JPS6129760A - Simple on-column device - Google Patents

Simple on-column device

Info

Publication number
JPS6129760A
JPS6129760A JP15102284A JP15102284A JPS6129760A JP S6129760 A JPS6129760 A JP S6129760A JP 15102284 A JP15102284 A JP 15102284A JP 15102284 A JP15102284 A JP 15102284A JP S6129760 A JPS6129760 A JP S6129760A
Authority
JP
Japan
Prior art keywords
column
capillary
sample
heating
heating tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15102284A
Other languages
Japanese (ja)
Inventor
Yuji Takayama
雄二 高山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP15102284A priority Critical patent/JPS6129760A/en
Publication of JPS6129760A publication Critical patent/JPS6129760A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/04Preparation or injection of sample to be analysed
    • G01N30/16Injection
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/26Conditioning of the fluid carrier; Flow patterns
    • G01N30/28Control of physical parameters of the fluid carrier
    • G01N30/30Control of physical parameters of the fluid carrier of temperature
    • G01N2030/3046Control of physical parameters of the fluid carrier of temperature temperature control of column inlet
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/26Conditioning of the fluid carrier; Flow patterns
    • G01N30/28Control of physical parameters of the fluid carrier
    • G01N30/30Control of physical parameters of the fluid carrier of temperature
    • G01N2030/3053Control of physical parameters of the fluid carrier of temperature using resistive heating
    • G01N2030/3061Control of physical parameters of the fluid carrier of temperature using resistive heating column or associated structural member used as heater

Abstract

PURPOSE:To simpify the device by heating the part between the outside periphery of a heating tank and the periphery of a sample introduction part by feeding a current directly or a flexible heating body. CONSTITUTION:The sample introduction part 1 is connected to a capillary glass column 4 put in the heating tank 3 through a stainless steel capillary tube 2 whose internal surface is inactivated while penetrating the heat insulation wall 6 of a gas chromatograph body 5. Carrier gas is admitted from a carrier gas support pipe 7 fitted to the introduction part 1, mixed with scavenger gas entered from a scavenger intake 8 through the introduction part 1, tube 2, and column 4, and sent to a hydrogen flame detector 9. When the tube 2 is heated by being fed with electricity, a lead wire 11 connecting with a transformer 10 is fitted to the tube 2 with a clip 12 and the other lead wire 13 from the transformer 10 is passed through a flow passage switch 14 and fitted to a slightly downstream point from a sample injection point with a clip 15; and the other from the switch 14 is fitted to an upstream point of the sample injection point with a clip 16. Thus, the device is simplified.

Description

【発明の詳細な説明】 本発明はオンカラムキャピラリーガスクロマトグラフを
実施するのに便なるよう考案された装置に関するもので
、さらに詳しくはガスクロマトグラフ本体とは別にオン
カラム用注入部を用意したる装置にかかわる。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an apparatus devised to facilitate on-column capillary gas chromatography, and more specifically to an apparatus in which an on-column injection port is prepared separately from the gas chromatograph body. .

キャピラリーガスクロマトグラフはその分離能のすぐれ
ていることから、分析乃至分離手段として広く用いられ
ている。しかしえられたクロマトグラフのピーク比の再
現性に関しては必ずしも満足するに至らず、特に広沸点
範囲の試料については、低沸点部分は実際よシ高目に、
高沸点部分は低目にかつ特に再現性がよくないことがわ
かりてきた。熱的に不安定な試料の場合には、試料蒸発
部の熱の影響をうけて試料の一部が変質する欠点もあっ
た。それらの点を改良したのがオンカラムキャピラリー
ガスクロマトグラフである。しかしそのオンカラムガス
クロマトグラフ法では例えば無極性カラムに極性溶媒を
含んだ試料を用いた場合、試料注入量が多い場合等のと
き、ピークの形状が正ン佐でなくなる。そのときキャピ
ラリーカラムの初期温度を試料の溶媒の沸点よ!710
〜30℃高くしておくとそのような不都合が大きく軽減
される。また一般的にもキャピラリーカラムの温度は高
目の方がピークの形状は尖鋭になり好ましい。特に試料
注入量が多くなると、キャピラリーカラムの初期温度が
ひくい時はピ・−りの尖鋭さをかく。しかしオンカラム
法においては、試料を注入する際にはその試料注入用注
射器の針先はキャピラリーカラムの中に挿入されていて
かつその先端が、キャピラリーカラムを収めてちる加熱
槽内に少なくとも15mm以上入っていることが必要で
ある。従ってキャピラリーカラムの初期温度を試料の溶
媒の沸点より高くしておくと、針の先は濤媒の沸点以上
に加熱され、試料の注入操作時に分別蒸発が起り、オン
カラム法といえどもピーク比の再現性が悪くなる。それ
管さけるだめの工夫として、試料注入時の針先き到達点
と加熱槽の壁との間のキャピラリーカラムを部分的に強
制冷却する方法が既に公知になっている(特願昭55−
44991 )oまたさらに試料注入時の針先端到着点
の温度が常温のような温度でも試料の注入点とキャピラ
リーカラム加熱槽との間に注入帯(in−jec目on
  zone )と呼ばれる急速加熱ができる直線のキ
ャピラリーカラム部分を設けると、試料注入量が8 P
Lの場合でもピークは尖鋭になりうろことも発表されて
いる( J、V、11inshaw、 Jrand  
F、J、Yang、  )IRc  &  CC655
4(1983))。
Capillary gas chromatographs are widely used as analysis and separation means because of their excellent separation ability. However, the reproducibility of the obtained chromatographic peak ratios is not necessarily satisfactory, and especially for samples with a wide boiling point range, the low boiling point portion is actually much higher.
It has been found that the high boiling point part is low and the reproducibility is not particularly good. In the case of thermally unstable samples, there is also the disadvantage that part of the sample changes in quality due to the influence of heat from the sample evaporation section. On-column capillary gas chromatographs have improved on these points. However, in the on-column gas chromatography method, for example, when a sample containing a polar solvent is used in a non-polar column, or when a large amount of sample is injected, the shape of the peak becomes irregular. At that time, the initial temperature of the capillary column is the boiling point of the sample solvent! 710
If the temperature is increased by ~30°C, such inconveniences will be greatly alleviated. In general, the higher the temperature of the capillary column, the sharper the peak shape, which is preferable. Especially when the amount of sample injected is large and the initial temperature of the capillary column is low, the piping becomes sharp. However, in the on-column method, when injecting a sample, the needle tip of the sample injection syringe is inserted into the capillary column, and the tip is at least 15 mm deep into the heating tank containing the capillary column. It is necessary. Therefore, if the initial temperature of the capillary column is set higher than the boiling point of the sample solvent, the tip of the needle will be heated above the boiling point of the profiling medium, and fractional evaporation will occur during the sample injection operation, resulting in the reproducibility of peak ratios even in the on-column method. Sexuality becomes worse. As a way to avoid this problem, a method is already known in which the capillary column is partially forcedly cooled between the point where the needle tip reaches when injecting the sample and the wall of the heating tank (Japanese Patent Application No. 1983-
44991) o Furthermore, even if the temperature at the arrival point of the needle tip during sample injection is room temperature, there is an injection zone (in-jec on) between the sample injection point and the capillary column heating tank.
By providing a straight capillary column section called zone) that can perform rapid heating, the sample injection volume can be reduced to 8 P.
Even in the case of L, it has been announced that the peak becomes sharp and scales appear (J, V, 11inshaw, Jrand
F, J, Yang, )IRc & CC655
4 (1983)).

前者の場合は高沸点成分を多く含む試料を多量に注入し
た場合には、試料の気化に時間がかかりピークの尖鋭が
のぞめない。後者の場合は、キャピラリーカラムに液状
で注入されたものが流下して加熱注入帯に入るようにな
っている。従ワて加熱槽が上蓋式のガスクロマトグラフ
には適用困難である。また上蓋式のガスクロマトグラフ
に注入帯を正面パネルに装着すること娘、正面パネルの
スペースの点、並びに前面に20 cm程注入帯の収ま
った粕が突出することでもこの方法は不適当である。さ
らにこの方法は注入帯を加熱したのち、降温させるには
冷却した空気を箱内に強制的に送スする必要がある。
In the former case, when a large amount of a sample containing many high-boiling components is injected, it takes time to vaporize the sample, and a sharp peak cannot be seen. In the latter case, the liquid injected into the capillary column flows down into the heated injection zone. It is difficult to apply this method to a gas chromatograph with a top lid type heating tank. This method is also inappropriate because the injection zone must be attached to the front panel of a top-lid type gas chromatograph, because of the space on the front panel, and because the lees with the injection zone protrude about 20 cm from the front. Furthermore, this method requires that after the injection zone is heated, cooled air must be forced into the box to cool it down.

本発明者はこれらの問題点を解決し且つ既存の如町なる
ガスクロマトグラフにも適用でき、それにより容易にキ
ャピラリーガスクロマトグラフが行える簡易な装置を考
案した。
The present inventors have devised a simple device that solves these problems, can be applied to existing conventional gas chromatographs, and can thereby easily perform capillary gas chromatographs.

本発明にか\わる装置は通常のキャピラリーガスクロマ
トグラフの他に少なくともオンカラム操作ができる試料
導入部とガスクロマトグラフ本体の加熱槽内のキャピラ
リーカラムとをむすぶ可撓性のあるキャピラリーチュー
ブ、及びそのキャピラリーチーーブに沿って通電加熱が
できる設備を必要とする。オンカラム試料導入部の構造
は既に各種のものが発表されているが、本発明において
はそれらの何れをも使用でき、その構造により何等制限
されるものではない。加熱槽内のキャピラリーカラムの
材質はガラス、熔融石英或いは金属等の何れでもよく、
キャピラリーカラムとしては公知のキャピラリーカラム
と変る特別な点はない。
In addition to a conventional capillary gas chromatograph, the device according to the present invention includes at least a flexible capillary tube that connects a sample introduction section that can perform on-column operation and a capillary column in a heating tank of the gas chromatograph body, and a capillary tube for the capillary tube. Requires equipment that can conduct electrical heating along the curve. Although various structures of the on-column sample introduction section have already been announced, any of them can be used in the present invention, and the structure is not limited in any way. The material of the capillary column in the heating tank may be glass, fused silica, metal, etc.
There is no special difference between the capillary column and known capillary columns.

該キャピラリーカラムとオンカラム試料導入部との間を
結ぶ可撓性キャビ2リーチー−プの材質は可撓性でかつ
少なくとも150〜200℃程度の耐熱性のあるもので
あればよくその内壁面には液相が塗ってあってもよいが
、裸のま\の方がよい。
The material of the flexible cavity 2 Lee Cheap connecting between the capillary column and the on-column sample introduction part may be made of a material that is flexible and has a heat resistance of at least 150 to 200°C. It may be painted, but it is better to leave it bare.

現状においてはその材質としては金属又は熔融石英が適
する。加熱槽内のキャピラリーカラムが、金属もしくは
熔融石英で作られている場合、最も簡単にはそれをその
ま\用い、その端を加熱槽の壁を通して該槽の外部にみ
ちびき、それを試料導入部に接続することにより、可撓
性チー−ブの役を兼ねさせることができ、本発明はこの
ような場合も含むものである。オンカラム法においては
、注入試料の蒸発残渣によるキャビ2リーカラムの液相
の劣化をさけるために、また注入試料中の比較的高沸点
成分を加熱槽内のキャピラリーカラムへ迅速に移動させ
るという必要性から、加熱槽外から試料導入部に接続さ
れる部分の間は、キャピラリーカラムに液相が塗布され
ていないすなわち単なるキャピラリーチ纂−ブであるこ
とがよりのぞましい。キャピラリーカラムの先頭から所
要の長さ分だけ液相を塗っていないカラムの作り方は公
知であるが、その方法は繁雑であるので、普通に社液相
を塗っであるキャピラリーカラムに、可撓性のあるキャ
ピラリーテー−ブを接続して作る方が本発明を実施する
のに便利である0それらの接続方法としては、熱収縮テ
フロンパイプによる方法、接続金具による方法、シリコ
ングルーと接続パイプを用いる方法等があり、それらの
何れでもよいが、それ等の接続の際は、双方の端が密着
するようにすることが、ピークのテーリングを小さくす
る要点である0用いられるキャビラリーチー−ブの内径
は試料注入に用いられる注射器の針の外径より大きく、
通常のオンカラム法の場合と変らず、内径0.30〜0
.35 mmが使いよい。また長さは加熱槽内のキャビ
ツリーカラムの先端の位置と、加熱槽に要すればあける
べき孔の位置及び試料導入部の設置した位置によシおの
づときまりてくるのであるが、通常20〜60 cmで
よい、本発明に基づく簡易オンカラム装置の試料導入部
は加熱槽の上に置くこともできるが普通にはガスク四マ
ドグラ7本体の右側もしくは左側に置いて使用するのが
便利でらる0その時にはキャビラリーチー−ブは加熱槽
の側壁もしくは背面の壁に穴をおけてそこを通して、キ
ャビ2リーカラムと試料導入部とを結ぶことになる0キ
ヤピラリーチーープは加熱ができることが必要であり、
少なくとも試料導入部から試料をカラムに注入する際の
注射器の針の先端が到達する注入点までの間は迅速に放
冷できることがのぞましい。ま良性入点より手前すなわ
ち試料導入部方向5〜30mm位の間は、キャピラリー
チューブの他の部分とは異り、試料注入量が例えば5μ
を以下のように少ない場合には試料注入時において、注
射針中の試料の分別蒸発をさけるために、試料中の溶媒
の沸点より低い温度に保持できることを要する。そして
試料注入後はその部分も加熱できることも、特に高沸点
成分を含む試料の場合はのぞまれる。こののぞましい機
能は有しなくとも多くの場合は支障がない。キャビラリ
ーチー−ブは少なくとも加熱槽の壁の外側から試料注入
点付近までの間が加熱できることが必要であり、加熱槽
の断熱壁が厚い場合には、断熱壁の内側から注入点付近
まで加熱できるようにする0その加熱は昇温法でも定温
法でもよいが、昇温法の場合は爵剤の沸点以上の温度を
初期温度とし急速でちることが、大量注入の場合には特
にのぞまれる。それは注入試料のプラグもしくは液体が
キャピラリーカラム内に気化せず流入するのを防ぐため
である。通電加熱の方法としては実施例でのべるように
必ずしも金属キャピラリーチューブもしくは金属細管を
用いる必要はなく各種の可撓性ある加熱方法を採ること
ができる0その中、最も簡単にして最良の方法と考えら
れるのけ、キャビンリーチー−プが金属であるときには
、それに直接数ボルト乃至数lOボルトの電圧をかけ直
接通電加熱をする方法である0その際、電気の導線のキ
ャピラリーチー−ブへの取シつけ位置を選ぶことによシ
、加熱区間を必要に応じ選定できる。このような直接的
な加熱方法の他に、キャピラリーチューブに金属細管を
かぶせ上述の直接的な加熱方法に準じて通電加熱を行う
間接法、例えばガラス繊維と発熱線からなる可撓性発熱
体による方法等がある。これらの金属キャピラリー  
  ゛チ、−プもしくは金属細管の金属の種類としては
ステンレスが通電区間外への伝熱が小さいので好適であ
る0直接通電もしくは可撓性ある発熱体による間接通電
加熱方式は湾曲せるキャビンリーチ、−ブに沿って簡単
にそれを加熱できるという利点の他に通電を中止すれば
、短時間に放冷できる利点がちる。直接通電加熱方式の
ときには、必要に応じ装置の他の部分との電気的絶縁に
関しては配慮する必要が多ることがあるが、それはきわ
めて一般的な知識をもって容易に行いうるので、以下の
べる実施例においても電気的絶縁方法については説明を
省略しである0たソ一つ電気的絶縁に関し注意を忘れや
すい点としてキャピラリーチ−ブが金属キャピラリーで
かつ直接通電加熱を行う場合、用いる注射器の針は熔融
石英で作られたものを使用すべきであるということであ
る。金属の針を使用するとそれをつたわって絶縁ができ
なくなる。
At present, metal or fused silica is suitable as the material. If the capillary column in the heating tank is made of metal or fused silica, the easiest way is to use it as is, lead its end through the wall of the heating tank to the outside of the tank, and connect it to the sample introduction section. By connecting it, it can also serve as a flexible tube, and the present invention also includes such a case. In the on-column method, in order to avoid deterioration of the liquid phase in the cavity column due to evaporation residue of the injected sample, and to quickly move relatively high-boiling components in the injected sample to the capillary column in the heating tank, It is more preferable that the liquid phase is not applied to the capillary column between the portions connected to the sample introduction portion from outside the heating tank, that is, the capillary column is simply a capillary reach conduit. It is known to make a capillary column that is not coated with a liquid phase for the required length from the top of the column, but that method is complicated, so it is difficult to make a capillary column that is normally coated with a liquid phase. It is more convenient to carry out the present invention by connecting capillary tapes.The connection methods include a method using a heat-shrinkable Teflon pipe, a method using a connecting fitting, a method using silicone glue and a connecting pipe, etc. There is a Larger than the outer diameter of the syringe needle used for sample injection,
Same as normal on-column method, inner diameter 0.30~0
.. 35 mm is suitable. In addition, the length depends on the position of the tip of the cavitree column in the heating tank, the position of holes that need to be made in the heating tank, and the position of the sample introduction part. The sample introduction section of the simple on-column device based on the present invention, which usually has a length of 20 to 60 cm, can be placed on top of the heating tank, but it is usually convenient to use it by placing it on the right or left side of the main body of Gask Shimadura 7. At that time, the capillary chest will connect the cavity 2 column and the sample introduction section by making a hole in the side wall or back wall of the heating tank and passing through it. It is necessary to be able to
It is desirable that the sample can be cooled quickly at least from the sample introduction part to the injection point reached by the tip of the syringe needle when injecting the sample into the column. Unlike other parts of the capillary tube, the sample injection amount is, for example, 5 μm before the benign entry point, that is, about 5 to 30 mm in the direction of the sample introduction part.
If the amount is small as described below, it is necessary to be able to maintain the temperature lower than the boiling point of the solvent in the sample in order to avoid fractional evaporation of the sample in the injection needle during sample injection. It is also desirable to be able to heat that part of the sample after it is injected, especially in the case of samples containing high-boiling components. In many cases, there is no problem even if the device does not have this desirable function. The cavity chamber must be able to heat at least from the outside of the wall of the heating tank to the vicinity of the sample injection point, and if the heating tank has thick insulated walls, it must be able to heat from the inside of the insulation wall to the vicinity of the injection point. 0 Heating may be done by a heating method or a constant temperature method, but in the case of a heating method, it is desirable to set the initial temperature to a temperature higher than the boiling point of the additive and to heat it quickly, especially when large quantities are injected. . This is to prevent the plug or liquid of the injection sample from flowing into the capillary column without being vaporized. As described in the examples, it is not always necessary to use a metal capillary tube or metal thin tube as a method of heating with electricity, and various flexible heating methods can be used.Among them, this method is considered to be the simplest and best method. However, when the capillary chest is made of metal, the method is to apply a voltage of several volts to several 10 volts directly to it and heat it by direct current. By choosing the soaking position, the heating section can be selected as required. In addition to this direct heating method, there is also an indirect method in which a capillary tube is covered with a thin metal tube and electrically heated in accordance with the above-mentioned direct heating method, such as using a flexible heating element made of glass fiber and heating wire. There are methods etc. These metal capillaries
As for the type of metal for the pipe or thin metal tube, stainless steel is preferred because it has less heat transfer outside the energized section.Direct energization or indirect energization heating using a flexible heating element is a curved cabin reach, - In addition to the advantage of being able to easily heat it along the curve, it also has the advantage of allowing it to cool down in a short time if the electricity is turned off. When using the direct current heating method, it is often necessary to take into consideration electrical insulation from other parts of the device, but this can be easily done with very general knowledge, so the following examples are provided. The explanation of the electrical insulation method is omitted here, but one thing that is easy to forget about electrical insulation is that when the capillary reach is a metal capillary and is heated by direct current, the needle of the syringe used is This means that one made of fused silica should be used. If you use a metal needle, you will not be able to insulate it.

次に実施例をあげて、さらに本発明を理解するのに便な
るように説明をする。
Next, examples will be given and the present invention will be explained for convenience in further understanding.

実施例1 第1図は本発明に基づく簡易オンカラム装置をガスク四
マドグラフ本体にとりつけたところを上からみた1例で
ある9図において試料導入部1は内面不活性化したステ
ンレスキャピラリーチー−ブ(日本クロマト工業株式会
社製RA835 、内径0、35 mm長さ50cm)
2によシ加熱槽3に収められたキャピラリーガラスカラ
ム4にガスクロマトゲ27本体5の断熱壁6を貫通して
接続されている。キャリアーガスは試料導入部1にとり
つけられたキャリアーガス支給管7より入り試料導入部
1、キャビラリーチー−ブ2、キャピラリーカラム4を
経て、スカベンジャー供給口8よシ入やできたスカベン
ジャーガスと混合し水素炎検出器9に送られる。キャピ
ラリーチューブ2を通電加熱するにはトランス10につ
らなるリード線11をクリップ12をもりてキャビツリ
ーチ−ブ2にとシつけ、トランス10からの他方のリー
ド線13は流路切換器14を経て、試料注入点より少し
下流の点にクリップ15をも9てつらなる。
Example 1 Figure 1 shows an example of a simple on-column device according to the present invention attached to a gas cylinder capillary tube body, viewed from above. RA835 manufactured by Nippon Chromato Industries Co., Ltd., inner diameter 0, 35 mm, length 50 cm)
A gas chromatograph 27 is connected to a capillary glass column 4 housed in a heating tank 3 through a heat insulating wall 6 of a main body 5 of the gas chromatograph 2 . The carrier gas enters from the carrier gas supply pipe 7 attached to the sample introduction section 1, passes through the sample introduction section 1, the cavillary chamber 2, and the capillary column 4, and is mixed with the scavenger gas that enters the scavenger supply port 8. It is sent to the hydrogen flame detector 9. To heat the capillary tube 2 with electricity, the lead wire 11 connected to the transformer 10 is attached to the cavity tree tube 2 using a clip 12, and the other lead wire 13 from the transformer 10 is connected to the sample via the flow path switch 14. A clip 15 is also attached at a point slightly downstream of the injection point.

流路切換器14からの他の一方の線は該注入点の上流の
適当なる点にクリップ16をもって取りつけである。
The other line from the flow diverter 14 is attached with a clip 16 at a suitable point upstream of the injection point.

第2図は本発明に基づく簡易オンカラム装置を用いて行
って見られたガスクロマトダラムの一例を示したもので
ある0操作条件の大要は次のようである0 キャピラリーガラスカラム4:内径0.28馴長さ25
m1液相メチルシリコンゴム;キャリアーガス:窒素線
速度6 Q eg/秒;加熱槽3の初期温度及び昇温速
度=90℃、10℃/分;キャビラリーチーーブ2の初
期温度:クリップ12がら15の間80℃;注入点の初
期温度60C;ギヤピラリーチ4−プ2の昇温速度:ク
リップ12から16の間20℃/分;試料注入量=10
μt;試料の内容:n−アルカン類Cs、Cro 、 
Ctt、C14XC18% CIa、 Cue及びCo
のn−ヘキサン溶液 試料のキャビラリーチー−ブへの注入手順は、熔融石英
針をつけた注射器に試料を10μを採取し、第1図にお
いて、熔融石英針が貫通できる太さの針をつけた針ガイ
ド17を試料導入部1のセプタムゴム18に刺し、注射
器の針の先端を針ガイド17の穴をくぐらせて、キャピ
ラリーチ−ブ2の注入点に至らしめ、約7秒間で試料を
注入し、注射器を針ガイド17と共にセプタムゴム18
から抜き、切換器14を図示の位置力1ら切換えてキャ
ビラリーチー−ブ2と加熱槽3の昇温をはじめた。
Figure 2 shows an example of a gas chromatography column observed using the simple on-column device according to the present invention.The operating conditions are as follows.Capillary glass column 4: Inner diameter 0 .28 fitting length 25
m1 liquid phase methyl silicone rubber; Carrier gas: Nitrogen linear velocity 6 Q eg/sec; Initial temperature and temperature increase rate of heating tank 3 = 90°C, 10°C/min; Initial temperature of cavillary cheese 2: Clip 12 80°C between clips 15; initial temperature of injection point 60°C; heating rate of gear pillar reach 4-2: 20°C/min between clips 12 and 16; sample injection amount = 10
μt; Contents of sample: n-alkanes Cs, Cro,
Ctt, C14XC18% CIa, Cue and Co
The procedure for injecting an n-hexane solution sample into the cavillary chamber is to take a 10μ sample into a syringe fitted with a fused silica needle, and as shown in Figure 1, attach a needle thick enough to be penetrated by the fused silica needle. Insert the needle guide 17 into the septum rubber 18 of the sample introduction part 1, pass the tip of the needle of the syringe through the hole in the needle guide 17, reach the injection point of the capillary reach 2, and inject the sample in about 7 seconds. Then insert the syringe into the septum rubber 18 along with the needle guide 17.
The switching device 14 was switched from the position force 1 shown in the figure, and the temperatures of the cavillary cheese 2 and the heating tank 3 began to rise.

第2図において、19〜27は夫々溶剤n−ヘキサン、
溶質n−アルカン類C8、Cso 、 C12,CIa
 。
In FIG. 2, 19 to 27 are the solvent n-hexane,
Solute n-alkanes C8, Cso, C12, CIa
.

C1a、Cta、C堂O及びC3,にもとづくピークで
ある。
These are peaks based on C1a, Cta, CdoO, and C3.

第3図は第1図におけるキャビ2リーチユープ2を加熱
せずに行りた場合見られたクロマドグ2フである。本発
明に基づく第2図と対比すると、本発明の簡易オンカラ
ム装置のキャビ2リーチユープの加熱効果は明らかであ
るOしかもその加熱電流を切断すると250℃から50
℃までの温度降下は約90秒の放冷のみで達せられた。
FIG. 3 shows the chroma dog 2 flap that was observed when the cavity 2 reach up 2 in FIG. 1 was performed without heating. When compared with FIG. 2 based on the present invention, the heating effect of the cavity 2 reach-up of the simple on-column device of the present invention is obvious.
The temperature drop to ℃ was achieved only by cooling for about 90 seconds.

実施例2 第4図は本発明に基づく簡易オンカラム装置のコック式
の、試料導入部28を加熱槽3の上に設けた場合におけ
るガスクロマトグラム測定中の図を示したものであるo
しかしてキャピラリーカラム4は熔融石英で作られてい
る0その頭は加熱槽3の上部断熱壁6を貫通したステン
レス細管29を通υ、試料導入部28に固着されて居、
他の末端は検出器9に至っておシ、キャピラリーカラム
4の重量は主として支え棒30で支持されている。
Example 2 FIG. 4 shows a diagram during gas chromatogram measurement when the cock-type sample introduction part 28 of the simple on-column device based on the present invention is provided above the heating tank 3.
The capillary column 4 is made of fused silica, and its head passes through a stainless steel thin tube 29 that penetrates the upper insulating wall 6 of the heating tank 3, and is fixed to the sample introduction part 28.
The other end reaches the detector 9, and the weight of the capillary column 4 is mainly supported by the support rod 30.

ステンレス細管29にはトランス10からのリード線1
1.13が夫々クリップ15.12によシ結ばれている
。予めステンレス細管29の温度を試料中の醇剤の沸点
以上好ましくは沸点+20〜50℃になしておき、加熱
槽の温度も適宜昇温の初期温度にしておく。試料の注入
量が少なく、試料注入時の分別蒸発をさけるべき必要が
あるときには、第4図の状態から試料導入部28を約3
cm持ち上げその状態を保持し、コックを開き、注射器
の針の先端がその3 cmの中程にくることを確認して
試料を注入し、それを抜き去りコックを閉じる。その後
直ちに試料導入部28を第4図の状態に戻し、ステンレ
ス細管29を急速に、加熱槽3を適当な速度で昇温させ
る0ステンレス細管29は250℃に到達した後は多く
の場合、その加熱をやめてよい。次回の試料注入には再
び、試料導入部28を約3 cm持ち上げれば、試料注
入点は急速に放冷する。試料注入量が多くて、分別蒸発
を無視してよい場合には、第4図の状態のまま注入操作
を行うこともできる。本例は言うまでもなく第1図の可
撓性キャピラリーチー−ブ2のはたらきを、熔融石英キ
ャピラリーカラムが兼ねた例でちる。
The lead wire 1 from the transformer 10 is connected to the stainless steel tube 29.
1.13 are tied to clips 15.12, respectively. The temperature of the stainless steel thin tube 29 is set in advance to a temperature higher than the boiling point of the liqueur in the sample, preferably 20 to 50° C. above the boiling point, and the temperature of the heating tank is set to an appropriate initial temperature for heating. When the amount of sample to be injected is small and it is necessary to avoid fractional evaporation during sample injection, the sample introduction part 28 should be moved from the state shown in FIG.
Raise the syringe by 3 cm, hold it in that position, open the cock, make sure that the tip of the syringe needle is in the middle of that 3 cm, inject the sample, then remove it and close the cock. Immediately thereafter, the sample introduction section 28 is returned to the state shown in Fig. 4, and the stainless steel tube 29 is heated rapidly and the heating tank 3 is heated at an appropriate rate. You can stop heating. For the next sample injection, if the sample introduction part 28 is lifted about 3 cm again, the sample injection point will be allowed to cool rapidly. If the amount of sample to be injected is large and the fractional evaporation can be ignored, the injection operation can be carried out in the state shown in FIG. 4. Needless to say, this example is an example in which a fused silica capillary column serves the function of the flexible capillary tube 2 shown in FIG. 1.

実施例3 第5図は本発明に基づ〈実施例であって、実施例1の第
1図に示したステンレスキャピラリーチー−ブ2の加熱
方法が直接通電法であるのに対し、本例にあってはキャ
ピラリーチ孤−ブ2にガラス繊維と発熱線からなる管状
物31をかぶせたものであって、第5図は試料注入直前
の状態を示している。加熱槽3を所定の初期温度にして
おき、管状物31の温度を150〜250°の温度にな
し、そのリード線13側の端と試料導入部との間を3〜
5 am程度おけておく。試料の注入に当っては、注射
針の先端をその間隙の中間に至らしめて試料を注入後、
要すれば管状物31を少しく引き出してその間隙をなる
べくなくするようにする。
Embodiment 3 FIG. 5 shows an embodiment based on the present invention, in which the method of heating the stainless steel capillary cheese 2 shown in FIG. 1 of Embodiment 1 is a direct energization method. In this case, a capillary reach tube 2 is covered with a tubular member 31 made of glass fiber and a heating wire, and FIG. 5 shows the state immediately before sample injection. The heating tank 3 is set to a predetermined initial temperature, the temperature of the tubular object 31 is set to a temperature of 150 to 250°, and the temperature between the end on the lead wire 13 side and the sample introduction part is 3 to 250°.
Leave it for about 5 am. When injecting the sample, bring the tip of the syringe needle to the middle of the gap, inject the sample, and then
If necessary, pull out the tubular member 31 a little to eliminate the gap as much as possible.

上述の諸例で示したように、本発明に基づくと、加熱槽
内のキャピラリーカラムの温度、試料を移送する部分の
すなわちキャピラリーチ鳳−ブもしくはそれの役をする
部分の温度及び試料注入点の温度を夫々独立に選べるの
で、最適な条件で操作できる利点があり、キャピラリー
チー−ブもしくはそれの役をする部分の加熱は通電によ
る直接もしくは間接方式でちるので、その部分が曲線で
あっても加熱は容易であり、かつ放冷も迅速である〇そ
の上試料導入部はガスクロマトグラフ本体とは別個に設
けてあり、それと加熱槽内のキャピラリーカラムとの接
続は該カラムが可撓性材質であればそれをのばして行い
、もしくは可撓性キャピラリーチー−ブを用いて行うの
で如何なるガスクロマトグラフをも簡易にオンカラム装
置に変換できる。しかも試料導入部を本体に取りつけで
あるオンカラム装置に比べ性能的には何等劣ることがな
いので、本発明による簡易オンカラム装置はきわめて有
用である。
As shown in the above-mentioned examples, according to the present invention, the temperature of the capillary column in the heating tank, the temperature of the part that transfers the sample, that is, the part that serves as the capillary reach screw, and the temperature of the sample injection point are controlled. Since the temperature can be selected independently, it has the advantage of being able to operate under optimal conditions.The heating of the capillary cheese or the part that serves as it is done directly or indirectly by energizing, so even if the part is curved. Heating is easy and cooling is quick. Moreover, the sample introduction part is provided separately from the gas chromatograph body, and the connection between it and the capillary column in the heating tank is easy even if the column is made of flexible material. Since it can be carried out by stretching it or by using a flexible capillary tube, any gas chromatograph can be easily converted into an on-column device. Furthermore, the simple on-column device according to the present invention is extremely useful since it is not inferior in performance to an on-column device in which the sample introduction section is attached to the main body.

4、図面簡単な説明 第1図、第4図及び第5図は本発明に基づく簡易オンカ
ラム装置もしくはその一部を示したもので、図において
、1.28・・・・・・試料導入部、2・・・キャピラ
リーチー−ブ、3・・・・・・加熱槽、4・・・・・・
キャピラリーカラム、5・・・・・・ガスクロマトグラ
フ本体、6・・・・・・断熱壁、7・・・・・・キャリ
アーガス支給管、8・・・・・・スカベンジャーガス供
給口、9・・・・・・検出器、tJO・・・・・・トラ
ンス、11.13・・・・・・リード線、12.15.
16・・・・・・クリップ、14・・・・・・流路切換
器、17・・・・・・針ガイド、18・・・・・・セプ
タムゴム、30・・・・・・支持棒、31・・・・・・
管状物第2図、第3図は夫々本発明による装置、本発明
によらない装置で測定されたガスクロマトグラフの例で
ある。図において、19・・・・・・溶媒n−へキザン
によるピーク、20.21.22.23.24.25.
26及び27・・・・・・夫々n−アルカンCs 、 
C5oXCt*) Csa、 C14,Cxs 、 C
xo及びCHによるピーク
4. Brief description of the drawings Figures 1, 4 and 5 show a simple on-column device or a part thereof based on the present invention. , 2... Capillary cheese, 3... Heating tank, 4...
Capillary column, 5...Gas chromatograph body, 6...Insulating wall, 7...Carrier gas supply pipe, 8...Scavenger gas supply port, 9... ...Detector, tJO...Transformer, 11.13...Lead wire, 12.15.
16... Clip, 14... Flow path switch, 17... Needle guide, 18... Septum rubber, 30... Support rod, 31...
FIGS. 2 and 3 are examples of gas chromatographs in which measurements were taken using an apparatus according to the present invention and an apparatus not according to the present invention, respectively. In the figure, 19...peaks due to solvent n-hexane, 20.21.22.23.24.25.
26 and 27... each n-alkane Cs,
C5oXCt*) Csa, C14, Cxs, C
Peaks due to xo and CH

Claims (5)

【特許請求の範囲】[Claims] (1)キャピラリーカラムを収めたる加熱槽を含むガス
クロマトグラフ本体とは別にオンカラム用試料導入部を
用意し、それと加熱槽内のキャピラリーカラムとを加熱
槽の壁を通したる可撓性キャピラリーチューブを用いて
接続するか、もしくはキャピラリーカラムが可撓性材料
よりなるときはその一端をキャピラリーチューブの役を
兼ねさせて接続し、少なくとも加熱槽外側付近と、試料
導入部付近との間を直接通電或いは可撓性発熱体で加熱
できるようにした構造を有することを特徴とする簡易オ
ンカラム装置
(1) Prepare an on-column sample introduction section separately from the gas chromatograph body that includes a heating tank that houses the capillary column, and connect it and the capillary column in the heating tank using a flexible capillary tube that passes through the wall of the heating tank. Or, if the capillary column is made of a flexible material, connect one end of it to serve as a capillary tube, and at least connect the area near the outside of the heating tank and the area near the sample introduction part with a direct current or a flexible material. A simple on-column device characterized by having a structure that allows heating with a heating element.
(2)キャピラリーチューブがステンレスキャピラリー
で、かつそれに直接通電加熱を行う特許請求の範囲第1
項記載の簡易オンカラム装置
(2) Claim 1, in which the capillary tube is a stainless steel capillary, and the capillary tube is directly energized and heated.
Simple on-column device described in section
(3)加熱槽の側部もしくは背部に穴をあけ、ガスクロ
マトグラフ本体の横におかれたる試料導入部と加熱槽内
のキャピラリーカラムとを、ガラス繊維と発熱体で被っ
たキャピラリーチューブで連結したる特許請求の範囲第
1項記載の簡易オンカラム装置
(3) Make a hole in the side or back of the heating tank and connect the sample introduction part placed next to the gas chromatograph body and the capillary column inside the heating tank with a capillary tube covered with glass fiber and a heating element. Simple on-column device according to claim 1
(4)キャピラリーカラムが熔融石英もしくはステンレ
スキャピラリーであり、それらがキャピラリーチューブ
の役を兼ね試料導入部に連結され、かつ加熱槽の断熱槽
付近から試料導入部付近までの間が、間接もしくは直接
通電加熱できるようにしてある特許請求の範囲第1項記
載の簡易オンカラム装置
(4) The capillary column is a fused silica or stainless steel capillary, which also serves as a capillary tube and is connected to the sample introduction part, and the area from near the insulation tank of the heating tank to near the sample introduction part is indirectly or directly heated by electrical current. A simple on-column device according to claim 1, which is configured to enable
(5)加熱槽の上部に試料導入部を設けた特許請求の範
囲第1項記載の簡易オンカラム装置
(5) A simple on-column device according to claim 1, in which a sample introduction part is provided in the upper part of the heating tank.
JP15102284A 1984-07-20 1984-07-20 Simple on-column device Pending JPS6129760A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15102284A JPS6129760A (en) 1984-07-20 1984-07-20 Simple on-column device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15102284A JPS6129760A (en) 1984-07-20 1984-07-20 Simple on-column device

Publications (1)

Publication Number Publication Date
JPS6129760A true JPS6129760A (en) 1986-02-10

Family

ID=15509587

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15102284A Pending JPS6129760A (en) 1984-07-20 1984-07-20 Simple on-column device

Country Status (1)

Country Link
JP (1) JPS6129760A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6682699B2 (en) 1997-01-27 2004-01-27 Rvm Scientific, Inc. Reduced power consumption gas chromatograph system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6682699B2 (en) 1997-01-27 2004-01-27 Rvm Scientific, Inc. Reduced power consumption gas chromatograph system

Similar Documents

Publication Publication Date Title
US5215556A (en) Apparatus and method for establishing a temperature gradient in a chromatography column
Martin et al. Gas–liquid chromatography: the gas-density meter, a new apparatus for the detection of vapours in flowing gas streams
JP3320065B2 (en) Chromatography technology and equipment
CA2280798C (en) Improved method and device for solid phase microextraction
US5402668A (en) High-resolution beer volatile analysis method
US3897679A (en) Method of chemical analysis and apparatus for such analysis
US20060054558A1 (en) Mobile phase treatment for chromatography
US4559063A (en) Multi purpose on column injection
Ewels et al. Electrically-heated cold trap inlet system for high-speed gas chromatography
DE3669402D1 (en) METHOD AND DEVICE FOR AUTOMATICALLY CONVERSING SMALL QUANTITIES OF LIQUID SAMPLES IN GAS CHROMATOGRAPHY.
US5596876A (en) Miniaturized cryogenic trap apparatus
US6547852B2 (en) Transverse thermal modulation
Schomburg et al. Cold sample injection with either the split or splitless mode of temperature-programmed sample transfer: Design and testing of a new, electrically heated construction for universal application of different modes of sampling
Rawdon Modified flame ionization detector for supercritical fluid chromatography
US4440550A (en) On-column injector
JPS6129760A (en) Simple on-column device
Teske et al. Large-volume PTV injection: new results on direct injection of water samples in GC analysis
Cronin The use of precolumn reactions for the selective removal of compounds bearing alcohol or carbonyl functional groups in the gas chromatographic analysis of mixtures
JPH0238967A (en) Supercritical fluid chromatography
JPS61194356A (en) Direct non-vaporization on-column injection method and device
US3292420A (en) Liquid chromatography
Springston Cryogenic-focusing, ohmically heated on-column trap for capillary gas chromatography
Tipler et al. Optimization of conditions for high temprature capillarary gas chromatography using a split‐mode programmable temprature vaporizing injection system
US5001071A (en) Vented retention gap capillary gas chromatography method
EP0513086B1 (en) Gas chromatography method and apparatus