JPS6129822A - Production of thin transparent iridium oxide film - Google Patents

Production of thin transparent iridium oxide film

Info

Publication number
JPS6129822A
JPS6129822A JP59152499A JP15249984A JPS6129822A JP S6129822 A JPS6129822 A JP S6129822A JP 59152499 A JP59152499 A JP 59152499A JP 15249984 A JP15249984 A JP 15249984A JP S6129822 A JPS6129822 A JP S6129822A
Authority
JP
Japan
Prior art keywords
transparent
film
metal
thin
oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59152499A
Other languages
Japanese (ja)
Other versions
JPH0558171B2 (en
Inventor
Kiyoshi Uchikawa
清 内川
Tatsuo Niwa
達雄 丹羽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nippon Kogaku KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Kogaku KK filed Critical Nippon Kogaku KK
Priority to JP59152499A priority Critical patent/JPS6129822A/en
Publication of JPS6129822A publication Critical patent/JPS6129822A/en
Publication of JPH0558171B2 publication Critical patent/JPH0558171B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Electrochromic Elements, Electrophoresis, Or Variable Reflection Or Absorption Elements (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

PURPOSE:To obtain a thin transparent Ir film having a large area with one stage by subjecting metallic Ir together with other metal or the transparent oxide thereof or the fluoride thereof to multi-element vapor deposition or multi- element sputtering under specific conditions. CONSTITUTION:The metallic Ir is subjected together with the other metal M or the oxide thereof or the fluoride thereof to the multi-element vapor deposition under the conditions of 1X10<-4>-1X10<-2>Torr O2 partial pressure and >=0.02 film forming speed ratio: Ir/M weight ratio or to multi-element sputtering under the conditions of 5X10<-2>-1X10<-1>Torr O2 partial pressure and >=0.02 film forming speed ratio: Ir/M weight ratio to form the thin transparent iridium oxide film on the substrate. Sn, In, Ta, Zn, Ti, Si, Mg, Ca, W, Mo or Sb is used for the metal. The oxide or fluoride of the metal M is colorless and transparent and does not make opaque the thin Ir film. The resulted thin Ir oxide film has the finely porous structure to absorb moisture from the atm. or the adjacent layers and has the state equal to hydroxide. The greater part of the Ir existing in the thin film is thus contributed to an EC characteristic. The durability is improved and the Ir is economized.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、透明な酸化イリジウム薄膜の製造方法に関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a method for producing a transparent iridium oxide thin film.

(発明の背景) 乾電池程度の電圧を印加することによって発色し、逆電
圧を印加することによって元の無色透明に消色するエレ
クトロクロミック(gc)表示装置〔以下、 ECDと
絡す〕は、日の字型のセブンセグメントを用いた数字そ
の他の表示手段として利用すべく実用化にむけて盛んに
研究されている。
(Background of the Invention) Electrochromic (GC) display devices (hereinafter referred to as ECD), which develop color by applying a voltage similar to that of a dry cell battery and fade to their original colorless and transparent state by applying a reverse voltage, have been developed in Japan. Active research is being carried out to put this into practical use as a means of displaying numbers and other things using the letter-shaped seven segments.

その1つとしてwo、 、 Moo□等の還元発色性B
C物質を用いたRCDがある。
One of them is reduction color development B such as wo, , Moo□, etc.
There is an RCD using C substance.

これらのEC物質が発色するには、亀子(e−)とカチ
オン(X+)の同時注入が必要とされ、発色・消色に伴
う反応式は次のように信じられている。
In order for these EC substances to develop color, simultaneous injection of kameko (e-) and cation (X+) is required, and the reaction formula involved in color development and decolorization is believed to be as follows.

消色時: WOs +ne−+nX+ ↓↑   ↓↑ 発色時: XnWOa そして、カチオン(X+)としては、イオン半径の小さ
く移動の容易なI(十が主として使用されている。これ
らのカチオンは常時カチオンである必要はなく、電圧が
印加され電場が形成されたときカチオンが生ずればよい
ので、特にH十の場合には水がカチオン供給源として利
用される。水は電場の中で HO→H+−1−OH− に従って分解する。水は極く微量で十分であるらしく、
大気中から自然にwo、Nに取り込まれる呈の水分でし
ばしば間に合う。
When decoloring: WOs +ne-+nX+ ↓↑ ↓↑ When developing color: XnWOa And as the cation (X+), I (10), which has a small ionic radius and is easy to move, is mainly used. These cations are always cations. It is not necessary that cations are generated when a voltage is applied and an electric field is formed, so especially in the case of H0, water is used as a cation source.Water changes from HO to H+- in an electric field. It decomposes according to 1-OH-.It seems that a very small amount of water is sufficient;
Water that is naturally taken up by the WO and N from the atmosphere often suffices.

しかしながら、単にWO8層を一対の電極で挾んで電圧
を印加して発色させても、容易に消色することができな
い。何故ならば、消色しようとして逆電圧を印加しても
陰極に通じた電極側から電子(e’−)が流入して来る
ので、もしH+があれば、WO,−)ne−−1−nH
十→HnWO。
However, even if the WO8 layer is simply sandwiched between a pair of electrodes and a voltage is applied to develop color, the color cannot be easily erased. This is because even if a reverse voltage is applied to erase the color, electrons (e'-) will flow in from the electrode side connected to the cathode, so if there is H+, WO, -)ne--1- nH
Ten→HnWO.

の反応が起こって着色するからである。This is because the reaction takes place and the color develops.

そのため、WO8層と一方の電極との間に絶縁層例えば
Sin、 、 MgF、を設けたECDが提案された(
#公昭52−46098号)。このBCDの絶縁層は、
電子の移動はできないが、 OH−イオンの移動は自由
であり、このOH−イオンが電気を運び、絶縁層と電極
との間で OH−+ 1/2H,0+ (1/4 ) 0.↑+e
−の反応に従って電子を賜杯側に放出しているものと思
われる。
Therefore, an ECD was proposed in which an insulating layer such as Sin, MgF, etc. was provided between the WO8 layer and one electrode (
#Koshō 52-46098). The insulating layer of this BCD is
Electrons cannot move, but OH- ions can move freely, and these OH- ions carry electricity, resulting in OH-+ 1/2H,0+ (1/4) 0. ↑+e
It is thought that electrons are released to the receiving side according to the - reaction.

つまり発色時には、 (陰極側) WO,+ne−−1−nH+−+ HnW
Oa(陽極側)n(OH−)→ n/2 H,o + (n/4 ) 02↑+ne−と
いう反応が推定され、消色時には、 (陽極側) HnWO,−+WO,+ne−+ nH+
(陰極側) nH,0+ne−−+ n0H−十(n / 2 ) Ht↑ という反応が生じるものと推定される。
In other words, when developing color, (cathode side) WO, +ne--1-nH+-+ HnW
The reaction Oa (anode side) n (OH-) → n/2 H, o + (n/4) 02↑+ne- is estimated, and at the time of decolorization, (anode side) HnWO, -+WO, +ne- + nH+
(Cathode side) It is estimated that the following reaction occurs: nH,0+ne--+n0H-10(n/2) Ht↑.

これらの式からも明らかであるが、現実にも特公昭52
−46098号のECDは駆動により水が消費されるの
で大気中から速やかに水が供給されないと発色しなくな
り、また、駆動に伴って02ガスや11゜ガスが放出さ
れるので層間剥離を生じるという欠点があった。
It is clear from these formulas that in reality
The ECD No. 46098 consumes water when it is driven, so if water is not quickly supplied from the atmosphere, it will not produce color. Also, as 02 gas and 11° gas are released as it is driven, it will cause delamination. There were drawbacks.

そのため、WO,層の隙に「イオン良導体である電子絶
縁層/酸化発色性gc層」を設けた全固体型FtCDが
提案された(特開昭56−4679号)。
Therefore, an all-solid-state FtCD was proposed in which an ``electronic insulating layer that is a good ion conductor/oxidation color-forming gc layer'' was provided in the gap between the WO layers (Japanese Patent Application Laid-Open No. 56-4679).

これは酸化発色性I3C層として水酸化イリジウムを使
用し、WO3の発色時に、陽極側でIr(OH)m +
n (OH−) (無色透明) ↓ Ir (OR) L−pH20+ qH,O+ r (
e″″)着色種 と反応し、WO3の消色時に陰極側で Ir (OH) t ” pHρ+qHP+r(e″′
)↓ Ir  (OH) m + n (OI(−″)と反応
するものと考えられている。従って、水が再生されるの
で水が消費されず、またHQガスや0□ガスの発生もな
い。
This uses iridium hydroxide as the oxidative color-forming I3C layer, and when coloring WO3, Ir(OH)m +
n (OH-) (colorless and transparent) ↓ Ir (OR) L-pH20+ qH,O+ r (
e″″) reacts with the colored species, and when WO3 is decolored, Ir (OH) t ” pHρ+qHP+r(e″′
)↓ Ir (OH) m + n (It is thought to react with OI(-''). Therefore, water is regenerated, so no water is consumed, and no HQ gas or 0□ gas is generated. .

この場合、水酸化イリジウムは、一般の水酸化物がそう
であるように酸化物の水和物としてとらえることができ
る。特に薄膜では大気中から容易に水が浸入することか
ら、水酸化物ではなく酸化物と表現しても差し支えない
。逆に酸化イリジウム薄膜を入手しても大気中下では厳
密な意味で水酸化物と区別することは難しい。
In this case, iridium hydroxide can be regarded as a hydrate of an oxide, just like general hydroxides. Particularly in thin films, water easily penetrates from the atmosphere, so it may be referred to as an oxide rather than a hydroxide. On the other hand, even if you obtain an iridium oxide thin film, it is difficult to distinguish it from hydroxide in a strict sense in the atmosphere.

ところで、従来、透明な水酸化ないし酸化イリジウム薄
膜は、一旦金属イリジウムの薄膜を真空蒸着、スパッタ
リングその他の真空薄膜形成技術によって形成した後、
その薄膜を酸又はアルカリ水溶液中で陽極酸化すること
によって製造していた。
By the way, in the past, transparent iridium hydroxide or iridium oxide thin films were produced by forming a thin film of metallic iridium by vacuum evaporation, sputtering, or other vacuum thin film forming techniques.
The thin film was produced by anodic oxidation in an acid or alkaline aqueous solution.

従って、2工程を必要とすることから、製造コストが高
く、製造時間が長くかかっていた。
Therefore, since two steps are required, the manufacturing cost is high and the manufacturing time is long.

また、陽極酸化のために下地に電極が必要となり、電極
として透明電極(透過型ECUには必須のもの〕を選択
した場合には、現在透明電極材料として、低電気抵抗の
ものがないので、大面積の金属イリジウム薄膜な陽極酸
化しようとすると、中心部の金属イリジウムが陽極酸化
されずに、不透明ないし透明な黒色のまま残ってしまい
、そのため大面積の透明な水酸化ないし酸化イリジウム
薄膜を得ることは、これまで不可能であった。
In addition, an electrode is required on the base for anodic oxidation, and if a transparent electrode (essential for a transmission type ECU) is selected as the electrode, there is currently no transparent electrode material with low electrical resistance. When attempting to anodize a large-area metallic iridium thin film, the central metallic iridium is not anodized and remains opaque or transparent black, resulting in a large-area transparent iridium hydroxide or oxide thin film. This has never been possible before.

(発明の目的) 本発明の目的は、工程が1工程で済み、かつ大面積の透
明な酸化イリジウム薄膜を製造できる方法を提供するこ
とにある。
(Object of the Invention) An object of the present invention is to provide a method that requires only one step and can produce a large-area transparent iridium oxide thin film.

(発明の概要) 本発明者らは、鋭意研究の結果、金属イリジウムを「そ
の酸化物もしくは弗化物が透明な他の金属又はその酸化
物もしくは弗化物」を共に特定の酸素分圧及び成膜速度
比の条件下に多元蒸着又は多元スパッタリングすること
により、透明な酸化イリジウム薄膜を製造できる方法を
見い出し、本発明を成すに至った。
(Summary of the Invention) As a result of intensive research, the present inventors have discovered that metal iridium and "other metals whose oxides or fluorides are transparent, or their oxides or fluorides" can be used together with specific oxygen partial pressures and film formation. We have discovered a method for producing a transparent iridium oxide thin film by performing multi-component evaporation or multi-component sputtering under conditions of speed ratios, and have accomplished the present invention.

しかして、本発明は、金属イリジウム(Ir)を、他の
金属(M)又はその酸化物もしくは弗化物と共に、 (a)  O,分圧: lXl0−’〜lXl0−2T
orr。
Therefore, the present invention provides metallic iridium (Ir), together with another metal (M) or its oxide or fluoride, (a) O, partial pressure: lXl0-' to lXl0-2T
orr.

成膜速度比:Ir7M  重量比=0.02以上の条件
下で多元蒸着するか、又は、 (b)  o、分圧: 5X10−8〜lXl0−’ 
Torr。
Film formation rate ratio: Ir7M Multi-component vapor deposition under conditions of weight ratio = 0.02 or more, or (b) o, partial pressure: 5X10-8 to lXl0-'
Torr.

成膜速度比: I r Af  重置比=0.02以上
の条件下で多元スパッタリングすることにより、基板上
に透明な酸化イリジウム薄膜を製造する方法を提供する
A method is provided for manufacturing a transparent iridium oxide thin film on a substrate by performing multi-source sputtering under conditions of a film-forming rate ratio: I r Af overlap ratio=0.02 or more.

本発明を実施するには、通常対向電極の形成された基板
を用意する。しかしながら、他の金属(財)の酸化物が
導電性であって得られる酸化イリジウム薄膜がそれ自体
導電性を示す場合には、特に対向電極が形成されている
必要はない。尚、対向電極としては、8nO,、In、
O,、ITO(In2O,に5%程度の8 n Otが
混入したもの)、ZnO等の透明導電性材料、At 、
 Ag 、 A、u等の金属材料が使用される。また対
向電極の他に他の膜が形成されていてもよい。
To carry out the present invention, a substrate on which a counter electrode is generally formed is prepared. However, if the oxide of the other metal (goods) is conductive and the resulting iridium oxide thin film itself is conductive, it is not necessary to form a counter electrode. In addition, as a counter electrode, 8nO, In,
Transparent conductive materials such as O,, ITO (In2O mixed with about 5% 8 n Ot), ZnO, At,
Metal materials such as Ag, A, and U are used. Further, other films may be formed in addition to the counter electrode.

このような基板を用い本発明に従い金属Irをヒ 他の金属M又はその酸化物もしくは弗化物を共に多元蒸
着又は多元スパッタリングする。金属Irと共に使用さ
れる他の金属Mとしては、例えばSn、 In 、Ta
 、Zn 、TI 、Si 、Mg 、Ca 、W、λ
(0または8bなどが挙げられる。これらの金AMは既
述のようにそれ自体を蒸発源又はターゲットとせずに、
その酸化物もしくは弗化物を蒸発源又はターゲットとし
てもよい。いずれにせよ、それらの金属Mの酸化物もし
くは弗化物は無色透明であり、酸化イリジウム薄膜を不
透明にすることはない。
Using such a substrate, metal Ir and other metals M or their oxides or fluorides are subjected to multi-component vapor deposition or multi-component sputtering according to the present invention. Other metals M used together with metal Ir include, for example, Sn, In, and Ta.
, Zn, TI, Si, Mg, Ca, W, λ
(0 or 8b, etc.) These gold AMs do not use themselves as an evaporation source or target as described above,
The oxide or fluoride may be used as an evaporation source or target. In any case, these oxides or fluorides of metal M are colorless and transparent and do not make the iridium oxide thin film opaque.

蒸着方法としては、高周波又は熱を加えることによりて
Irを活性化できる方法をとる。この意味で高周波イオ
ンブレーティングも蒸着方法の一種として好ましく使用
される。
As a vapor deposition method, a method is used in which Ir can be activated by applying high frequency waves or heat. In this sense, high frequency ion blating is also preferably used as a type of vapor deposition method.

スパッタリングの方法としては、高周波又は直流スパッ
タリングが用いられる。
As the sputtering method, high frequency or direct current sputtering is used.

いずれにせよ、真空槽内に基板を置いて、一旦到達真空
度: I X 10−’ 〜5 X 10−’Torr
程度に真空にした後、蒸着時02分圧:1xto−’〜
1×1O−2Torr又はスパッタリング時0□分圧=
5×10−8〜I XI O−’Torrの02ガスを
流し、基板温度を一り00℃〜300℃程度の間で、成
膜速度比をIr7M重量比換算で0.02以上に制御し
ながら、真空蒸着又はスパッタリングを行なう。
In any case, place the substrate in a vacuum chamber and once reach the vacuum level: I X 10-' ~ 5 X 10-' Torr
After creating a vacuum to a certain degree, the partial pressure at the time of vapor deposition: 1xto-' ~
1×1O-2Torr or 0□ partial pressure during sputtering =
02 gas of 5 x 10-8 to I At the same time, vacuum evaporation or sputtering is performed.

この場合、もし02分圧が蒸着時I X 10−’To
rr又はスパッタリング時5 X 10−”Torrよ
り低いと、■ 放電が不安定 ■ 膜が酸化不足によって、可視光を吸収するようにな
り、透明感がなくなる などの欠点が出てくる。逆に蒸着時I X 10−”’
I’orr又はスパッタリング時I X 10−’To
rrより高いと、 ■ 均一な構造の膜が成長しにくくなる■ 付着が悪く
なる。
In this case, if 02 partial pressure is I x 10-'To
rr or lower than 5 x 10-” Torr during sputtering, ■ Discharge is unstable ■ The film absorbs visible light due to insufficient oxidation, resulting in defects such as loss of transparency. On the contrary, vapor deposition Time I x 10-”'
I'orr or I X 10-'To during sputtering
If it is higher than rr, ■ it becomes difficult to grow a film with a uniform structure; ■ adhesion becomes poor.

などの欠点が出てくる。There are drawbacks such as.

また、成膜速度比がI r /h4重鼠比換算で0.0
2未満であると、電極反応が円滑に逸まなくなり、その
結果EC性が低下する(反応電荷量が過小となる)。逆
に、高すぎても透明感がなくなるので一般に約10以下
位が好ましい。
In addition, the film formation rate ratio is 0.0 in terms of I r /h4 heavy rat ratio.
If it is less than 2, the electrode reaction will not deviate smoothly, resulting in a decrease in EC properties (the amount of reaction charge will be too small). On the other hand, if it is too high, the transparency will be lost, so it is generally preferred that it be about 10 or less.

こうして透明な酸化イリジウム薄膜が得られるが、この
薄膜は微多孔質構造を有しており、大気中から又は隣層
から容易に水分を吸収し、その結果ある意味でそれは水
酸化物と呼べる状態になり得る。
In this way, a transparent iridium oxide thin film is obtained, which has a microporous structure and easily absorbs moisture from the atmosphere or from adjacent layers, so that in a sense it can be called a hydroxide. It can be.

本発明に従って得られる酸化イリジウム薄膜は、Irの
含有率が低下するに従い発色濃度は低Wるものの、02
ガスやH2ガスの発生抑止には効果を有する。
Although the coloring density of the iridium oxide thin film obtained according to the present invention decreases as the Ir content decreases,
It is effective in suppressing the generation of gas and H2 gas.

酸化イリジウムの膜厚は任意であるが、ECDに使用す
るには一般に0.005μm〜1鰭程度とする。
Although the thickness of the iridium oxide film is arbitrary, it is generally about 0.005 μm to 1 fin for use in ECD.

以下、実施例により、本発明を具体的に説明する。Hereinafter, the present invention will be specifically explained with reference to Examples.

(実施例1) 厚さ0.15μmのITO透明導電層CB)の形成され
たガラス基板を用意し、導電層(E)の上に下記条件: 蒸発源:金属an 、金属Irの2元系到達真空度: 
5 X 10−’TorrO8分圧: 3 X 10−
’Torr基板温度:20℃ 成膜速度比: Ir/Sn重量比−0,3の下に高周波
イオンブレーティングにより、膜厚約120OAの透明
な酸化イリジウム薄膜(D)を形成させた。
(Example 1) A glass substrate on which an ITO transparent conductive layer (CB) with a thickness of 0.15 μm was formed was prepared, and the following conditions were applied on the conductive layer (E): Evaporation source: binary system of metal an and metal Ir Ultimate vacuum:
5 X 10-'TorrO8 partial pressure: 3 X 10-
A transparent iridium oxide thin film (D) having a film thickness of about 120 OA was formed by high frequency ion blasting under a 'Torr substrate temperature: 20° C. and a film formation rate ratio: Ir/Sn weight ratio of −0.3.

次にその上に下記条件: 蒸発源: T a * Oa +U達真空度: 5 X 10−’Torr02分圧:
 4 X 10””Torr基板温度:150℃ の下に真空蒸着により、膜厚500(lの透明イオン導
電層(C)を形成させた。
Then, apply the following conditions: Evaporation source: T a * Oa + U Vacuum degree: 5 x 10-'Torr02 Partial pressure:
A transparent ion conductive layer (C) having a thickness of 500 l was formed by vacuum deposition under 4 x 10'' Torr substrate temperature: 150°C.

その上に更に下記条件: 蒸発源:WOa 到達真空度: 5 X 10””Torr人r分圧: 
4 X 10−’Torr基板温度=150℃ の下に真空蒸着により、膜厚5000Aの透明な非晶質
WO2層(B)を形成させた。
In addition, the following conditions: Evaporation source: WOa Ultimate vacuum: 5 x 10" Torr Partial pressure:
A transparent amorphous WO2 layer (B) with a thickness of 5000 Å was formed by vacuum deposition under 4×10-'Torr substrate temperature=150°C.

最後にWO2層(B)の上に下記条件:蒸発源: In
、0.とSnO,との混合物到達真空度: 5 X 1
0 ””Torr02分圧: 3 X 10−’Tor
r基板温度:150℃ の下に高周波イオンブレーティングにより、膜厚250
0Aの透明表示電極(A)を形成させた。
Finally, on the WO2 layer (B), the following conditions: Evaporation source: In
,0. Achieved vacuum degree of mixture of and SnO: 5 x 1
0 ”” Torr02 partial pressure: 3 X 10-' Torr
rSubstrate temperature: 150°C by high frequency ion blating to create a film thickness of 250°C.
A transparent display electrode (A) of 0 A was formed.

こうして、5層構造を有するFICDが得られた。In this way, an FICD having a five-layer structure was obtained.

このECDをエポキシ樹脂で封止した後、電極(A)、
(E)を通じて14ポルトの発色電圧を印加すると、1
50m5ecで青色に発色し、発色時の透過率(Tc)
は波長ス= 600 nmで20%であり、この発色状
態は電圧印加を止めても保持された。次に−1,4ボル
トの消色電圧を印加すると、100 m1ceで元の無
色透明に戻り、消色時の透過率(Tb)は85%であっ
た。
After sealing this ECD with epoxy resin, the electrode (A),
When a coloring voltage of 14 ports is applied through (E), 1
Color develops blue at 50m5ec, transmittance (Tc) when color develops
was 20% at a wavelength of 600 nm, and this coloring state was maintained even after the voltage application was stopped. Next, when a decoloring voltage of -1.4 volts was applied, the original colorless and transparent state was restored in 100 mlce, and the transmittance (Tb) at the time of decolorization was 85%.

(実施例2〕 実施例1で用いたガラス基板を用意し、その導電層(E
)の上に下記条件: 蒸発源: MgF、と金属Irの2元系到達真空度: 
5 X 10−@TartO1分圧: 3 X 10−
’Torr基板温度:室温 成膜速度比: IrA1g重町比=0.4の下に高周波
イオンブレーティングにより膜厚1500Aの透明な酸
化イリジウム薄膜(D)を形成させた。
(Example 2) The glass substrate used in Example 1 was prepared, and its conductive layer (E
) on top of the following conditions: Evaporation source: Binary system of MgF and metal Ir Ultimate vacuum:
5 X 10-@TartO1 partial pressure: 3 X 10-
A transparent iridium oxide thin film (D) with a film thickness of 1500 Å was formed by high frequency ion blasting under 'Torr substrate temperature: room temperature film formation rate ratio: IrA1g Shigemachi ratio=0.4.

以下、実施例1と同様に透明イオン導電層(C)、WO
,層(B ) 及ヒH示*極(A ) ヲ形成すセ、1
iicDを作成した。
Hereinafter, as in Example 1, transparent ion conductive layer (C), WO
, layer (B) and H*pole (A) are formed, 1
iicD was created.

エポキシ樹脂で封止後、発消色テストを行うと、+ 1
.4 Vで150m5ec 、 Tc=25%であり、
−1,4Vで100m5ec 、 ’rb=s 5%(
λ−600nm)であった。
After sealing with epoxy resin, a color development/discoloration test was performed, +1
.. 150m5ec at 4V, Tc=25%,
100m5ec at -1,4V, 'rb=s 5% (
λ-600 nm).

(実施例3) 実施例1で用いたガラス基板を用意し、その導電層(E
)の上に下記条件: ターゲット:金属Irと金属8nの2元系到達真空度:
 I X 10−’TorrO1分圧 : 3 X 1
0””Torr基板温度:室温 成膜速度比:Ir/Sn  重量比的1.0下にRFス
パッタリングを行ない膜厚20OAの透明な酸化イリジ
ウム薄膜(D)を形成させた。
(Example 3) The glass substrate used in Example 1 was prepared, and its conductive layer (E
) on top of the following conditions: Target: Binary system of metal Ir and metal 8n Achieved vacuum degree:
I X 10-'TorrO1 partial pressure: 3 X 1
RF sputtering was performed at a weight ratio of 0'' Torr substrate temperature: room temperature film formation rate ratio: Ir/Sn of 1.0 to form a transparent iridium oxide thin film (D) with a film thickness of 20 OA.

以下、実施例1と同様に透明イオン導電層(C)、WO
a層(8)及び表示電極(A)を形成させ、BCDを作
成した〇 エポキシ樹脂で封止後、発消色テストを行なうと、+1
.4Vで100m5ec 、Tc=15%であり、−1
,4Vで50m5ec%Tb=85%(λ=600am
 )であった。
Hereinafter, as in Example 1, transparent ion conductive layer (C), WO
A layer (8) and display electrode (A) were formed to create a BCD. After sealing with epoxy resin, a color development and fading test was performed and the result was +1
.. 100m5ec at 4V, Tc=15%, -1
, 50m5ec%Tb=85%(λ=600am
)Met.

(比較例1) 実施例1で用いたガラス基板(8)を用意し、その導電
層(lの上に下記条件: 蒸発源:金属Ir 真空度: 5 X 10−’Torr lr分圧: 3 X 10−’Torr基板温度=20
℃ 成膜速度a I X 10− ’  A / secの
下に高周波イオンブレーティングにより、膜厚scg交
流電圧(0,5Hz )を印加して陽極酸化を行ない、
透明な酸化イリジウム薄膜(D)に変えた。
(Comparative Example 1) The glass substrate (8) used in Example 1 was prepared, and the following conditions were applied on the conductive layer (l): Evaporation source: metal Ir Degree of vacuum: 5 X 10-'Torr lr partial pressure: 3 X 10-'Torr substrate temperature = 20
C. Anodizing was performed by applying an alternating current voltage (0.5 Hz) with a film thickness of scg using high-frequency ion blating at a film formation rate of a I X 10-' A/sec.
It was changed to a transparent iridium oxide thin film (D).

酸化イリジウム薄膜(D)の上に実施例1と同様に(C
)層、(B)層及び(A)J’i#を積層してECUを
作成し封止したところ、得られたECDは発色電圧印加
前から、やや褐色に着色しており、大気中で±1.5ボ
ルトの0.5 Hz交流電圧を500分印加しても、完
全には無色透明にならながりた。
On the iridium oxide thin film (D), (C
) layer, (B) layer, and (A) J'i# were laminated to form an ECU and sealed. The obtained ECD was colored slightly brown even before the coloring voltage was applied, and it did not work in the atmosphere. Even when a 0.5 Hz AC voltage of ±1.5 volts was applied for 500 minutes, it did not become completely colorless and transparent.

消色した後、発消色テストを行ったところ、200m5
ecでTc = 20%、150 m5ecで’rb=
75%であった。
After decoloring, we conducted a decoloring test and found that 200m5
Tc = 20% in ec, 'rb = in 150 m5ec
It was 75%.

(発明の効果) 以上の通り、本発明によれば陽極酸化が不要なので1工
程で大面積の透明な酸化イリジウム薄膜が得られる。
(Effects of the Invention) As described above, according to the present invention, a transparent iridium oxide thin film with a large area can be obtained in one step because anodization is not required.

また、得られる酸化イリジウム薄膜は、存在する大部分
のIr原子がBC性に関与し、また耐久性にすぐれてい
る。そのほか、希少で高価なIrが節約される利点もあ
る。
Furthermore, in the obtained iridium oxide thin film, most of the Ir atoms present are involved in BC properties, and the film has excellent durability. Another advantage is that rare and expensive Ir can be saved.

Claims (1)

【特許請求の範囲】 1 金属イリジウム(Ir)を、他の金属(M)又はそ
の酸化物もしくは弗化物と共に、 (a)O_2分圧:1×10^−^4〜1×10^−^
2Torr、 成膜速度比:Ir/M 重量比=0.02以上の条件下
で多元蒸着するか、又は (b)O_2分圧:5×10^−^3〜1×10^−^
1Torr、 成膜速度比:Ir/M 重量比=0.02以上の条件下
で多元スパッタリングすることにより、基板上に透明な
酸化イリジウム薄膜を製造する方法。 2 前記金属(M)がSn、In、Ta、Zn、Ti、
Si、Mg、Ca、W、MoまたはSbであることを特
徴とする特許請求の範囲第1項記載の方法。
[Claims] 1 Metal iridium (Ir) together with another metal (M) or its oxide or fluoride, (a) O_2 partial pressure: 1×10^-^4 to 1×10^-^
2Torr, film formation rate ratio: Ir/M, weight ratio = 0.02 or more, or (b) O_2 partial pressure: 5 x 10^-^3 ~ 1 x 10^-^
A method of manufacturing a transparent iridium oxide thin film on a substrate by performing multi-source sputtering under the conditions of 1 Torr, film formation speed ratio: Ir/M weight ratio = 0.02 or more. 2 The metal (M) is Sn, In, Ta, Zn, Ti,
The method according to claim 1, characterized in that the material is Si, Mg, Ca, W, Mo or Sb.
JP59152499A 1984-07-23 1984-07-23 Production of thin transparent iridium oxide film Granted JPS6129822A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59152499A JPS6129822A (en) 1984-07-23 1984-07-23 Production of thin transparent iridium oxide film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59152499A JPS6129822A (en) 1984-07-23 1984-07-23 Production of thin transparent iridium oxide film

Publications (2)

Publication Number Publication Date
JPS6129822A true JPS6129822A (en) 1986-02-10
JPH0558171B2 JPH0558171B2 (en) 1993-08-25

Family

ID=15541796

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59152499A Granted JPS6129822A (en) 1984-07-23 1984-07-23 Production of thin transparent iridium oxide film

Country Status (1)

Country Link
JP (1) JPS6129822A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0697119A1 (en) * 1993-11-12 1996-02-21 Ppg Industries, Inc. Iridium oxide film for electrochromic device
EP1986043A2 (en) 2001-09-26 2008-10-29 Chromogenics Sweden AB Electrochromic film and device comprising the same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59180526A (en) * 1983-03-30 1984-10-13 Fujitsu Ltd Electrochromic display element

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59180526A (en) * 1983-03-30 1984-10-13 Fujitsu Ltd Electrochromic display element

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0697119A1 (en) * 1993-11-12 1996-02-21 Ppg Industries, Inc. Iridium oxide film for electrochromic device
EP0697119A4 (en) * 1993-11-12 1996-06-19 Ppg Industries Inc Iridium oxide film for electrochromic device
EP1986043A2 (en) 2001-09-26 2008-10-29 Chromogenics Sweden AB Electrochromic film and device comprising the same

Also Published As

Publication number Publication date
JPH0558171B2 (en) 1993-08-25

Similar Documents

Publication Publication Date Title
US4652090A (en) Dispersed iridium based complementary electrochromic device
KR950001666B1 (en) Variable transmission glazings and method of making same
US4193670A (en) Electrochromic devices having protective interlayers
JPH04267227A (en) Electrochromic glass
CN108254989A (en) Full-solid electrochromic window and solid-state electrochromic mirror and preparation method thereof
US5164855A (en) Counter electrode for electrochromic systems
US4416517A (en) Electrochromic devices including a mica layer electrolyte
CA1111537A (en) Electrochromic devices
JPH04308819A (en) Solid-phase electro-chromic product
JPH0217093B2 (en)
JPS6129822A (en) Production of thin transparent iridium oxide film
JP2621735B2 (en) Method for producing transparent iridium oxide thin film by vacuum deposition
JPS60238818A (en) Transmission type electrochromic display device
JPS59119331A (en) Electrochromic element
JPS60247227A (en) Transmission type electrochromic display device
JPS60222827A (en) Electrochromic display device
JPS60263125A (en) Electrochromic display device
CA1265603A (en) Dispersed iridium based complementary electrochromic device
JPS6011577A (en) All-solid electrochromic display element
JPS60238819A (en) Electrochromic display device
CN116136632A (en) Quick response bistable electrochromic device
JPS61123819A (en) Electrochromic element
JP2707112B2 (en) Method for manufacturing electrochromic device
JPS61239227A (en) Electrochromic element
JP2503562B2 (en) Method for manufacturing electrochromic device