いられる。その中でも望ましい方法は各層
樹脂を別々に押出機から押出し、多層複合ダイス
内で合流させ複合流動をさせてダイリツプから押
出し、冷却及び引き取り工程を経て積層物を得る
方法である。 それ故接着性樹脂組成物は溶融若しくは溶解に
より薄膜状として用いられるが、溶融して用いる
ときは高化式フローテスターにおける100Kg/cm2
荷重下に1mmφ、長さ10mmのノズルから押出した
220℃での溶融粘度が1×102〜1×106ポアズの
範囲にあることが望ましい。中でも1×103〜1
×105ポアズの範囲にあることが一層望ましく、
被接着剤層を構成するPVDFと他の熱可塑性樹脂
の中間的な溶融粘度であるのが特に望ましく用い
られる。 本発明積層物は一層をPVDF、他層をPVDF以
外の熱可塑性樹脂層とし、これらの中間層に上記
説明の接着組成物とする三層積層物に限定される
ものではなく、かかる三層積層物の少なくともい
ずれかの表層に更に熱可塑性樹脂を一層以上積層
されたものも含まれる。 以下実施例及び比較例を示すが、本発明は云う
迄もなくこれら例に限定されるものではない。尚
これらの例に示す衝撃強度は次の方法により測定
したものである。 衝撃強度の測定方法 サンプルを80℃乾燥空気中に75時間放置
し、次いで0℃氷水中に1時間放置する。次に
図示サンプル2を50mm×50mm角に切り取つて附
図において縦断面を以て示した落鍾試験器のサ
ンプル固定台上板1と下板1′との間に固定す
る。固定は圧縮機3からの圧縮空気で下板1〓
と固定上板1間に圧縮固定する。この時の圧縮
空気の圧力は3Kg/cm2である。 次いで重量1Kgで先端が直径10mmの半球状
である図に示す形状の重鍾4を滑車6を通して
ひも5を引き高さHまで引き上げてひも5を離
して落下させる。高さHは10cm毎に変え、各高
さ毎に10回ずつ試験し、各高さにおける破壊率
(%)を求め、正規確率紙上にその破壊率をブ
ロツトし、そのプロツトより破壊率50%の落鍾
高さを求めたものである。 実施例 1〜11及び比較例 1〜2 3台の押出機により次に示す条件下で押出
し、マルチ・マニフオールドタイプのT―ダイ
スに導き、ダイス温度が200℃で3層複合シー
トを押出した。 第一押出機の条件: KBO―730A(呉羽化学工業株式会社の塩
化ビニル樹脂の1グレードを示す商品名)を
180℃で90mmφ押出機で押出。 第二押出機の押出条条件: KF#1000(呉羽化学工業株式会社のポリ
弗化ビニリデンの1グレードを示す商品名)
100重量部にチヌビン328(Tinuvin328)(チ
バ・ガイギーの紫外線吸収剤のベンゾトリゾー
ルタイプの1グレードを示す商品名)15重量部
を添加した組成物を250℃で32mmφ押出機で押
出。 第三押出機の押出条件: ポリメタクリル酸メチル57.9重量部を幹重
合体とし、ポリ弗化ビニリデン42.1重量部を枝
重合体とするグラフト共重合体とポリメタクリ
ル酸メチルとを表1に示す混合比で混合した組
成物を245℃の押出温度で32mmφ押出機で押出
したペレツトを25mmφ押出機で200℃で押出。 上記条件で押出した後40℃の表面温度を有する
300mmφロールに接触させて冷却し、85℃の表面
温度を有するロール面を通して引き取り、厚さ1
mmの3層複合シートを得た。この厚み構成は弗化
ビニリデン層20μ、接着層20μ、塩化ビニル樹脂
層960μであつた。 表1に結果を示す。
The present invention applies vinylidene fluoride resin (hereinafter abbreviated as PVDF) and other thermoplastic resins, particularly vinyl chloride resin (hereinafter abbreviated as PVC), polycarbonate resin (hereinafter abbreviated as PC), acrylonitrile-butadiene- It relates to a laminate with styrene resin (hereinafter abbreviated as ABS) or polyester resin (hereinafter abbreviated as PEs). Although PVDF has excellent physical properties, it has poor adhesion with other thermoplastic resins. However, it is known that it adheres well to polymethyl methacrylate as an exception. However, a laminate having polymethyl methacrylate as an adhesive layer has a drawback of extremely low impact strength. However, in Patent Application No. 161895 filed in 1971, the present applicant used 100 parts by weight of methyl methacrylate polymer (hereinafter abbreviated as PMMA) as a backbone polymer and vinylidene fluoride polymer or fluoride as an adhesive between PVDF and PVC. A graft polymer is proposed in which the graft component is 30 to 500 parts by weight of a copolymer mainly composed of vinylidene chloride. A laminate of PVDF and other thermoplastic resin via this adhesive has better impact strength than the above-mentioned laminate with polymethyl methacrylate as an adhesive layer, but the manufacturing cost is high for industrial use. It has the disadvantage of being expensive. In view of the above-mentioned state of the prior art, the present invention aims to bond PVDF and other thermoplastic resins using an inexpensive adhesive that is practical in terms of cost, and to provide a laminate with excellent impact strength. . The present inventors believe that although PVDF and PMMA are not necessarily compatible with each other depending on their blend ratio, the above-mentioned graft copolymer and PMMA are compatible, and such a composition We focused on the fact that when PVDF and other thermoplastic resins are laminated using an adhesive consisting of The gist of the present invention is as shown in the claims. The present invention will be explained in detail below. In the laminate of the present invention, the adhesive between PVDF and other thermoplastic resin is a composition consisting of a graft copolymer and PMMA. First, for the sake of explanation, the method for producing the graft copolymer will be briefly described. Any known method such as bulk polymerization, emulsion polymerization, suspension polymerization, or electron beam irradiation polymerization may be used. However, from the point of view of graft efficiency,
A suspension polymerization method in which PMMA is suspended in an aqueous medium, a graft component containing an oil-soluble catalyst is added thereto, and graft polymerization is carried out under pressure is desirable, and has excellent impact resistance. Constituting the backbone polymer of such a graft copolymer
PMMA is a methyl methacrylate homopolymer, or a copolymer containing at least 60% by weight of methyl methacrylate and an acrylic ester or methacrylic ester containing an alkyl group having 2 to 5 carbon atoms that can be copolymerized with this. It is a polyblend mainly composed of at least one of these. As this polymer, for example, a slurry obtained by ordinary suspension polymerization may be used as it is, or a coagulated product of an emulsion polymer may be used. The grafting component to be grafted onto PMMA, which is the backbone polymer, is vinylidene fluoride alone, a comonomer containing at least 70% by weight of vinylidene fluoride, or a mixture thereof, and the partner of the comonomer is preferably vinylidene fluoride. One or more of vinyl, propylene hexafluoride, ethylene tetrafluoride, or ethylene trifluorochloride is used. PMMA is the trunk polymer and PVDF is the branch polymer.
The ratio is 30 to 500 parts by weight of PVDF to 100 parts by weight of PMMV.
Parts by weight range. If the amount of PVDF is less than this, it is because the impact strength is low even if the amount of the graft copolymer itself is within the range of the present invention in the adhesive composition.On the other hand, if it is too much, the thermoplastic resin laminated with PVDF This is because they lose compatibility with. In the adhesive for the laminate of the present invention, the graft copolymer is contained in an amount of 5 to 99% by weight, preferably 10 to 60% by weight.
By adjusting PMMA to 1 to 95% by weight, preferably 40 to 90% by weight, a laminate with extremely good adhesion between PVDF and other thermoplastic resins can be obtained.
It exhibits superior impact resistance compared to laminates using only PMMA as an adhesive. In particular, when the branch polymer is present in the adhesive resin composition in an amount of 2 to 60% by weight, more preferably 5 to 50% by weight, even better impact resistance can be obtained. On the other hand, the adhesive is constituted with a graft copolymer.
PMMA is used in the same range as the backbone polymer of the graft copolymer, and may also contain small amounts of additives such as ultraviolet absorbers, pigments, inorganic substances, heat stabilizers, etc. The PVDF to be bonded with the above adhesive resin composition is a vinylidene fluoride homopolymer, a copolymer containing vinylidene fluoride at 50% by mole or more, or a composition containing at least 50% by weight of at least one of these. . Examples of copolymers include vinyl fluoride, 4
A copolymer with ethylene fluoride, propylene hexafluoride, ethylene trifluorochloride, or the like is preferably used. On the other hand, a thermoplastic resin other than PVDF is used as the resin laminated with PVDF through the adhesive composition, and particularly good adhesion can be obtained to PVC, PC, ABS, and PEs. Here, PVC refers to a vinyl chloride homopolymer, a copolymer containing 50 mol% or more of vinyl chloride and a comonomer that can be copolymerized with this, or a composition mainly consisting of at least one of these, and is an impact-strengthening agent. , processing aids, other aids, fillers, and the like. Also
PC is not limited to the known so-called polycarbonate, but also copolycarbonate, a heterobond copolymer having carbonate bonds and other bonds in the main chain,
It also includes modified polycarbonates such as blends mainly composed of these polycarbonates.
In addition, ABS here refers to polybutadiene, a copolymer containing 50 mol% or more of butadiene and a comonomer copolymerizable with it, or a composition mainly composed of at least one of these, and is limited to acrylonitrile. Instead, it is obtained by graft polymerizing a mixture of an olefinic nitrile and a vinyl aromatic hydrocarbon such as styrene or α-methylstyrene. Furthermore, PEs include known thermoplastic polyesters such as polyethylene terephthalate, polybutylene terephthalate, aromatic polyesters, copolymers thereof, and blends containing these homopolymers and copolymers as main components. However, it may also contain processing aids, fillers, pigments, impact strength enhancers, and other additives. The method for manufacturing the laminate of the present invention includes known coextrusion methods such as in-die lamination and outside-die lamination, or a method in which each layer sheet is manufactured separately and laminated in a bonding process. Among these, a preferred method is to extrude each layer of resin separately from an extruder, merge them in a multilayer composite die to create composite flow, extrude from the die lip, and obtain a laminate through a cooling and take-off process. Therefore, the adhesive resin composition is used in the form of a thin film by melting or melting, but when used in the melted state, it is extruded from a nozzle with a diameter of 1 mm and a length of 10 mm under a load of 100 kg/cm 2 in a Koka type flow tester.
It is desirable that the melt viscosity at 220° C. is in the range of 1×10 2 to 1×10 6 poise. Among them, 1×10 3 ~1
It is more desirable that it be within the range of ×10 5 poise.
It is particularly desirable to use a resin having a melt viscosity intermediate between that of PVDF and other thermoplastic resins constituting the adhesive layer. The laminate of the present invention is not limited to a three-layer laminate in which one layer is PVDF, the other layer is a thermoplastic resin layer other than PVDF, and the adhesive composition described above is used as an intermediate layer between these layers; It also includes products in which one or more layers of thermoplastic resin are further laminated on at least one surface layer of the product. Examples and comparative examples will be shown below, but it goes without saying that the present invention is not limited to these examples. The impact strength shown in these examples was measured by the following method. Method for Measuring Impact Strength: The sample is left in dry air at 80°C for 75 hours, and then in ice water at 0°C for 1 hour. Next, the illustrated sample 2 is cut into a 50 mm x 50 mm square and fixed between the upper plate 1 and the lower plate 1' of the sample fixing table of the drop tester shown in longitudinal section in the accompanying drawing. The lower plate 1 is fixed with compressed air from compressor 3.
and fixed upper plate 1 by compression. The pressure of compressed air at this time was 3Kg/cm 2 . Next, a heavy peg 4 having a weight of 1 kg and a hemispherical tip with a diameter of 10 mm as shown in the figure is passed through a pulley 6, and a string 5 is pulled up to a height H, and the string 5 is released and allowed to fall. The height H was changed every 10 cm, the test was carried out 10 times for each height, the destruction rate (%) was determined at each height, the destruction rate was blotted on normal probability paper, and from that plot, the failure rate was 50%. The height of the falling plow was determined. Examples 1 to 11 and Comparative Examples 1 to 2 Three extruders were used to extrude under the following conditions, the sheets were introduced into a multi-manifold type T-die, and the three-layer composite sheet was extruded at a die temperature of 200°C. . Conditions of the first extruder: KBO-730A (trade name indicating a grade of vinyl chloride resin manufactured by Kureha Chemical Industry Co., Ltd.)
Extruded at 180℃ using a 90mmφ extruder. Extrusion conditions of the second extruder: KF#1000 (trade name indicating a grade of polyvinylidene fluoride manufactured by Kureha Chemical Industry Co., Ltd.)
A composition in which 100 parts by weight and 15 parts by weight of Tinuvin 328 (trade name indicating a grade of benzotrisol type of ultraviolet absorber manufactured by Ciba Geigy) was added was extruded at 250°C using a 32 mmφ extruder. Extrusion conditions of the third extruder: A graft copolymer containing 57.9 parts by weight of polymethyl methacrylate as a trunk polymer and 42.1 parts by weight of polyvinylidene fluoride as a branch polymer, and polymethyl methacrylate are mixed as shown in Table 1. The pellets were extruded using a 32 mmφ extruder at an extrusion temperature of 245°C, and the pellets were extruded at 200°C using a 25 mmφ extruder. Has a surface temperature of 40℃ after extrusion under the above conditions
Cool it by contacting it with a 300mmφ roll, take it through the roll surface with a surface temperature of 85℃, and roll it to a thickness of 1.
A three-layer composite sheet of mm was obtained. The thickness structure was a vinylidene fluoride layer of 20μ, an adhesive layer of 20μ, and a vinyl chloride resin layer of 960μ. Table 1 shows the results.

【表】【table】

【表】 実施例 12 実施例3の第一押出条件をパンライトF125
(帝人の製造に係るポリカーボネートの商品名)
を260℃で90mmφ押出機で押出とし、ダイス温度
を250℃とした以外は実施例3と同一条件で実施
したところ、80℃に75時間熱処理した後の層間剥
離は全く無く、50%破壊率の落鍾高さは150cmで
あつた。 比較例 3 実施例12の接着剤をポリメタクリル酸メチルと
した以外は実施例12と同一条件で実施したとこ
ろ、80℃に75時間熱処理した後の層間剥離は全く
無く、50%破壊率の落鍾高さは20cmであつた。 実施例 13 実施例6の第一押出条件をJSR―ABS―82(日
本合成ゴム株式会社製アクリロニトリル―ブタジ
エン―スチレンの商品名)を220℃で90mmφ押出
機で押出とし、第二押出条件のチヌビン328の15
重量部を10重量部とした以外は実施例6と同一条
件で実施したところ、80℃に75時間熱処理した後
の層間剥離は全くなく、50%破壊率の落鍾高さは
125cmであつた。 比較例 4 実施例13の接着剤をポリメタクリル酸メチルと
した以外は実施例13と同一条件で実施したとこ
ろ、80℃に75時間熱処理した後の層間剥離は全く
なく、50%破壊率の落鍾高さは5cmであつた。
[Table] Example 12 The first extrusion conditions of Example 3 were changed to Panlite F125.
(Product name of polycarbonate manufactured by Teijin)
was extruded at 260°C with a 90mmφ extruder and the die temperature was 250°C, but under the same conditions as Example 3. After heat treatment at 80°C for 75 hours, there was no delamination at all, and the fracture rate was 50%. The height of the plow was 150cm. Comparative Example 3 The test was carried out under the same conditions as in Example 12 except that polymethyl methacrylate was used as the adhesive in Example 12. There was no delamination at all after heat treatment at 80°C for 75 hours, and the fracture rate was reduced by 50%. The height of the peg was 20 cm. Example 13 The first extrusion conditions of Example 6 were JSR-ABS-82 (trade name of acrylonitrile-butadiene-styrene manufactured by Japan Synthetic Rubber Co., Ltd.) was extruded with a 90 mmφ extruder at 220°C, and the second extrusion conditions were Tinuvin. 15 of 328
When the test was carried out under the same conditions as in Example 6 except that the weight part was changed to 10 parts by weight, there was no delamination at all after heat treatment at 80°C for 75 hours, and the drop height at 50% failure rate was
It was 125cm. Comparative Example 4 A test was carried out under the same conditions as in Example 13 except that polymethyl methacrylate was used as the adhesive in Example 13. There was no delamination at all after heat treatment at 80°C for 75 hours, and a 50% reduction in the fracture rate was observed. The height of the peg was 5 cm.

【図面の簡単な説明】[Brief explanation of the drawing]

附図は本発明実施例で評価に用いた落鍾試験機
の縦断面図である。 1…サンプル固定台上板、2…サンプル、3…
圧縮機、4…重鍾、5…ひも、6…滑車。
The attached figure is a longitudinal cross-sectional view of the drop test machine used for evaluation in the examples of the present invention. 1...Sample fixing table top plate, 2...Sample, 3...
Compressor, 4...heavy plow, 5...string, 6...pulley.

Claims (1)

【特許請求の範囲】 1 メチルメタクリレート系重合体100重量部を
幹重合体とし、弗化ビニリデン系重合体30〜500
重量部を枝重合体とするグラフト共重合体5〜99
重量%とメチルメタクリレート系重合体1〜95重
量%からなる樹脂組成物を接着剤として弗化ビニ
リデン系樹脂と他の熱可塑性樹脂とを接着させた
ことを特徴とする積層物。 2 他の熱可塑性樹脂が塩化ビニル系樹脂、ポリ
カーボネート系樹脂、アクリロニトリル―ブタジ
エン―スチレン系樹脂またはポリエステル系樹脂
より選ばれたものであることを特徴とする特許請
求の範囲第1項記載の積層物。
[Claims] 1. 100 parts by weight of methyl methacrylate polymer as the backbone polymer, 30 to 500 parts by weight of vinylidene fluoride polymer
Graft copolymer containing branch polymer in parts by weight 5 to 99
1. A laminate characterized in that a vinylidene fluoride resin and another thermoplastic resin are bonded together using a resin composition comprising 1 to 95% by weight of a methyl methacrylate polymer as an adhesive. 2. The laminate according to claim 1, wherein the other thermoplastic resin is selected from vinyl chloride resin, polycarbonate resin, acrylonitrile-butadiene-styrene resin, or polyester resin. .
JP8748880A 1980-06-27 1980-06-27 Laminate Granted JPS5712646A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8748880A JPS5712646A (en) 1980-06-27 1980-06-27 Laminate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8748880A JPS5712646A (en) 1980-06-27 1980-06-27 Laminate

Publications (2)

Publication Number Publication Date
JPS5712646A JPS5712646A (en) 1982-01-22
JPS6129874B2 true JPS6129874B2 (en) 1986-07-09

Family

ID=13916328

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8748880A Granted JPS5712646A (en) 1980-06-27 1980-06-27 Laminate

Country Status (1)

Country Link
JP (1) JPS5712646A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06170950A (en) * 1992-12-07 1994-06-21 Kureha Chem Ind Co Ltd Laminated sheet and cloth for tent
JP4629281B2 (en) * 2001-08-24 2011-02-09 寺崎電気産業株式会社 Circuit breaker

Also Published As

Publication number Publication date
JPS5712646A (en) 1982-01-22

Similar Documents

Publication Publication Date Title
US4647509A (en) Thermoformable multilayer barrier structures
EP0404803B1 (en) Multilayered sheets having excellent adhesion
KR100786005B1 (en) Multilayered aliphatic polyester film
KR20020035178A (en) Conformable Multilayer Films
US3589976A (en) Composite films of polyolefins and polystyrene
CA2028772A1 (en) Multilayered barrier structures for packaging applications and method for the preparation thereof
JP2010523379A5 (en)
US5240525A (en) Method of fabricating a multilayer barrier packaging material
AU2006202689A1 (en) Multilayer coextruded films including frangible intralaminar bonding forces
JPS6097852A (en) Coextruded multilayer article
JPS5938103B2 (en) container
JP2002526298A (en) High barrier multilayer film
US4452835A (en) Multilayer film for primal meat packaging
JPH08224837A (en) Film/substrate composite material
JPH10146930A (en) Flexible multilayer film and use thereof
JPH1158627A (en) Laminate and its manufacture
KR100292214B1 (en) 3 layers or more of recyclable film with deep regeneration material and deep molding and sealing that are based on polyamide and polyolefin
JPS6129874B2 (en)
NO171258B (en) FLEXIBLE THERMOPLASTIC STRUCTURES AND USE THEREOF
DE602005005269T2 (en) shaped article
AU779483B2 (en) Composite material
KR101678990B1 (en) White polyvinylidene fluoride-based film having an improved weather-resistant property
JP3192840B2 (en) Laminated body having gas barrier properties
JPH0232836A (en) Preparation of multi-layered molded item containing foamed layer by means of rotational molding
JPH0262375B2 (en)