JPS61297014A - Power source for electric discharge machine - Google Patents

Power source for electric discharge machine

Info

Publication number
JPS61297014A
JPS61297014A JP13844385A JP13844385A JPS61297014A JP S61297014 A JPS61297014 A JP S61297014A JP 13844385 A JP13844385 A JP 13844385A JP 13844385 A JP13844385 A JP 13844385A JP S61297014 A JPS61297014 A JP S61297014A
Authority
JP
Japan
Prior art keywords
machining
charging circuit
voltage
gap
discharge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13844385A
Other languages
Japanese (ja)
Inventor
Yoshio Ozaki
尾崎 好雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP13844385A priority Critical patent/JPS61297014A/en
Publication of JPS61297014A publication Critical patent/JPS61297014A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)

Abstract

PURPOSE:To suppress the coarseness on the machining face while to lower the machining speed by providing second charging circuit for charging the stray capacity at the inter-electrode gap while blocking counterflow of current to a capacitor connected in parallel with said gap and increasing the voltage when compared with first charging circuit. CONSTITUTION:Upon turning on of a switching element 4, a capacitor 8 is charged through first current limiting resistor 5. On the other hand, the stray capacity 10 at the inter-electrode gap is charged through second current limiting resistor 20 and it will rise quickly because of low level. Consequently, the disabling time for detecting discharge can be set to low level. While since second current limiting resistor 20 and the stray capacity 10 are never influenced by the machining conditions, the disabling time is not required to be modified. Furthermore, the machining face is never roughed because there is no discharge current having long pulse width nor failure of detection of discharge, while since the oscillator is self-excited, the machining is never stopped thus to prevent droppage of machining speed.

Description

【発明の詳細な説明】 〔産業上の利用分針〕 この発明ij、電極とワークとからなる極間間隙にコン
デンサを接続して、このコンデンサに蓄えられたエネル
ギーにて放電加工全行う放電加工装置の加工用電源の改
良に関するものである。
[Detailed Description of the Invention] [Industrial Use Minute Hand] This invention ij is an electrical discharge machining device in which a capacitor is connected to the gap between electrodes and a workpiece, and the entire electrical discharge machining is performed using the energy stored in this capacitor. The present invention relates to the improvement of power supplies for machining.

[従来の技術〕 第4図げ従来の放電加工装置の加工用電源を示す回路図
であり5図において、(1)は電極、(2)はワーク、
(3)は加工用電圧源、(4)はスイッチング素子。
[Prior Art] Fig. 4 is a circuit diagram showing a machining power source of a conventional electrical discharge machining device, and in Fig. 5, (1) is an electrode, (2) is a workpiece,
(3) is a processing voltage source, and (4) is a switching element.

(5)は電流制限抵抗、 (6)(7)ばダイオード、
(8)はコンデンサであり、加工用電圧源(3)、スイ
ッチング素子(4)、抵抗(5)、ダイオード(6)(
7)と電極(1)およびワーク(2)とから形成される
極間間隙とがIK列に接続され、コンデンサ(8)が上
記極間間隙に並列に接続されてL” 4 o また、(
至)9時は分圧抵抗、α力はコンパレータでありその入
力端子には基準電圧(向及び極間間隙電圧の分圧された
電圧が接続されている。
(5) is a current limiting resistor, (6) and (7) are diodes,
(8) is a capacitor, which includes a processing voltage source (3), a switching element (4), a resistor (5), and a diode (6) (
7) and the inter-electrode gap formed by the electrode (1) and the workpiece (2) are connected to the IK row, and the capacitor (8) is connected in parallel to the above-mentioned inter-electrode gap.
(to) 9 o'clock is a voltage dividing resistor, and α force is a comparator, the input terminal of which is connected to a reference voltage (divided voltage of direction and electrode gap voltage).

また、 (10は回路中に存在する浮遊容量である。第
5図は極間間隙追従装置の構成図であり、図におbて、
  (100)は第4図に示した加工用電源、(101
3は電1i(1)を吹り付けるスライダー、 (1(1
2)は固定ヘッド、 (10B)はスライダー(101
)を上下動させるモータ、 (H14) (105)は
分圧抵抗で極間間隙電圧を分圧して演算増巾器(107
)に加チ1.マた(106)はサーボ基準電圧で、上記
演算増巾1l(107)に加えられてAる。(108)
はサーボ増巾器で、演算増巾器(107)の出力に従い
、モータ(10B)’に駆動する。なお、サーボ基準電
圧(106)は通常可変である。
In addition, (10 is the stray capacitance existing in the circuit. Figure 5 is a configuration diagram of the interpolar gap tracking device, and in the figure b,
(100) is the processing power supply shown in Fig. 4, (101
3 is a slider that sprays electricity 1i (1), (1 (1
2) is a fixed head, (10B) is a slider (101
), (H14) (105) divides the gap voltage between the poles using a voltage dividing resistor and generates an operational amplifier (107).
) plus 1. A (106) is a servo reference voltage, which is added to the arithmetic amplification width 11 (107). (108)
is a servo amplifier, which is driven by the motor (10B)' according to the output of the operational amplifier (107). Note that the servo reference voltage (106) is usually variable.

次に動作につ匹て説明する。第6図にお−で。Next, the operation will be explained. See Figure 6.

(へ)は極間間隙の電圧波形、(6)I−1rメ菫間間
隙に流ねる電流波形であり、 (a)+sコンパレータ
(1ηの出力波形である。まず、出水しない発振器によ
りスイ・ソチング素子(4)l”ON’にすると、電流
制限抵抗(5)とコンデンサ(8)及び浮遊容t(1G
によって決定される時定数にて、極間間隙の電圧翰が土
丹する。そして加工用電源(3)の電圧に寸で、上外し
てIII!J’1間隙に放電が発生するとコンデンサ(
8)からパルス幅の狭く、ピーク値の高い電流(ロ)が
流れ、放電加工が行われる。一方、極間間隙の電圧は、
コンパレータaηにて基準電圧(至)と比較され出力(
Q)’を得る。(0)で示される波形の立上りは、スイ
ッチング素子(4)がS ON # となるタイミング
から遅れ時間ヲ持ちこの遅れ時間は抵抗(5)、コンデ
ンサ(8)および浮遊容量QQ等により種、々の頃をと
る。放電の検出は極間間隙電圧の立下り、すなわち、コ
ンパレータ0乃の出力(0)の立下りにて検出1“ろが
、[間fl+1 隙電圧が放電検出レベルに到達する前
に放電が発生すると、コンパレータαηの出力(alで
は判別できなくなる。そこで、¥Jr、6図(d)で示
した信号、fなわち。
(f) is the voltage waveform in the gap between the electrodes, (6) is the current waveform flowing in the I-1r gap, and (a) is the output waveform of the +s comparator (1η.) When the soching element (4) is turned on, the current limiting resistor (5), capacitor (8) and stray capacitance t (1G
The voltage across the electrode gap rises with a time constant determined by . Then, adjust the voltage of the processing power supply (3) and remove it. When discharge occurs in the J'1 gap, the capacitor (
A current (b) with a narrow pulse width and a high peak value flows from 8), and electrical discharge machining is performed. On the other hand, the voltage across the electrode gap is
The comparator aη compares it with the reference voltage (to) and outputs (
Q)' is obtained. The rise of the waveform indicated by (0) has a delay time from the timing when the switching element (4) turns ON #, and this delay time varies depending on the resistor (5), capacitor (8), stray capacitance QQ, etc. Take the time. Discharge is detected at the falling edge of the gap voltage, that is, the falling edge of the output (0) of comparator 0, but the discharge occurs before the gap voltage reaches the discharge detection level. Then, the output (al) of the comparator αη cannot be determined. Therefore, ¥Jr, the signal shown in FIG. 6(d), ie, f.

スイッチング素子(4)ヲ5ON’にするタイミングか
ら所定時間Tの間ハイレベルとなる信号を図示しなり発
振器にて出力し、コンパレータQ7)の出力(0)とで
論理和を行い、第6図(e)の信号を得る。この信号(
e)のV下りが放電発生のタイミングとして使用される
。ここで、信号(d)の時間T[、いわば放電検出禁止
時間となる。放電が検出されるとただちに、あるいは所
定時間後にスイッチング素子(4)を’ 01’i’F
 #にして所定時間の休止とし、再びスイッチング素子
(4)?’ ON ’ とする。第6図では。
A signal that remains at a high level for a predetermined time T from the timing when the switching element (4) is turned 5ON' is outputted by an oscillator (not shown), and is logically summed with the output (0) of the comparator Q7), as shown in FIG. Obtain the signal (e). This signal (
The drop in V in e) is used as the timing for generating discharge. Here, the time T[ of the signal (d) becomes a so-called discharge detection prohibition time. As soon as a discharge is detected, or after a predetermined time, the switching element (4) is switched to '01'i'F.
# is set to pause for a predetermined time, and the switching element (4)? Set it to 'ON'. In Figure 6.

放電検出後ただちにスイ・ソチング素子(4)を%QQ
10しτhるが0通常スイッチング素子(4)の遅ね及
び回路中のインダクタンヌにより加工電流が途切りるの
に遅れが生じる。ここでダイオード(7)はコンデンサ
(8)の正半波方向に電流を流17.逆半波方向に電流
を流すことを阻止するものであるが、省略することも可
II?fある。
Immediately after detecting a discharge, switch the switching element (4) to %QQ.
Normally, there is a delay in cutting off the machining current due to the delay of the switching element (4) and the inductance in the circuit. Here, the diode (7) allows current to flow in the positive half wave direction of the capacitor (8)17. This prevents current from flowing in the reverse half-wave direction, but can it be omitted? There is f.

また、 tll¥加工の進行にともなって、第5図で示
す極間間隙追従装置vr、x #)、電極(1)が送ら
れる。
Further, as the tll\ machining progresses, the interpolar gap follower vr, x #) shown in FIG. 5 and the electrode (1) are sent.

第5図において5wl開間隙電圧は抵抗(1(14)(
105)により分圧され、演算増巾器(1(17)にて
基準電圧(106)と比較され、この時の差電圧をサー
ボ増巾器(108)に入力し、サーボ増巾器(1081
け上記差電圧に応じてモータ(10B )を駆動する。
In Fig. 5, the 5wl open gap voltage is the resistance (1 (14) (
The voltage is divided by the operational amplifier (1 (17)) and compared with the reference voltage (106), and the difference voltage at this time is input to the servo amplifier (108).
The motor (10B) is driven according to the voltage difference between the two voltages.

ζわにより、極間間隙の平均電圧が−Tとなるように、
IFfM(1)の進行・稜退が行わわ、極間間隙長が略
−宇となる。
ζ so that the average voltage of the gap between the poles becomes -T,
IFfM (1) advances and recedes, and the interpolar gap length becomes approximately -U.

〔発明が解決しようとする問題点) 従来の放電加工装置の加工用電源は以上のように構成さ
れてhるので、放電検出を禁止する時間Tの選定が問題
となる。この放電検出禁止時間Tは、抵抗(5)とコン
デンサ(8)と浮遊容量o1とで決まる時定数に応じて
選定されるが、これらの値は加工目的に応じた加工条件
によって決まるため一律ではなり0上記放電検出禁止時
間Tが長すと、第6図(ト)のごとく電流波形がN(な
り、ワーク(2)の加工面を荒くする要因となる。逆に
、放電検出禁止時間Tを短くすると、放電検出に失敗し
1発振器の出力は自励状態に似た出力となる。この現象
を第7図にて説明する。
[Problems to be Solved by the Invention] Since the machining power source of the conventional electric discharge machining apparatus is configured as described above, the problem is the selection of the time T during which discharge detection is prohibited. This discharge detection inhibition time T is selected according to the time constant determined by the resistor (5), capacitor (8), and stray capacitance o1, but these values are determined by the machining conditions depending on the purpose of machining, so they are not uniform. 0 When the discharge detection prohibition time T becomes longer, the current waveform becomes N (as shown in FIG. When shortens, discharge detection fails and the output of the first oscillator becomes an output similar to a self-excited state.This phenomenon will be explained with reference to FIG.

図において、 (a) I (Q) 1口) 、 (e
)は第6図における(へ)I (0) @に)、(e)
とそれぞれ対応してhる。出力mの放電検出禁止時間後
に極間間隙電圧が放電検出レベルに到達してな匹と1図
における(elの出方となり、放電検出が行われてスイ
ッチング素子(4)はゞOFF #に移行する。そのた
め、極間間隙電圧は低いままの状態であるため放電の発
生が起きに(〈な夛、!M間間隙電圧は漏洩電流により
徐々に低下して匹〈。ここで再びスイッチング素子(4
)が1ON′となっても、同様の現象管線り返してしま
う。
In the figure, (a) I (Q) 1 mouth), (e
) is (to) I (0) @), (e) in Figure 6
and correspond to each other. When the interelectrode gap voltage reaches the discharge detection level after the discharge detection prohibition time of output m, (el appears in Figure 1), discharge detection is performed, and the switching element (4) shifts to OFF #. Therefore, since the gap voltage between the electrodes remains low, a discharge occurs. 4
) becomes 1ON', the same phenomenon occurs again.

一方、極間間隙追従装置tは、(へ)の信号、すなわち
極間間隙電圧の平均電圧の分圧値が第5図に示す基準電
圧(106)と等し一場合、誤差電圧が零となるため、
スライダー(101)の上下動はなく、つりあいの状態
となり、加工が進まないことがある等加工速度の減少が
著しす。
On the other hand, the electrode gap tracking device t detects that the error voltage is zero when the signal (to), that is, the divided voltage value of the average voltage of the electrode gap voltage is equal to the reference voltage (106) shown in FIG. To become
The slider (101) does not move up and down and is in a state of balance, resulting in a significant decrease in machining speed, such as machining sometimes not progressing.

以上の様に、放電検出禁止時間Tの選定により。As described above, by selecting the discharge detection prohibition time T.

加工面が荒ねたり、加工速度が著しく低下する等の不具
合が生じる。また、加工条件により、放電検出禁止時間
Tの最適値が異なるため1選定には困難を生じていた。
Problems such as roughening of the machined surface and significant reduction in machining speed occur. Furthermore, the optimum value of the discharge detection inhibition time T varies depending on the machining conditions, making it difficult to select one.

また、超硬等を加工すると1発生する加工粉により極間
の漏洩電流が増加するため無負荷電圧が低下し、上記放
電検出の失敗による不具合が放電検出禁止時間を長くし
ても発生することがあり。
In addition, when machining carbide, etc., the leakage current between the machining electrodes increases due to machining powder, which causes the no-load voltage to decrease, and the problems caused by the failure of discharge detection described above can occur even if the discharge detection prohibition time is extended. There is.

特に加工面積が大きくなって加工粉の除去が困難なとき
ほど発生しやすい。なお、この現象は、放電検出レベル
とサーボ基準電圧との差が少ないか。
This is particularly likely to occur when the processing area becomes large and it is difficult to remove processed powder. Also, is this phenomenon caused by a small difference between the discharge detection level and the servo reference voltage?

サーボ基準電圧の方が低いときに発生しやすい。This tends to occur when the servo reference voltage is lower.

など匹〈つかの問題点があった。There were some problems.

この発明は上記のような問題点を解消するためになされ
たもので、放電検出禁止時間の選定を簡単にし、かつ、
加工条件によっても変更する必要をなくすとともに、加
工粉による漏洩電流の増加時にも放電検出の失敗を防止
して、加工面の荒れ及び加工速度の低下を防止すること
のできる放電加工装置の加工用電源を得ることを目的と
して匹゛ る。
This invention was made to solve the above-mentioned problems, and it simplifies the selection of the discharge detection prohibition time, and
For machining with electrical discharge machining equipment that eliminates the need to change depending on machining conditions, and prevents discharge detection failure even when leakage current due to machining powder increases, thereby preventing roughness of the machined surface and reduction in machining speed. It is used for the purpose of obtaining power.

〔問題点を解決するための手段〕[Means for solving problems]

この発明に係る放電加工装置の加工用電源は。 The machining power source of the electric discharge machining apparatus according to the present invention is as follows.

電極とワークとから形成された極間間隙の浮遊容置の充
電を行う第2の充電回路に流れるi!r流が。
i! flows to the second charging circuit that charges the floating container in the gap between the electrodes and the workpiece. R style.

上記極間間隙に並列に接続されたコンデンサに逆流しな
いように構成するとともに、上記I!2の充電回路によ
る充電W圧t、上記コンデンサの充電を行う第1の光電
回路による充電i!圧より太きくしたものである。
The above-mentioned I! The charging W voltage t by the second charging circuit, and the charging i! by the first photoelectric circuit that charges the capacitor. It is thicker than pressure.

〔作 用〕[For production]

この発明における第2の充電回路は、この回路が有する
抵抗と極間間隙の浮遊容量とで決定される時定数によっ
て、放電検出禁止時間を容易に設定するとともに、加工
時の加工粉による漏洩電流の増加時にも、放電検出を確
実に行う。
The second charging circuit of the present invention easily sets the discharge detection prohibition time using a time constant determined by the resistance of this circuit and the stray capacitance of the gap between the electrodes, and also allows leakage current due to machining powder during machining. To reliably detect discharge even when the amount of water increases.

〔発明の夾施例〕[Examples of invention]

以下、この発明の一実施例ヲ間について説明する。第1
図におりて、第4図と同一符号は同一部分を示し、(5
)は第1の電流制限抵抗、(6)は第1のダイオード、
(7)fl第2のダイオード、(イ)は第2の電流制限
抵抗、(ハ)は可変電圧源である。そして。
Hereinafter, one embodiment of the present invention will be described. 1st
In the figure, the same symbols as in Figure 4 indicate the same parts, (5
) is the first current limiting resistor, (6) is the first diode,
(7) fl second diode, (a) a second current limiting resistor, and (c) a variable voltage source. and.

直列に接続されたスイッチング素子(4)、第1の電流
制限抵抗(5)および第1のダイオード(6)とで、電
極(1)とワーク(2)とから形成された極間間隙に並
列に接続されたコンデンサ(8)全光νにする第1の充
電回路を構成し、スイッチング六子(1)、可変抵抗0
9および第2の電流制限抵抗(1とで、極間間隙の浮遊
容量全充電する第2の充電回路を構成してhる。
The switching element (4), the first current limiting resistor (5) and the first diode (6) are connected in series in parallel to the gap formed between the electrode (1) and the workpiece (2). A capacitor (8) connected to the total light ν constitutes the first charging circuit, a switching hexagon (1), a variable resistor 0
9 and the second current limiting resistor (1) constitute a second charging circuit that fully charges the stray capacitance in the gap between the electrodes.

なお、第2のダイオード(7)は、スイッチング素子(
4)をSQN#Lで極間間隙に電圧全印加した時に。
Note that the second diode (7) is a switching element (
4) when the full voltage is applied to the gap between the electrodes at SQN#L.

1JII2の充電回路に流れる電流がコンデンサ(8)
に逆流するのを防止するものであり、第1の充電回路と
直列に接続されて^る。
The current flowing in the charging circuit of 1JII2 is the capacitor (8)
It is connected in series with the first charging circuit.

第2図は、第1図における賽施例の動作を示したもので
1図において、れ)は極間間FjiW圧、(6)は極間
電流、(C)はコンパレータQηの出力、(1)は放電
検出禁止時間Tt?示す信号、(e)はコンパレータ(
17)の出力((1)と放電検出レベル時間((’l)
の論理和の信号で。
FIG. 2 shows the operation of the die casting example in FIG. 1. In FIG. 1) Is the discharge detection inhibition time Tt? The signal shown, (e) is the comparator (
17) output ((1) and discharge detection level time (('l)
With the logical sum of the signals.

立下りのタイミングが放電検出のタイミングである。第
1図におけるスイッチング素子(4)が1ON’になる
と、第1の電流制限抵抗(5)を介して、コンデンサ(
8) r充電゛さねる。一方、第2の電流制限抵抗−を
介して、極間間隙の浮遊容量OIに充電されるが、浮遊
容量叫の鎖が比較的小さいため、極間間隙の立上りは比
較的早い。このため、第2図(6)で表わされる放電検
出禁止時間Tは短いt[Vc段設定きる。しかも、加工
条件によっても第2の電流制限抵抗−及び浮遊容量aQ
げ斐わらな−ので、加工条件により放電検出禁止時間T
’lH変更する必要はなり0こわにより、パルス幅の長
い放電電流や。
The timing of falling is the timing of discharge detection. When the switching element (4) in FIG. 1 becomes 1ON', the capacitor (
8) Try charging. On the other hand, the stray capacitance OI in the inter-electrode gap is charged through the second current limiting resistor, but since the chain of stray capacitance is relatively small, the rise in the inter-electrode gap is relatively quick. Therefore, the discharge detection inhibition time T shown in FIG. 2 (6) can be set to a short t[Vc stage. Moreover, depending on the processing conditions, the second current limiting resistance and stray capacitance aQ
Therefore, the discharge detection prohibition time T depends on the machining conditions.
It is not necessary to change lH due to the discharge current with long pulse width.

放電検出の失敗が発生しないため、加工面を荒らすこと
がなく、また1発振器が自動状態となって加工が停止す
ることがなく加工速度の低下を防止するものである。
Since no discharge detection failure occurs, the machining surface will not be roughened, and one oscillator will be in the automatic state and machining will not stop, thereby preventing a decrease in machining speed.

また、従来の電源がデユーティ・ファクタの決定にサー
ボ基準電圧(106)すなわち基準電圧全調整するため
、サーボ基#1電圧(106)が放電検出レベル以下に
設定されると、第7図で示さねる放電検出の失敗による
自動状態にな9やすいのに対し。
In addition, since the conventional power supply fully adjusts the servo reference voltage (106), that is, the reference voltage, to determine the duty factor, when the servo base #1 voltage (106) is set below the discharge detection level, the voltage as shown in FIG. However, it is easy to enter an automatic state due to failure of discharge detection.

この発明ではサーボ基準電圧(106) k第2の充電
回路に設けた可変電圧源e(ト)で放電検出レベル以上
に調整、設定することにより、従来電源におけるデユー
ティ・ファクターと同等もしくけ同等以上に調整するこ
とを可能にし、しかも放電検出の失敗による自励状態全
回避するものである。
In this invention, by adjusting and setting the servo reference voltage (106) k to a level higher than the discharge detection level using the variable voltage source e (g) provided in the second charging circuit, the duty factor is equal to or even higher than that of a conventional power supply. Moreover, the self-excitation state caused by failure of discharge detection can be completely avoided.

なお、上記実施例では、第2の充II口路のスイッチン
グ素子?第1の充電回路のスイ、yチング素子(4)と
共有したが、第8図に示すように、@2の充電回路用の
スイッチング素子@を設けてもより。
In addition, in the above embodiment, the switching element of the second channel II? Although this is shared with the switch and y switching element (4) of the first charging circuit, it is also possible to provide a switching element @2 for the charging circuit as shown in FIG.

〔発明の効果〕〔Effect of the invention〕

以上のようにこの発明によれば、極間間隙の浮遊容量を
充電する第2の充電回路?設け、かつ。
As described above, according to the present invention, the second charging circuit charges the stray capacitance in the gap between the electrodes. Provided, and.

この充電回路に流ねる電流が極間間隙に並列に接続され
たコンデンサに逆流しないように構成するとともに、上
記第2の充電回路による充電電圧を。
The charging circuit is configured so that the current flowing through the charging circuit does not flow back to the capacitor connected in parallel to the gap between the electrodes, and the charging voltage by the second charging circuit is controlled.

上記コンデンサケ充電する第1の充電回路による充電電
圧よりも大きくしたので、放電検出禁止時間が短くでき
、かつ、放電検出の誤動作が防止できるため、ワーク加
工面の荒さを抑制し、加工速度の低下を防止する放電加
工装置の加工用電源が得られる効果がある。
Since the charging voltage is set higher than the charging voltage of the first charging circuit that charges the capacitor, the discharge detection prohibition time can be shortened, and malfunction of discharge detection can be prevented, which suppresses the roughness of the workpiece machined surface and increases the machining speed. This has the effect of providing a machining power source for the electrical discharge machining device that prevents deterioration.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の一実施例による放電加工装置の加工
用電源を示す回路図、第2図は同動作詩明図、第8図は
この発明の他の実施例による放電加工装置の加工用電源
を示す回路図、第4図は従来の放電加工装置の加工用電
源を示す回路図、第5図は同構成図、第6図および第7
図は向動作説明図である。 図にお^で、(1)は電極、(2)はワーク、(4)@
はエイ9チング素子、(5)は第1の電流制限抵抗、(
6)は第1のダイオード、(7)は第2のダイオード、
(8)はコンデンサ、 QOは浮遊容量、翰ハ第2の電
流制限抵抗、(ハ)は可変電圧源である。 なお1図中、同一符号は同一、又は相当部分を示す。
Fig. 1 is a circuit diagram showing a machining power source of an electric discharge machining apparatus according to an embodiment of the present invention, Fig. 2 is a schematic diagram showing the same operation, and Fig. 8 is a machining circuit diagram of an electric discharge machining apparatus according to another embodiment of the present invention. 4 is a circuit diagram showing the machining power source of a conventional electric discharge machining device, FIG. 5 is the same configuration diagram, and FIGS. 6 and 7 are
The figure is an explanatory diagram of the direction movement. In the figure, (1) is the electrode, (2) is the workpiece, and (4) @
(5) is the first current limiting resistor, (
6) is the first diode, (7) is the second diode,
(8) is a capacitor, QO is a stray capacitance, C is a second current limiting resistor, and (C) is a variable voltage source. In addition, in FIG. 1, the same reference numerals indicate the same or equivalent parts.

Claims (3)

【特許請求の範囲】[Claims] (1)電極とワークとから形成された極間間隙に並列に
接続されたコンデンサの充電を行う第1の充電回路と、
上記極間間隙の浮遊容量の充電を行う第2の充電回路と
を備え、上記第2の充電回路に流れる電流が上記コンデ
ンサに逆流しないように構成するとともに、上記第1の
充電回路による充電電圧よりも第2の充電回路による充
電電圧の方が高いことを特徴とする放電加工装置の加工
用電源。
(1) a first charging circuit that charges a capacitor connected in parallel to the gap formed between the electrode and the work;
a second charging circuit that charges the stray capacitance in the gap between the electrodes, configured to prevent the current flowing through the second charging circuit from flowing back to the capacitor, and the voltage charged by the first charging circuit. A machining power source for an electric discharge machining device, characterized in that a charging voltage by a second charging circuit is higher than that of a second charging circuit.
(2)第2の充電回路は、スイッチング素子、電流制限
抵抗および整流用半導体素子から成ることを特徴とする
特許請求の範囲第1項記載の放電加工装置の加工用電源
(2) A machining power source for an electric discharge machining apparatus according to claim 1, wherein the second charging circuit comprises a switching element, a current limiting resistor, and a rectifying semiconductor element.
(3)整流用半導体素子は、ダイオードであることを特
徴とする特許請求の範囲第2項記載の放電加工装置の加
工用電源。
(3) A machining power source for an electric discharge machining apparatus according to claim 2, wherein the rectifying semiconductor element is a diode.
JP13844385A 1985-06-25 1985-06-25 Power source for electric discharge machine Pending JPS61297014A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13844385A JPS61297014A (en) 1985-06-25 1985-06-25 Power source for electric discharge machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13844385A JPS61297014A (en) 1985-06-25 1985-06-25 Power source for electric discharge machine

Publications (1)

Publication Number Publication Date
JPS61297014A true JPS61297014A (en) 1986-12-27

Family

ID=15222114

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13844385A Pending JPS61297014A (en) 1985-06-25 1985-06-25 Power source for electric discharge machine

Country Status (1)

Country Link
JP (1) JPS61297014A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104625256A (en) * 2015-01-12 2015-05-20 泰州市山达机电科技有限公司 High frequency electric spark automatic machine tool

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104625256A (en) * 2015-01-12 2015-05-20 泰州市山达机电科技有限公司 High frequency electric spark automatic machine tool
CN104625256B (en) * 2015-01-12 2017-12-01 京山新瑞达通用机器有限公司 A kind of high-frequency spark automatic toolroom machine

Similar Documents

Publication Publication Date Title
US3832510A (en) Pulse generator for edm machine
JP2628642B2 (en) Automatic voltage switching power supply
CA1287119C (en) Electric discharge machining apparatus
US8093528B2 (en) Method and device for electrical discharge machining
US4697219A (en) Snubber circuit for gate turnoff thyristor
JP2015042432A (en) Wire electric discharge machine including average discharge delay time calculation means
EP0178330B1 (en) Power source for wire cut electrospark machining
US4614854A (en) Wire EDM control circuit for rough and finished machining
JP2954774B2 (en) Power supply unit for electric discharge machine
JP2006204021A (en) Charger
US5380975A (en) Electric discharge machining apparatus
US4864092A (en) Electric discharge machining power source
US4453115A (en) DC Motor control system
JPS61297014A (en) Power source for electric discharge machine
US5378866A (en) Electric discharge machining system having a secondary power supply including a controllable voltage source and impedance
EP0286282A2 (en) Method for detecting input ac voltage
EP0157885A1 (en) Power supply apparatus for wire-cut electric discharge machining
JP3726940B2 (en) Wire cut electric discharge machine
EP0147473B1 (en) Power source for electrical discharge machining
JP2005534275A (en) Method for controlling transient response of power converter supplying power to load, transient response controller, and power converter
JPS61159326A (en) Method of obtaining excellent machining surface on electrical discharge machining
JP2801280B2 (en) Wire cut EDM power supply
JPS61293716A (en) Machining power supply for electric discharge machine
JPS6234722A (en) Electric power unit for electric discharge machining
JP2003045691A (en) Charging circuit for stroboscope