JPS6129750A - Nuclear magnetic resonance device - Google Patents

Nuclear magnetic resonance device

Info

Publication number
JPS6129750A
JPS6129750A JP15124784A JP15124784A JPS6129750A JP S6129750 A JPS6129750 A JP S6129750A JP 15124784 A JP15124784 A JP 15124784A JP 15124784 A JP15124784 A JP 15124784A JP S6129750 A JPS6129750 A JP S6129750A
Authority
JP
Japan
Prior art keywords
nucleus
resonance
deuterium
sample
magnetic field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15124784A
Other languages
Japanese (ja)
Inventor
Tadatetsu Hattori
服部 忠鐵
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP15124784A priority Critical patent/JPS6129750A/en
Publication of JPS6129750A publication Critical patent/JPS6129750A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/62Arrangements or instruments for measuring magnetic variables involving magnetic resonance using double resonance

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Magnetic Resonance Imaging Apparatus (AREA)

Abstract

PURPOSE:To obtain an inexpensive device by detecting the decoupling of a heavy hydrogen nucleus in a sample and the detection of a heavy hydrogen nuclear resonance signal for magnetic field locking of an external sample on a time-division basis. CONSTITUTION:A resonance frequency signal generated by a resonance frequency source 2 for a carbon nucleus is passed through a gate circuit 6 and amplified 9, and applied to a probe 13 to activate the resonance of the carbon nucleus. Further, the output signal of a decoupling frequency source 3 for a hydrogen nucleus is amplified 10 and applied to the probe 13, thereby decoupling the hydrogen nucleus. The resonance signal of the carbon nucleus obtained by the probe 13 is amplified 15 and detected 18, and its detection signal is Fourier-transformed 21 to obtain the spectrum of the carbon nucleus. The output signal of a magnetic field locking system frequency source 5 for the heavy hydrogen nucleus, on the other hand, is passed through a gate circuit 8, switch 11, probe 13 and amplified 16, detected 19 and further amplified 20, and fed back 14. When the switch 11 is operated, the output signal of the frequency source 4 is applied to the heavy hydrogen nucleus of a measured sample through a gate 7 and the switch 11 to detect the resonance signal of the heavy hydrogen nucleus of the external sample.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は核磁気共鳴装置に関するものでおる。[Detailed description of the invention] [Field of application of the invention] The present invention relates to a nuclear magnetic resonance apparatus.

〔発明の背景〕[Background of the invention]

一般のフーリエ変換形核磁気共鳴装置(FT・NMR)
は、均一な直流磁場の中に測定試料を置き、それに測定
核の共鳴周波数に対応する高周波パルスを印加して測定
核全体の共鳴を同時に励起し、その共鳴信号を所望の周
波数帯域を持つ受信器で受信した後A/D変換器で変換
してデータ処理装置に所定の周期で取込み、フーリエ変
換によって測定試料の周波数スペクトルを得るように構
成されている。
General Fourier transform nuclear magnetic resonance apparatus (FT/NMR)
The method places the measurement sample in a uniform DC magnetic field, applies a high-frequency pulse corresponding to the resonant frequency of the measurement nucleus to it, simultaneously excites the resonance of the entire measurement nucleus, and receives the resonance signal in the desired frequency band. After receiving the signal, it is converted by an A/D converter and taken into the data processing device at a predetermined period, and the frequency spectrum of the measurement sample is obtained by Fourier transformation.

このような装置において、測定に関しては種々の必要条
件がある。先ず均一な直流磁場は共鳴を励起する周波数
源、デカップルする周波数源などと相関をとる必要があ
ることである。そのために、試料中の溶媒の重水素核の
共鳴信号を検出し、これを直流磁場にフィードバックし
て直流磁場の安定化を計ることが従来から実施されてい
る。この安定化制御も更に詳しく見ると、測定試料の中
の重水素核の共鳴信号を使用する場合と、外部試料の重
水素核の共鳴信号を使用する場合がある。前者の場合は
、測定試料と全く同じ位置の磁場強度を検出することが
できるが溶媒和重水素化したものを使用せねばならない
という欠点がある。一方、後者の場合は測定試料には何
の制約もいらないが、測定試料と異なった位置の磁場強
度を検出するので完全な磁場安定化を達成できず、また
測定試料位置の磁場均一度の調整(分解能の調整)を実
施 −できないという欠点がある。
In such devices, there are various requirements regarding measurements. First, a uniform DC magnetic field must be correlated with a frequency source that excites resonance, a frequency source that decouples, etc. To this end, it has been conventional practice to detect the resonance signal of deuterium nuclei in the solvent in the sample and feed it back to the DC magnetic field to stabilize the DC magnetic field. Looking at this stabilization control in more detail, there are cases in which the resonance signal of deuterium nuclei in the measurement sample is used, and there are cases in which the resonance signal of deuterium nuclei in the external sample is used. In the former case, it is possible to detect the magnetic field intensity at exactly the same position as the measurement sample, but there is a drawback that a solvated deuterated sample must be used. On the other hand, in the latter case, no restrictions are required on the measurement sample, but complete magnetic field stabilization cannot be achieved because the magnetic field strength is detected at a position different from that of the measurement sample, and the magnetic field uniformity at the measurement sample position cannot be adjusted. (adjustment of resolution) cannot be carried out.

一方、測定核が他の核とスピン結合することによってス
ペクトルビークが分離して複雑になり、感度が低下する
ことがある。そこで、これをさけるために異なる核との
スピン結合をデカップルする目的で他の核の共鳴周波数
の高周波電力を印加する必要がある。例えば炭素核を測
定するときには水素核の共鳴周波数帯域をもつ高周波電
力を試料に注入し、水素核のスピン結合をデカップルし
て炭素核のスペクトルを単純、高感度にして測定′y1
・ 従って、このような従来装置では重水素化した試料の化
学構造解析には極めて不都合である。すなわち、一般の
試料は、炭素核と水素核と゛で化学構造を決めるものが
多いため、水素核をデカップルした炭素核のスペクトル
と水素核のスペクトルでケミカルシフト、スピン結合な
どの情報を得ることによってスペクトルの帰属が可能と
なる。しかし、上記の重水素化した試料では重水素核を
デカップルした炭素核スペクトルと重水素核スペク、ト
ルが必要となる。このため、測定試料の溶媒の重水素核
の共鳴信号の検出に使用する周波数源。
On the other hand, when a measurement nucleus is spin-coupled with another nucleus, the spectral peaks become separated and complicated, which can reduce sensitivity. Therefore, in order to avoid this, it is necessary to apply high frequency power at the resonance frequency of the other nucleus in order to decouple the spin coupling with the other nucleus. For example, when measuring carbon nuclei, high-frequency power with the resonant frequency band of hydrogen nuclei is injected into the sample, and the spin coupling of hydrogen nuclei is decoupled to obtain a simple and highly sensitive spectrum of carbon nuclei.
- Therefore, such conventional equipment is extremely inconvenient for chemical structure analysis of deuterated samples. In other words, in many ordinary samples, the chemical structure is determined by carbon and hydrogen nuclei, so by obtaining information on chemical shifts, spin bonds, etc. from the spectrum of the carbon nucleus and the spectrum of the hydrogen nucleus, in which the hydrogen nucleus is decoupled. Attribution of spectra becomes possible. However, for the deuterated sample mentioned above, a carbon nuclear spectrum and a deuterium nuclear spectrum with decoupled deuterium nuclei are required. For this purpose, a frequency source is used to detect the resonance signal of the deuterium nuclei in the solvent of the measurement sample.

ゲート回路、照射回路、受信器などが重水素核用と重水
素核以外用とで二重となり、極めて高価なものとなって
しまう不都合がある。
The disadvantage is that the gate circuit, irradiation circuit, receiver, etc. are duplicated for deuterium nuclei and for non-deuterium nuclei, making them extremely expensive.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、重水素化した試料のスペクトルを一系
統の磁場ロック系で得ることができる核磁気共鳴装置を
提供すること[6る。
An object of the present invention is to provide a nuclear magnetic resonance apparatus that can obtain a spectrum of a deuterated sample using a single magnetic field lock system.

〔発明の概要〕[Summary of the invention]

本発明は、磁場ロック用の共鳴核は重水素核とし、外部
試料も重水素核とすれば磁場ロング用の周波数源、ゲー
ト回路、照射回路、受信器は重水素核の一系統でよいこ
とに着目し、測定試料中の重水素核をデカップルして炭
素核を測定するときは、磁場ロックを外部試料の共鳴信
号に切換えることによυ、重水素核のデカップルと重水
素核の外部ロック系とを時分割的に分離するように構成
したものである。
In the present invention, if the resonant nucleus for locking the magnetic field is a deuterium nucleus, and the external sample is also a deuterium nucleus, the frequency source, gate circuit, irradiation circuit, and receiver for magnetic field lengthening can be a single system for the deuterium nucleus. When measuring carbon nuclei by decoupling the deuterium nuclei in the measurement sample, switching the magnetic field lock to the resonance signal of the external sample allows decoupling of the deuterium nuclei and external locking of the deuterium nuclei. The system is configured to separate the system in a time-sharing manner.

〔発明の実施例〕[Embodiments of the invention]

以下、第1図に示す本発明の実施例について説明する。 The embodiment of the present invention shown in FIG. 1 will be described below.

第1図において、マスタークロック発生器lから発生さ
れるマスタークロックは炭素核の共鳴周波数源2、水素
核のデカップル周波数源3、重水素核のデカップル周波
数源4、重水素核の磁場ロック系周波数源5を駆動する
In FIG. 1, the master clock generated from the master clock generator 1 is a carbon nucleus resonance frequency source 2, a hydrogen nucleus decoupled frequency source 3, a deuterium nucleus decoupled frequency source 4, and a deuterium nucleus magnetic field lock system frequency. power source 5.

炭素核の共鳴周波数源2から発生される共鳴周波数信号
はゲート回路6でパルスに変換された後、高周波電力増
幅器9で増幅される。この後プローブ13I/c印加さ
れ炭素核の共鳴を励起する。また、水素核のデカップル
周波数源3の出力信号は高周波電力増幅器10で増幅さ
れてプローグ13に印加される。仁れにより、水素核が
デカップルされる。プローグ13で得られる炭素核の共
鳴信号は高周波増幅器15で増幅された後検波回路1B
で検波される。そして、その検波信号はデータ処理装置
21に取込まれ、ここでフーリエ変換される。
A resonance frequency signal generated from a carbon nucleus resonance frequency source 2 is converted into a pulse by a gate circuit 6, and then amplified by a high frequency power amplifier 9. After that, probe 13I/c is applied to excite the resonance of the carbon nucleus. Further, the output signal of the hydrogen nuclear decoupled frequency source 3 is amplified by the high frequency power amplifier 10 and applied to the prologue 13. Hydrogen nuclei are decoupled due to the bending. The carbon nucleus resonance signal obtained by the probe 13 is amplified by the high frequency amplifier 15 and then sent to the detection circuit 1B.
The wave is detected by The detected signal is then taken into the data processing device 21 and Fourier transformed there.

これによシ、炭素核のスペクトルが得られる。This provides a spectrum of carbon nuclei.

一方、重水素核の磁場ロック系周波数源5の出力信号は
ゲート回路8でパルスに変換された後、スイッチ11を
経由してプローグ13に印加される。これによ如、測定
試料の溶媒の重水素核の共鳴が励起される。この共鳴信
号は高周波増幅器16で増幅された後検波回路19で検
波され、さらにフィードバック増幅器20で直流増幅さ
れてフィードバック・コイル14にフィード/(ツクさ
れる。これにより、直流磁石12のプローグ位置での直
流磁場の強さが安定化される。スイッチ11が切シ変わ
シ、図示の反対側になると重水素核のデカップル周波数
源4の出力信号はゲート回路7およびスイッチ11を経
由して測定試料の重水素核に印加される。そして、磁場
ロック系はスイッチ11を経由して外部試料の重水素核
の共鳴信号を検出する。
On the other hand, the output signal of the frequency source 5 of the deuterium nuclear magnetic field lock system is converted into a pulse by the gate circuit 8 and then applied to the prologue 13 via the switch 11. This excites the resonance of the deuterium nucleus of the solvent of the measurement sample. This resonance signal is amplified by the high frequency amplifier 16, detected by the detection circuit 19, further DC amplified by the feedback amplifier 20, and fed to the feedback coil 14. The strength of the DC magnetic field of The magnetic field locking system detects the resonance signal of the deuterium nucleus of the external sample via the switch 11.

制御回路17は第2図のタイムチャートのようにゲート
回路7.8および増幅器16をオン・オフ動作させる。
The control circuit 17 turns on and off the gate circuit 7.8 and the amplifier 16 as shown in the time chart of FIG.

第2図(a)はゲート回路8から出力される磁場ロック
系の照射パルス波形であり、同図(b)はスイッチ11
が図示の状態の時に重水素核のデカップルのないときと
の増幅器16のゲート信号でろ!5、ONの時は増幅器
16が動作して重水素核の共鳴信号を受信している。同
図(C)はスイッチ11が切シ変って図示の状態と反対
になっている時にゲート回路7から出力される重水素核
デカップルの照射パルスであり、同図(d)はその時の
増幅器16のゲート信号である。この場合、第2図(c
)K示す重水素核のデカップル照射のパルス幅を変える
ことによpデカップルのパワーも可変できる。
2(a) shows the irradiation pulse waveform of the magnetic field lock system output from the gate circuit 8, and FIG. 2(b) shows the irradiation pulse waveform of the magnetic field lock system output from the gate circuit 8.
is the gate signal of the amplifier 16 when there is no decoupling of the deuterium nucleus in the state shown in the figure! 5. When ON, the amplifier 16 operates and receives the resonance signal of the deuterium nucleus. (C) of the same figure shows the irradiation pulse of the deuterium nuclear decoupling output from the gate circuit 7 when the switch 11 is turned off and the state is opposite to that shown in the figure, and (d) of the same figure shows the irradiation pulse of the deuterium nucleus decoupled from the amplifier 16 at that time. This is the gate signal. In this case, Fig. 2 (c
) The power of the p-decoupling can also be varied by changing the pulse width of the decoupled irradiation of the deuterium nucleus, which is shown by K.

このように本実施例によれば、磁場ロック系を従来装置
の重水素核の一系統のみで済み、重水素核をデカップル
した炭素核スペクトルを容易に得ることができる。
As described above, according to this embodiment, the magnetic field lock system requires only one system of deuterium nuclei in the conventional device, and a carbon nuclear spectrum in which the deuterium nuclei are decoupled can be easily obtained.

〔発明の効果〕〔Effect of the invention〕

尾上の説明から明らかなように本発明によれば、重水素
化した試料のスペクトルを一系統の磁場ロック系のみで
得ることができ、装置を安価に構成できるなどの優れた
効果がある。
As is clear from Onoue's explanation, the present invention has excellent effects such as being able to obtain the spectrum of a deuterated sample using only one magnetic field locking system and making it possible to construct the apparatus at low cost.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明−の一実施例を示す図、第2図は実施例
の動作を説明するだめのタイムチャートである。
FIG. 1 is a diagram showing an embodiment of the present invention, and FIG. 2 is a time chart for explaining the operation of the embodiment.

Claims (1)

【特許請求の範囲】 1、磁場ロックに使用する重水素核の共鳴信号を測定試
料および外部試料の2個所から得る核磁気共鳴装置にお
いて、重水素核をデカツプルする周波数信号と外部試料
の重水素核共鳴信号を得るための高周波信号とを切換え
るスイッチを備え、試料中の重水素核のデカツプルと外
部試料の磁場ロック用重水素核共鳴信号の検出を時分割
で行うことを特徴とする核磁気共鳴装置。 2、外部資料の重水素核の共鳴励起および共鳴信号の検
出を時分割でおこない、この周期に同期して測定試料の
重水素核をデカツプルすることを特徴とする特許請求の
範囲第1項記載の核磁気共鳴装置。 3、測定資料の重水素核をデカツプルする高周波信号の
照射時間を可変することによりデカツプルパワーを可変
することを特徴とする特許請求の範囲第1項記載の核磁
気共鳴装置。
[Claims] 1. In a nuclear magnetic resonance apparatus in which resonance signals of deuterium nuclei used for magnetic field lock are obtained from two locations, a measurement sample and an external sample, a frequency signal that decouples deuterium nuclei and deuterium from the external sample are used. Nuclear magnetism characterized by being equipped with a switch for switching between high frequency signals and high frequency signals for obtaining nuclear resonance signals, and detecting the decoupling of deuterium nuclei in the sample and the deuterium nuclear resonance signals for magnetic field locking of the external sample in a time-sharing manner. Resonator. 2. Resonant excitation of deuterium nuclei in the external data and detection of resonance signals are performed in a time-sharing manner, and the deuterium nuclei in the measurement sample are decoupled in synchronization with this cycle, as described in claim 1. nuclear magnetic resonance apparatus. 3. The nuclear magnetic resonance apparatus according to claim 1, wherein the decoupling power is varied by varying the irradiation time of the high-frequency signal that decouples the deuterium nuclei of the measurement material.
JP15124784A 1984-07-23 1984-07-23 Nuclear magnetic resonance device Pending JPS6129750A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15124784A JPS6129750A (en) 1984-07-23 1984-07-23 Nuclear magnetic resonance device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15124784A JPS6129750A (en) 1984-07-23 1984-07-23 Nuclear magnetic resonance device

Publications (1)

Publication Number Publication Date
JPS6129750A true JPS6129750A (en) 1986-02-10

Family

ID=15514482

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15124784A Pending JPS6129750A (en) 1984-07-23 1984-07-23 Nuclear magnetic resonance device

Country Status (1)

Country Link
JP (1) JPS6129750A (en)

Similar Documents

Publication Publication Date Title
US5166620A (en) Nmr frequency locking circuit
WO2000050924A8 (en) Nuclear magnetic resonance analysis of multiple samples
US5233303A (en) Portable dedicated electron spin resonance spectrometer
US4051429A (en) Nuclear magnetic resonance apparatus
JPH027022B2 (en)
US4193024A (en) Pulsed nuclear magnetic resonance spectrometers
US3879653A (en) Microwave spectrometer employing a bimodal cavity resonator
GB1331847A (en) Method for recording spin resonance spectra and a spin resonance spectrometer suitable for this
US3287629A (en) Gyromagnetic resonance methods and apparatus
US3109138A (en) Gyromagnetic resonance methods and apparatus
US3197692A (en) Gyromagnetic resonance spectroscopy
Hiblot et al. A fully homemade 14N quadrupole resonance spectrometer
JPS6129750A (en) Nuclear magnetic resonance device
US3085195A (en) Gyromagnetic resonance methods and apparatus
US4689561A (en) Nuclear magnetic resonance spectroscopy
US3886439A (en) Method of separating broad and narrow lines of a frequency spectrum
US3500178A (en) Field scanned gyromagnetic resonance spectrometer employing field tracked double resonance
GB1525564A (en) Image formation using nuclear magnetic resonance
IL101177A (en) Method and apparatus for obtaining an NMR signal having a preselected frequency domain
US3039047A (en) Spectrometer
Pearson et al. Deconvolution of broad-line NMR spectra containing overlapping modulation sidebands
SU1728748A1 (en) Method for measuring parameters of nuclear quadripole interactions with two-spin system
Mudiyanselage et al. Investigating the functionality of a data acquisition system of a proton precession magnetometer
SU864081A1 (en) Method of registering absorption signals ofelectron paramagnetic resonance
Reicherz et al. Pulsed NMR for the determination of the nuclear polarization