JPS61296723A - Surface treatment apparatus - Google Patents

Surface treatment apparatus

Info

Publication number
JPS61296723A
JPS61296723A JP13882385A JP13882385A JPS61296723A JP S61296723 A JPS61296723 A JP S61296723A JP 13882385 A JP13882385 A JP 13882385A JP 13882385 A JP13882385 A JP 13882385A JP S61296723 A JPS61296723 A JP S61296723A
Authority
JP
Japan
Prior art keywords
gas
substrate
temperature
vacuum
etching
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13882385A
Other languages
Japanese (ja)
Inventor
Eiji Igawa
英治 井川
Shigeyuki Sugito
杉戸 重行
Yukinori Kuroki
黒木 幸令
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP13882385A priority Critical patent/JPS61296723A/en
Publication of JPS61296723A publication Critical patent/JPS61296723A/en
Pending legal-status Critical Current

Links

Landscapes

  • Drying Of Semiconductors (AREA)

Abstract

PURPOSE:To remove a damaged layer of an Si substrate and eliminate remaining reactive gas molecules and atoms from the surface of the Si substrate by etching the damaged layer at the low temperature about 400 deg.C and with good controllability. CONSTITUTION:A treatment gas is introduced into an evacuated vacuum apparatus while being evacuated. High power ultraviolet rays are applied to an Si substrate placed on a target and a damaged layer is etched. After the etching is completed, introduction of the treatment gas is discontinued and, while being evacuated to the high vacuum rate again, UV application only is performed to elevate the substrate temperature. In other words, halogen molecules and atoms adsorbed by the Si surface layer are dissociated under the elevated temperature and decreased pressure while the lights are being applied so as to make adsorbed atoms or molecules not to remain on the Si surface layer at all.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、Siを用いた電子デバイス製造プロセスに用
いる表面処理装置に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a surface treatment apparatus used in an electronic device manufacturing process using Si.

(従来技術及びその問題点) 反応性スパッタエツチングで5intをエツチングする
と下地S1層上に炭素やハロゲン原子を含んだ層が形成
される。従来、その炭素やハロゲンを除去するためには
、200〜300人酸化(Ht:O,=1:1のWet
方式、950℃)した後に、その酸化膜をフッ酸で除去
する方法を用いていた(井用英治他、第30回応用物理
学会関係連合講演会、P310,6a−V−10)。コ
ノ従来法は、950℃程度の高温処理であり、デバイス
に必要な不純物分布を変えてしまう可能性もある。
(Prior art and its problems) When 5 int is etched by reactive sputter etching, a layer containing carbon and halogen atoms is formed on the underlying S1 layer. Conventionally, in order to remove carbon and halogen, 200 to 300 oxidation methods (Ht:O, = 1:1 wet
A method was used in which the oxide film was removed using hydrofluoric acid (Eiji Iyo et al., 30th Japan Society of Applied Physics Association Conference, P310, 6a-V-10). The conventional method requires high-temperature treatment at about 950° C., which may change the impurity distribution required for the device.

その酸化層の厚さも、炭素の混入度合によって、バラツ
キがあり制御が困難であった。
The thickness of the oxide layer also varied depending on the degree of carbon incorporation, making it difficult to control.

他の方法として、上述のように、損傷層を酸化して除去
するのではなく、ウェットもしくは、ドライエツチング
でエツチングしてしまう方法もある。ウェットエツチン
グの場合には、Slのエツチング液として、I(No3
. PIFをうすめたものを用いるが、きわめてエツチ
ングレイトが太き((3000〜4000人/―)、そ
れを低くおさえて制御するのは、酸化膜厚を制御するよ
り困難である。又、ドライエツチングによって表面層を
エツチングする方法モは、イオンの入射もあシ、物理的
損傷法さけることができない。それとともに、塩素や、
フッ素原子分子がたたき込まれて、後でアニールが必要
となってしまう。すなわち、処理に用いたガス中のハロ
ゲン原子や分子は除去できず、結局のところ、エツチン
グによる表面層の除去で炭素は除去できてもハロゲン原
子は残留してしまうという欠点を有していた。
Another method, as described above, is to etch the damaged layer by wet or dry etching instead of oxidizing and removing it. In the case of wet etching, I (No. 3
.. A diluted PIF is used, but the etching rate is extremely high (3000 to 4000/-), and keeping it low and controlling it is more difficult than controlling the oxide film thickness.Also, dry etching The method of etching the surface layer by etching involves the incidence of ions and physical damage cannot be avoided.At the same time, chlorine,
Fluorine atoms and molecules are incorporated and require subsequent annealing. That is, the halogen atoms and molecules in the gas used for the treatment cannot be removed, and in the end, even if carbon can be removed by removing the surface layer by etching, the halogen atoms remain.

そこで、本発明の目的は、これらの従来の欠点を除き、
Si基板の表面処理において、Si基板を400°C程
度の低温でかつ制御性よく損傷層をエツチング除去でき
、しかも処理に用いた反応性ガス分子や原子もSi基板
上に残さない処理装置を提供することにある。
Therefore, the purpose of the present invention is to eliminate these conventional drawbacks,
Provides a processing device that can remove damaged layers by etching the Si substrate at a low temperature of about 400°C with good controllability in surface processing of Si substrates, and does not leave any reactive gas molecules or atoms used in the processing on the Si substrate. It's about doing.

(問題点を解決するための手段) 前述の問題点を解決するために本発明が提供する表面処
理装置は、真空装置内のターゲットにSi基板を置いて
前記Si基板の表面を処理する装置において、前記ター
ゲットを加熱して前記基板の温度を調整する手段と、前
記Si基板に紫外線を照射する手段と、塩素ガス、フッ
素ガス、  XeF。
(Means for Solving the Problems) In order to solve the above-mentioned problems, the present invention provides a surface treatment apparatus that processes the surface of the Si substrate by placing the Si substrate on a target in a vacuum apparatus. , means for heating the target to adjust the temperature of the substrate, means for irradiating the Si substrate with ultraviolet rays, chlorine gas, fluorine gas, and XeF.

ガス又はこれらの混合ガスを選択して前記真空装置内に
導入するガス導入手段と、前記真空装置内の真空度を調
整する手段とが備えてあり、前記温度及び真空度が所定
範囲内にあるときに前記ガス導入手段は前記ガスの導入
の開始をし、このガスの導入の開始から所定時間の経過
後に前記紫外線照射手段は前記紫外線の照射の開始をし
、この紫外線の照射の開始から所定時間の経過後に前記
ガス導入手段は前記ガスの導入の終了をし、このガス導
入の終了後に前記温度調整手段は前記基板の温度を一定
にし又は上昇させるとともに前記真空度調整手段は前記
真空度を上げ、前記ガス導入の終了から所定時間の経過
後に前記紫外線照射手段は前記紫外線の照射を終えるこ
とを特徴とする。
A gas introducing means for selecting a gas or a mixture thereof and introducing it into the vacuum device, and a means for adjusting the degree of vacuum in the vacuum device, the temperature and the degree of vacuum being within a predetermined range. In some cases, the gas introducing means starts introducing the gas, and after a predetermined time has elapsed from the start of introducing the gas, the ultraviolet irradiation means starts irradiating the ultraviolet rays, and a predetermined period of time elapses from the start of the ultraviolet irradiation. After a lapse of time, the gas introduction means finishes introducing the gas, and after the gas introduction ends, the temperature adjustment means makes the temperature of the substrate constant or increases, and the vacuum degree adjustment means adjusts the degree of vacuum. In addition, the ultraviolet irradiation means may finish irradiating the ultraviolet rays after a predetermined time has elapsed from the end of the gas introduction.

(作用) 本発明は、上述の手段により従来技術の問題点を解決し
た。すなわち、十分、真空排気された真空装置内に真空
排気しながら処理ガスを導入し、ターゲット上に置かれ
たSlに対し高出力紫外光を照射し、損傷層をエツチン
グする。エツチング終了後に、処理ガスを止め、再び高
真空度まで真空排気しながら光照射のみ行い、基板温度
を上昇させる。すなわち、Si表面層に吸着し九ノ・ロ
ゲン分子や原子を光照射しなから昇温、減圧下で脱離さ
せてSi表面層に、なんら吸着原子や分子が残らないよ
うにする。
(Operation) The present invention solves the problems of the prior art by the above-mentioned means. That is, a processing gas is introduced into a sufficiently evacuated vacuum apparatus while being evacuated, and high-power ultraviolet light is irradiated onto the Sl placed on the target to etch the damaged layer. After etching is completed, the processing gas is stopped, and while evacuation is again performed to a high degree of vacuum, only light irradiation is performed to raise the substrate temperature. That is, the nine-rogen molecules and atoms adsorbed on the Si surface layer are irradiated with light and then desorbed under elevated temperature and reduced pressure so that no adsorbed atoms or molecules remain on the Si surface layer.

(実施例) 以下、本発明の実施例を図面を参照して説明する。第1
図は本発明の一実施例の構成を示す図である。この実施
例では、真空チャンバー11内には、ヒーター内蔵ター
ゲット18がありその上に試料19が置かれている。又
、真空チャ/バー11上には、紫外光源120からでた
光を透過できる紫外光透過窓17がある。光源120に
は800 mW/α2の水銀ランプを用いた。真空排気
系としては、ゲートパルプ12を介して、ターボモレキ
ュラーポンプ13.ロータリーポンプ14があり、高真
空まで排気できる。一方、ガス導入口16から、塩素や
フッ素ガス等が選択されて、真空チャ/バー11内へ導
入される。さらに、ガス導入時に、真空排気する口、−
タリーポンプ14は、コンダクタンス可変パルプ15を
介して、真空チャンバー11へ接続されている。本実施
例では、高真空排気用に、ターボモレキュラーポンプ1
3を用いたがオイル拡散ポンプやクライオポンプでも可
能である。しかし、オイル拡散ポンプでは、コールドト
ラップを用いてもオイルによる試料汚染が問題となった
。さらに、ロータリーポンプ14は、メカニカルブース
ターボンブト併用してもさらに効果的であった。ヒータ
ー内蔵ターゲットは、コントローラによシ温度変化が可
能で本実施例では、500°Cまで上昇可能なものを用
いた。
(Example) Hereinafter, an example of the present invention will be described with reference to the drawings. 1st
The figure is a diagram showing the configuration of an embodiment of the present invention. In this embodiment, a target 18 with a built-in heater is provided in the vacuum chamber 11, and a sample 19 is placed on the target 18. Further, on the vacuum chamber/bar 11, there is an ultraviolet light transmitting window 17 through which light emitted from an ultraviolet light source 120 can pass. A mercury lamp of 800 mW/α2 was used as the light source 120. As a vacuum evacuation system, a turbo molecular pump 13. There is a rotary pump 14 that can exhaust to a high vacuum. On the other hand, chlorine, fluorine gas, etc. are selected and introduced into the vacuum chamber/bar 11 through the gas inlet 16 . Furthermore, when introducing gas, there is a port for evacuation, −
The tally pump 14 is connected to the vacuum chamber 11 via a variable conductance pulp 15. In this embodiment, a turbo molecular pump 1 is used for high vacuum pumping.
3 was used, but an oil diffusion pump or cryopump can also be used. However, with oil diffusion pumps, sample contamination by oil became a problem even when a cold trap was used. Furthermore, the rotary pump 14 was even more effective when used in combination with a mechanical booster bomb. The temperature of the target with a built-in heater can be changed by a controller, and in this example, a target that can be raised to 500°C was used.

次に、平行平板型エツチング装置で5102をCF4+
H,(200W、0.18 W/c!IL’ )で1μ
mエツチングし、2分間オーバーエツチングし、下地S
1が損傷を受けた試料に対し、実施例により表面処理を
施した例をあげて説明する。
Next, 5102 was etched with CF4+ using a parallel plate type etching device.
H, (200W, 0.18 W/c!IL') at 1μ
M etching, over etching for 2 minutes, and base S
An example in which surface treatment was applied to a sample damaged by Sample No. 1 will be described below.

第2図に、本実施例による表面処理のシーケンスの一例
を示す。第2図(a)はシャッターの開閉、(b)は排
気の方法、(C)はガス導入口、(d)はターゲット温
度の変化をそれぞれ示したものである。又、大きく分け
て、本実施例による表面処理工程は時間軸上で4つの領
域に分けることができる。第1の領域Aでは試料をター
ボモレキュラーポンプ13で高真空まで排気する、すな
わち、10−’TOLL程度に試料は置かれる。このと
き、シャッターは閉じ、ガス導入口16も閉じている。
FIG. 2 shows an example of the sequence of surface treatment according to this embodiment. FIG. 2(a) shows the opening and closing of the shutter, (b) shows the exhaust method, (C) shows the gas inlet, and FIG. 2(d) shows the change in target temperature. Furthermore, roughly speaking, the surface treatment process according to this embodiment can be divided into four areas on the time axis. In the first region A, the sample is evacuated to a high vacuum by the turbo molecular pump 13, that is, the sample is placed at about 10-' TOLL. At this time, the shutter is closed and the gas inlet 16 is also closed.

一方ターゲット温度は次の領域Bでの温度上昇にそなえ
である程度の温度まで上昇させておく。これは本発明の
装置の本質ではないが、処理時間を単時間にするのには
必要であった。このときの温度T1は180℃であった
。次に、第2の領域Bで、排気をターボモレキュラーポ
ンプ13からロータリーポンプ14に切シ換えると同時
に、ガス導入口16を開け、XeF、を導入する。基板
温度も処理を単時間化するためにこの時点で上昇させた
方がよい。この時の温度で、は約250℃とした。そし
て、一定のガス圧力に保たれるようになったとき、第3
の領域Cに入シ、シャッターを開ける。
On the other hand, the target temperature is raised to a certain level in preparation for the next temperature rise in region B. Although this is not essential to the apparatus of the present invention, it was necessary to reduce the processing time to a single hour. The temperature T1 at this time was 180°C. Next, in the second region B, the exhaust gas is switched from the turbo molecular pump 13 to the rotary pump 14, and at the same time, the gas inlet 16 is opened and XeF is introduced. It is also better to raise the substrate temperature at this point in order to shorten the processing time. The temperature at this time was approximately 250°C. Then, when the gas pressure is maintained at a constant level, the third
Enter area C and open the shutter.

この時点でエツチングが開始される。そして、所定のエ
ツチングが終った時点で、第4の領域DK水ポンプ4か
らターボモレキュラーポンプ13に切シ換える。このエ
ツチング反応は、フッ素ラジカルと、Si基板の反応で
SiF、ができる。又、ターゲット温度を250℃から
350℃(=Ts)まで上昇させる。すなわち、光を照
射したまま、高真空中で昇温する。すると、試料表面に
吸着していたフッ素原子は昇温でかつ、高真空中であり
、又紫外線を照射されているから容易に脱離する。
At this point, etching begins. Then, when the predetermined etching is completed, the fourth region DK water pump 4 is switched to the turbo molecular pump 13. In this etching reaction, fluorine radicals react with the Si substrate to form SiF. Further, the target temperature is increased from 250°C to 350°C (=Ts). That is, the temperature is raised in a high vacuum while irradiating light. Then, the fluorine atoms adsorbed on the sample surface are easily desorbed because the temperature is raised, the sample is in a high vacuum, and it is irradiated with ultraviolet rays.

本処理例では、領域Aが1分、領域Bが10秒、領域C
が1分、領域りが1分であった。これらの処理時間は、
ターゲット18の温度により変化するが、500℃以上
にすると、低温プロセスという意味がなくなり、不純物
の再分布化等の問題が起こる。又、光源120は、通常
の水銀ランプでは、10〜30”/’cm”とパワーが
低すぎて、処理時間が長くなるから、本実施例では80
0 mW/cm’の高出力型のものを用いた。本実施例
の装置では、4インチウェハーの枚葉式で5インチまで
照射可能である。これらの光源を多数個合わせて、パッ
チ処理も可能である。
In this processing example, area A is 1 minute, area B is 10 seconds, area C is
was 1 minute, and the area was 1 minute. These processing times are
Although it varies depending on the temperature of the target 18, if the temperature is 500° C. or higher, it loses its meaning as a low-temperature process, and problems such as redistribution of impurities occur. In addition, the light source 120 has a power of 10 to 30''/'cm, which is too low for a normal mercury lamp, and the processing time becomes long.
A high output type of 0 mW/cm' was used. The apparatus of this embodiment is capable of irradiating up to 5 inches with a single wafer of 4 inches. Patch processing is also possible by combining a large number of these light sources.

第3図(a)は、平行平板型エツチング装置でSi0゜
のエツチング後に2分間オーバーエツチングしたSlの
エツチング直後の工MAスペクトルを示し、同図(1)
)は第1図実施例を用いて300人エツチングした直後
のその日1の−1MAスペクトルを示も処理前には約3
00人近(Si表面層から炭素原子やフッ素原子が混入
しているが、本実施例による処理後では、炭素原子やフ
ッ素原子は検出限界以下であった。さらに、オージー分
析で調べてもドライエツチング前のSi表面と同じレベ
ルであった。
Figure 3(a) shows the MA spectrum immediately after etching of Sl, which was over-etched for 2 minutes after etching Si0° using a parallel plate type etching device.
) shows the -1 MA spectrum of day 1 immediately after etching 300 people using the example shown in Figure 1, but before processing it shows the -1 MA spectrum of about 3
(Although carbon atoms and fluorine atoms are mixed in from the Si surface layer, after the treatment in this example, carbon atoms and fluorine atoms were below the detection limit. Furthermore, even when examined by Aussie analysis, dry It was at the same level as the Si surface before etching.

(発明の効果) 以上、示したように、本発明の表面処理装置は、400
℃程度の低温で制御性よく損傷層をエツチング除去でき
る。そこで、この表面処理装置を用いることによって、
ドライエツチングの後の炭素、フッ素等を含んだ層を除
去し、その後のプロセスに問題を残さない。すなわち、
コンタクト不良等の問題もなくなる。又、処理に用いた
ガス分子や原子も表面に残さないので高温プロセスによ
ってアニール等の必要もない。このことは、半導体プロ
セスにとって重要な不純物分布の形を変化させないこと
を意味する。従って、本発明が半導体プロセスの表面処
理工程に与える影響はきわめて大きい。
(Effects of the Invention) As shown above, the surface treatment apparatus of the present invention has 400
The damaged layer can be etched and removed with good control at a low temperature of around 0.9°C. Therefore, by using this surface treatment equipment,
Removes layers containing carbon, fluorine, etc. after dry etching, leaving no problems in subsequent processes. That is,
Problems such as poor contact will also be eliminated. Furthermore, since gas molecules and atoms used in the treatment do not remain on the surface, there is no need for annealing or the like due to the high temperature process. This means that the shape of impurity distribution, which is important for semiconductor processing, does not change. Therefore, the influence of the present invention on the surface treatment step of semiconductor processing is extremely large.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の構成を示す図、第2図(J
L)〜(d)は第1図実施例による処理工程を示す図、
第3図(a)は平行平板型エッチフグ装置でSi0゜の
エツチング後に2分間オーバーエツチングしたSlの工
MAスペクトルを示す図、同図(b)は第1図実施例に
より300人エツチングしたSlのIMAスペクトルを
示す図である。 11・・・真空チャンバー、12・・・ゲートパルプ、
13・・・ターボモレキュラーポンプ、14・・・ロー
タリーポンプ、15・・・コ/ダクタ/ス可変バルブ、
16・・・ガス導入口、17・・・紫外光透過窓、18
・・・ヒーター内蔵ターゲット、19・・・試料、12
0・・・光源。 代理人  弁理士  本 庄 伸 弁 筒2図 dS3図(a) C1100200300 S1中Oj区さ (λ)
FIG. 1 is a diagram showing the configuration of an embodiment of the present invention, and FIG. 2 (J
L) to (d) are diagrams showing processing steps according to the embodiment in FIG.
Figure 3 (a) is a diagram showing the MA spectrum of Sl that was over-etched for 2 minutes after Si 0° etching using a parallel plate type etch device, and Figure 3 (b) is a diagram showing the MA spectrum of Sl that was etched by 300 people using the example shown in Figure 1. It is a figure showing an IMA spectrum. 11... Vacuum chamber, 12... Gate pulp,
13...Turbo molecular pump, 14...Rotary pump, 15...Co/ductor/s variable valve,
16... Gas inlet, 17... Ultraviolet light transmission window, 18
... Target with built-in heater, 19 ... Sample, 12
0...Light source. Agent Patent Attorney Shin Honjo Valve tube 2 drawing dS3 drawing (a) C1100200300 S1 middle Oj kusa (λ)

Claims (1)

【特許請求の範囲】[Claims]  真空装置内のターゲットにSi基板を置いて前記Si
基板の表面を処理する装置において、前記ターゲットを
加熱して前記基板の温度を調整する手段と、前記Si基
板に紫外線を照射する手段と、塩素ガス、フッ素ガス、
XeF_2ガス又はこれらの混合ガスを選択して前記真
空装置内に導入するガス導入手段と、前記真空装置内の
真空度を調整する手段とが備えてあり、前記温度及び真
空度が所定範囲内にあるときに前記ガス導入手段は前記
ガスの導入の開始をし、このガスの導入の開始から所定
時間の経過後に前記紫外線照射手段は前記紫外線の照射
の開始をし、この紫外線の照射の開始から所定時間の経
過後に前記ガス導入手段は前記ガスの導入の終了をし、
このガス導入の終了後に前記温度調整手段は前記基板の
温度を一定にし又は上昇させるとともに前記真空度調整
手段は前記真空度を上げ、前記ガス導入の終了から所定
時間の経過後に前記紫外線照射手段は前記紫外線の照射
を終えることを特徴とする表面処理装置。
Place the Si substrate on a target in a vacuum device and
An apparatus for treating the surface of a substrate, comprising means for heating the target to adjust the temperature of the substrate, means for irradiating the Si substrate with ultraviolet rays, chlorine gas, fluorine gas,
A gas introducing means for selecting XeF_2 gas or a mixture thereof and introducing it into the vacuum device, and a means for adjusting the degree of vacuum in the vacuum device are provided, so that the temperature and the degree of vacuum are within a predetermined range. At a certain time, the gas introducing means starts introducing the gas, and after a predetermined time has elapsed from the start of introducing the gas, the ultraviolet ray irradiation means starts irradiating the ultraviolet rays, and from the start of the ultraviolet irradiation. After a predetermined time has elapsed, the gas introduction means ends the introduction of the gas,
After the gas introduction is completed, the temperature adjustment means maintains or increases the temperature of the substrate, and the vacuum degree adjustment means increases the degree of vacuum, and after a predetermined time has elapsed from the end of the gas introduction, the ultraviolet irradiation means A surface treatment device characterized in that the irradiation with the ultraviolet rays is finished.
JP13882385A 1985-06-25 1985-06-25 Surface treatment apparatus Pending JPS61296723A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13882385A JPS61296723A (en) 1985-06-25 1985-06-25 Surface treatment apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13882385A JPS61296723A (en) 1985-06-25 1985-06-25 Surface treatment apparatus

Publications (1)

Publication Number Publication Date
JPS61296723A true JPS61296723A (en) 1986-12-27

Family

ID=15231058

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13882385A Pending JPS61296723A (en) 1985-06-25 1985-06-25 Surface treatment apparatus

Country Status (1)

Country Link
JP (1) JPS61296723A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02187025A (en) * 1989-01-13 1990-07-23 Sanyo Electric Co Ltd Etching and manufacture of x-ray lithography mask
WO2006040132A1 (en) * 2004-10-12 2006-04-20 Infineon Technologies Richmond, Lp System and method for corrosive vapor reduction by ultraviolet light

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02187025A (en) * 1989-01-13 1990-07-23 Sanyo Electric Co Ltd Etching and manufacture of x-ray lithography mask
WO2006040132A1 (en) * 2004-10-12 2006-04-20 Infineon Technologies Richmond, Lp System and method for corrosive vapor reduction by ultraviolet light

Similar Documents

Publication Publication Date Title
US10068765B2 (en) Multi-step system and method for curing a dielectric film
US4176003A (en) Method for enhancing the adhesion of photoresist to polysilicon
JP2814021B2 (en) Semiconductor substrate surface treatment method
TWI390592B (en) Method and apparatus for ashing a substrate using carbon dioxide
US6299722B1 (en) Etching equipment including a post processing apparatus for removing a resist film, polymer, and impurity layer from an object
KR20080034001A (en) Damage-free ashing process and system for post low-k etch
EP0940846A1 (en) Method for stripping ion implanted photoresist layer
JP2000036492A (en) Etching method
JPH07321090A (en) Method for etching post-treatment
JPH05275326A (en) Method for ashing resist
JPS63234528A (en) Treatment of resist
JPH07169754A (en) Reduction of etching damage of semiconductor device
JPS61296723A (en) Surface treatment apparatus
JPS5911629A (en) Surface cleaning method
JPH09232281A (en) Dry-etching treatment method
JPS59129425A (en) Dry etching device
JP2000012521A (en) Plasma ashing method
JPS6269613A (en) Hardening resist pattern
JPH03131024A (en) Semiconductor etching
US6664194B1 (en) Photoexposure method for facilitating photoresist stripping
JPH0630354B2 (en) Drying method for Si surface
JP2880993B1 (en) Method of forming semiconductor oxide film
JPH02275618A (en) Manufacture of semiconductor device
JP3217280B2 (en) Dry etching post-processing method and method for manufacturing MOS type semiconductor device
JPH0738380B2 (en) Surface treatment method